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Macroscopic Transport Equations

Consider ionic transport in agueous solution.

Macroscopic Treatment:
c;j(x) - concentration at x of species j
Y(x) - potential of mean field

From macroscopic thermodynamical arguments,
the flux J, of species p is:

Tp(@) = Dy (Vep(@) + cp(@) V(@)
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The Nernst-Planck Equation

3,010

Conservation laws of mass & momentum:
ez
=A@ +V (@) 2vi@)

Nernst-Planck / Drift-diffusion equation



The Poisson-Nernst-Planck System

Example: Simple bi-ionic solution (Nat,Cl™).
Macroscopic variables are:
cp(x) ,cn(x) - positive & negative concentra-

tions
Ww(x) - potential of mean field.

Nernst-Planck equations:

0= —V-Jp(@) = Acy(z) +V (cp(m)kiTw(m)>

0= —V-Jn(x) = Acn(z)—V (cn(w)k%vw(w))

Poisson Equation for potential :

Ve - Vip(z) = — [cp(x) — cn(®) + pfixed (@)

All three equations are non-linearly coupled.
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Applications of PNP system

Semiconductor Device Modeling, electron
& hole transport (1950's).

Transport in Ionic Solution (1900’s).

Ionic Transport through narrow protein chan-
nels (1990’'s).

Various other transport processes.



Ionic Transport Through Narrow Channels

Ionic permeation through an open protein chan-
nel of a lipid membrane.
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Mathematically: Diffusion through a narrow
and long " (charged) hole” in a wall.



Ionic Transport Through Narrow Channels

€=80 €E=2

e Single filing phenomena are due to ion-ion
interactions in a narrow channel.

e Selectivity - is it related to the finite size
of ions?

e Non-linear phenomena in mixtures and uni-
directional currents, are they due to the
finite size of ions?



What is missing PNP?

There is no derivation from a microscopic
model

There are no finite size ions

The self energy of an ion near a dielectric
interface is ignored

Water is replaced with dielectric and diffu-
sion coefficients

There is no difference between ingoing and
outgoing fluxes (no unidirectional fluxes)



The PNP hierarchy

A PNP hierarchy of PDEs was derived by
Ebeling et al. (see Barthel's book) for the
singlet, pair, and higher order densities.

The point of departure was a 6 N-dimensional
FPE, coupled to Poisson’'s equations for
the electrostatic field, Lennard-Jones forces,
and other forces

The LJ forces account for the finite size of
ions. Concentration boundary conditions
are imposed on the singlet density.

The hierarchy is truncated by an extension
of the OZE.



What is missing in the PNP hierarchy?

e [ he hierarchy has to be decoupled at some
level, to become finite. This is the clo-
sure problem, which was partially solved for

equilibrium.

e NO boundary conditions are known for the
pair correlation function and for higher or-

der densities.

e [ he self energy of an ion near a dielectric

interface is still ignored

e \Water is still dielectric and diffusion coef-

ficients
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What can be resolved with ESM?

Microscopic structure of systems in equilibrium
can be described with ESM follows:

Postulate Boltzmann probabilities for configu-
rations:

U(ri,...,TN)
kT ’

where the energy of the configuration is
U(ry,.orn) =D Ut (ri—rj) + 3 0 (7).
i i
In the absence of an external field and in free

space, the equilibrium concentration p(ax) sat-
isfies the BGY equation

kpTV p(a) + /,o(y | 2)ValUy o(z — y) dy = 0

(by integration).

p(rq,..rNy) = Const x exp {—
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The BGY equation as a conservation law

The BGY equation can be written as the con-
servation law

V-J(x)=0
with the “boundary condition”
J(oc0) = 0.

In a finite volume €2 the boundary condition

J(x) v(x)|,co0 =0
defines equilibrium. Once a closure relation

(MSA, PY, HNC) is adopted, the pair correla-
tion function (pcf),

p(y|x)

p(y)
can be calculated. It expresses the finite vol-
ume of the diffusing particles.

g(x,y) =
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Shape of Pair Correlation Function
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Non-vanishing flux means non-equilibrium

1. A concentration gradient drives the system
out of equilibrium.

2. The non-equilibrium pcf is needed for the
description of interacting particles diffusing in
a finite volume.

3. This description is essential for the descrip-
tion of diffusion of interacting particles in a
narrow channel.

4. Diffusion of interacting particles in a finite
system, with given boundary conditions, has to
be described by a computable set of equations.
for non-equilibrium statistical mechanics in chan-
nology.
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What replaces the Boltzmann distribution
INn non-equilibrium?

e Boltzmann’s distribution “counts” (i.e., as-
signs probabilities) to configurations.

e [ here are no configurations in non-equilibrium,
due to flux.

e \What should replace configurations?

e How do you count it?

Answer: Replace Boltzmann's probability mea-
sure on particle configurations with a probabil-
ity measure on particle trajectories.
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Dynamics of trajectories

Model: 3N memoryless coupled Langevin equa-
tions for h = Catt,Nat,Cl—, ...,

HOM J 2" () ks ),
Mh Mh J?

for y=1,2,..., N, where

o v(zh) =friction coefficient per unit mass

e Mh =effective mass of an ion of species h

-f?(:’i;) =force on the j-th ion of species h

o w! =i.i.d. standard Gaussian white noises

J
e kp'I' =Thermal energy.

-+ (o) o} =
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Densities, fluxes, and pdfs

e c'(x) =time-averaged steady state density of
h-ions at x,

/Q M(x) de = N

° p?(a}) = p(x), j = 1,...,N" =stationary
pdf of the j-th h-ion, because all h-ions are
indistinguishable,

"(z) = N'p'(x).
e "' (y, z) =the joint pdf of &’ and h/-ions.
e J'(x) =total flux density of h-ions at «

o 7h(x) =flux density of a single h-ion,

J"(x) = N'"JT"(2).

Problem: Find equations for p"(z), p"""" (y, 2).
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The joint FPE

The stationary pdf of all ions, py(&,?), satis-
fies the FPE

where
rh— _oh. v \V h¢hya.h f?(~)
;=Y :1:?"' vl v (@i)vy — =
h(.h
Y (wj)kBTA
Mh v?

The FPE is defined in the region & € € and
v € R3N in the 6 N-dimensional phase space.
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The FPE as a conservation law

Set
J@h = (J’U}f’ ...,J,U?Vh), th = (Jm}ll, ...J,’L‘Nh).

These are N'-dimensional flux density vectors
in phase space. Their components are the 3D
flux densities

fh (@) o
T = —(w%%)v%— | P (@)
h¢..h
Y (xp)kpT .
va% ]Zh pN(w7,U)7
T = vlpn(#,8), m=1,...,N" Vh

The FPE can be written as the flux conser-
vation law

0 = =3 (Vgn: Vgn) - (Tgh T 0,
h

Nh
= 2 X (o o+ Vay Tap)
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Boundary conditions

02 = 8QFU8§2R7

e 002 =feedback boundary
e 002 =impermeable (reflecting) boundary

= ) . h —
th(a:,v) V(wj)‘wh c 0Qp, vt v(ah) =

_th(w ’U) V(wh)‘w c aQ I/(:I}h) — —’U,’
On 02, outgoing traJectorles are absorbed by
the feedback mechanism, and re-injected as in-
going trajectories either at the same boundary
or at the opposite one.

The problem of boundary conditions: How
IS the boundary behavior of trajectories ex-
pressed as a boundary condition for the joint
pdf?

Concentration BCs can be imposed for the sin-
glet density.
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T he marginal pdfs

The phase space marginals of py(&,v) are
hi(..h b _ ~ ~\ g=h g=h
p (wz 7v7j) — /Q? 5¢ R3N_3/pN (mav) dwz dv'&

h,h’( h . h W h’)_

D CE‘,L' ,'UZ' , fL'j ’Uj =
N Sy N A Y.

1,]
The configuration space marginal is

h _ h
p'(2) = [ ;0" (@ v)do.
The configuratioinal pcf of h and A/ ions is

/
P (e, y) =

/R6/ph,h/(w7 v,Y, vl) dv dvl'

T he pair concentration is
!/ / /
M (z,y) = NN (2, y).
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The connection to the pdf of ESM

Define

MM (2, y) = P(@) (9)g" M (x,y).

The function ¢™" (x,y) is the non-equilibrium
generalization of the equilibrium pair correla-
tion function. We have the relations

/ / /
MM (x,y) = N'NVPI (),

/
pP (x,y)

ph(z)ph' (y)

/
g (x,y)
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Other mathematical channel problems

e Derive a PDE description of ions in a nar-
row channel from a microscopic model

e Derive closure conditions for the PNP hi-
erarchy

e Develop a mathematical theory of small
BD and MD simulations: connect chan-
nel to continuum, terminate continuum at
real or fictitious boundaries.
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