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Ionic Transport Through Narrow Channels

Ionic permeation through an open protein chan-

nel of a lipid membrane.
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Mathematically: Di®usion through a narrow

and long "(charged) hole" in a wall.
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Microscopic Structure and

Equilibrium Statistical Physics

Postulate of EST: The probability measure

in con¯guration space is Boltzmann's distribu-

tion,

p(r1, ...rN) = Z−1N exp

(
−U (r1, ..., rN)

kBT

)
,

where the energy of the con¯guration is

U (r1, ..., rN) =
X
i 6=j

U1,2
³
ri − rj

´
+
X
i

ϕ (ri) .

In the absence of an external ¯eld and in free

space, the equilibrium concentration in R3,

ρ(x) = N
Z
R3 p(x, r2...rN) dr2 · · · drN,

satis¯es the BGY equation

kBT∇ρ(x) +
Z
R3 ρ(y |x)∇xU1,2(x− y) dy

≡ −J(x) = 0.
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The BGY equation as a conservation law

The BGY equation can be written as the con-

servation law

∇ · J(x) = 0

with the \boundary condition"

J(∞) = 0.

In a ¯nite volume − the boundary condition

J(x) · ν(x)|x∈∂− = 0

de¯nes equilibrium. A concentration gradient

on the boundary drives the system out of equi-

librium. This is the point of departure for non-

equilibrium theory.
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What replaces the Boltzmann distribution

in non-equilibrium?

� Boltzmann's distribution \counts" (i.e., as-
signs probabilities) to con¯gurations.

� There are no con¯gurations in non-equilibrium,
due to °ux.

� What should replace con¯gurations?

� How do you count it?

Answer: Replace Boltzmann's probability mea-

sure on particle con¯gurations with a probabil-

ity measure on particle trajectories.
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The FPSE for the singlet pdf

The following equation has been derived in

Barthel's book: for h=Na+, Cl−, . . .,

0 = ∇x · Jh(x) =

−∇x ·
 ¹f

h
(x)

Mhγh(x)
ph(x)− kBT

Mhγh(x)
∇x ph(x)

 ,
where

¹f
h
(x) =

Z
~−
fh(~x)pN−1(~xhi |xhi = x) d~xhi ..

The relations

ch(x) = Nhph(x)

ch,h
0
(x,y) = NhNh

0
ph,h

0
(x,y).

convert the FPSE to the NPE for the singlet

and pair ionic densities. These equations, how-

ever, depend on the yet undetermined average

forces, but are otherwise exact.
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What is missing?

The FPSEs are de¯ned in the ¯nite domain

x ∈ − and y ∈ −. Boundary conditions for

ph(x) and ph,h
0
(x,y) have to be imposed for

x ∈ ∂− and y ∈ − and y ∈ ∂− and x ∈
−. Once these boundary conditions are spec-

i¯ed, the pair correlation function ph,h
0
(x,y)

is completely determined, provided the forces
¹f
k
m (x,y) are known.
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Boundary conditions for the joint pdf of

N di®users:

Two exactly solvable problems

1. Equilibrium=vanishing °ux

The equilibrium case, as far as boundary condi-

tions are concerned, is trivial and un-instructive.

However, it can be used as a benchmark, be-

cause non-equilibrium results have to reduce to

equilibrium results in the limit of vanishing °ux.

2. A system of independent (non-interacting)

ions di®using in an external potential V (x) be-

tween two ¯xed concentrations

This case gives the key insight into boundary

conditions.
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1. Dependent di®users in equilibrium

A assume that the total potential of the system

is given by

UN(~x) =
X

1≤i<j≤N
U(|xi − xj|).

and that the friction is state-independent. The

Langevin equations are

Äxi+ γ _xi+
1

Mh
∇xhi UN(~x) =

√
2ε _whi ,

for i= 1,2, . . . , N,

where

εh =
γkBT

Mh
.
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The equilibrium solution of the FPSE

The FPSE is

0 =
X
i

∇i ·
h 1
Mγ

∇iUN(~x)pN(~x) +
kBT

Mγ
∇ipN(~x)

i

= −
NX
j=1

∇xj · Jj(~x).

The equilibrium condition of vanishing °ux is

Jj(~x) = 0, for all j,

and the solution of the FPSE in this case is

pN(~x) =
e−UN(~x)/kBT

ZN
,

where ZN is the con¯gurational partition func-

tion of equilibrium statistical mechanics. This

recovers the Boltzmann distribution of equilib-

rium theory.
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2. Independent di®users

Consider a system of independent (non-interacting,

i.e., uncharged) particles di®using in an exter-

nal potential V (x) between two ¯xed concen-
trations. The potential is

UN(~x) =
NX
j=1

V (xj).

Statistical independence means that the joint

pdf is the product of the pdfs of the individual

ions. Therefore, the solution of the FPSE in

the 3N-dimensional con¯guration space is

pN(~x) =
NY
j=1

p(xj),

where p(xj), the probability density of the j-th
ion, is the solution of the 3-dimensional FPSE

0 = ∇xj ·
1

Mγ
[∇xjV (xj)p(xj) + kBT∇xjp(xj)]

= −∇xj · Jj(xj)
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Boundary conditions

The 3N-dimensional °ux vanishes on re°ect-

ing boundaries, and singlet concentrations are

given on the other boundaries. This condition

determines the singlet °ux density J 1(x) on
∂− and this °ux will be assumed known hence-

forward. Denote

� ∂−r =re°ecting boundaries
� ∂−F =feedback boundary, where ¯xed con-
centrations are maintained

The boundary concentrations determine the

boundary °uxes for all j,

Jj(xj) · ν(xj) = 0 for xj ∈ ∂−r

Jj(xj) · ν(xj) = J 1(xj) · ν(xj) for xj ∈ ∂−F .
Note that the concentrations have to be nor-

malized so thatZ
−
p(xj) dxj = 1, ∀j.
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Boundary °uxes of independent di®users

Since

pN(~x) =
NY
j=1

p(xj),

we obtain

Jj(~x) = J 1(xj)
Y
i 6=j

p(xi) = J 1(xj)pN−1(~xj)

= J 1(xj)pN−1(~xj |xj).
The last equality expresses the independence

of xj of the remaining ~xj. This condition-

ing anticipates the case of dependent ions. It

expresses the boundary behavior of ions when

the boundaries are put anywhere in the bath,

where average concentrations and potentials

are ¯xed.
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Boundary °uxes of independent di®users

(continued)

The relation

Jj(~x) = J 1(xj)pN−1(~xj |xj),
with

xj ∈ ∂−, ~xj ∈ ~−j,

is the connection between the j-th component

of the boundary °ux of pN(~x) and the singlet

boundary °ux. When J 1(x) is known, this
boundary condition means that the feedback

mechanism removes and inserts ions into the

system at the boundary, depending on the con-

¯guration of ions inside the domain, with ¯xed

°ux density that maintains the boundary con-

centrations.

14



Boundary conditions for pN(~x) of

dependent di®users

With the above interpretation in mind, we adopt

the relation

Jj(~x) · ν(xj) = J 1(xj) · ν(xj)pN−1(~xj |xj)
for xj ∈ ∂−, ~xj ∈ ~−j

as the boundary condition for the joint pdf

pN(~x). This is the connection between the j-

th component of the 3N-dimensional °ux, and

the 3-dimensional singlet °ux of the j-th ion

on the boundary. It can also be written as

−kBT
∂ log pN(~x)

∂ν(xi)
− ∂U(~x)

∂ν(xi)
=

MγJ 1(xi) · ν(xi)
pN−1( ~xi |xi)

pN(~x)
=

Mγ
J 1(xi) · ν(xi)

p(xi)
for xi ∈ ∂−, ~xi ∈ ~−i.
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Boundary conditions for lower dimensional

densities of dependent di®users

Integration of the boundary condition over the

domain with respect to any number of coordi-

nates gives the boundary conditions

Jhi (x1,x2, . . . ,xk) · νi(x1,x2, . . . ,xk) =

J 1,h(xi) · ν(xi)p(x1,x2, . . . ,xk |xi)

for xi ∈ ∂−,x1,x2, . . . ,xk ∈ −, (i > k).
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Boundary conditions for lower

dimensional densities of dependent

di®users (continued)

The boundary condition is equivalent to the

boundary condition

−kBT
∂ log phk(x1,x2, . . . ,xk)

∂νi(x1,x2, . . . ,xk)

+¹f
h
i (x1,x2, . . . ,xk) · νi(x1,x2, . . . ,xk) =

Mγ
J 1,h(xi) · ν(xi)

p(xi)
,

for xi ∈ ∂−, x1,x2, . . . ,xk ∈ −, (i > k). The

force ¹f
h
i (x1,x2, . . . ,xk) acts on the (i, h) ion at

the boundary point xi, given the coordinates

of the ¯rst k ions, (x1,x2, . . . ,xk).
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Boundary conditions for the pair density

of dependent di®users

In particular,

J
h|h0
i (xi |xj) · ν(xi) = J h(xi) · ν(xi)ph

0|h(xj |xi)

for xi ∈ ∂−, xj ∈ −,
or equivalently,

−kBT
∂

∂ν(xi)
log ph,h

0
(xi,xj)

+¹f
h|h0
i (xi,xj) · ν(xi)

=MhγhJ h(xi) · ν(xi)
ph

0|h(xj |xi)
ph,h

0
(xi,xj)

=Mhγh
J h(xi) · ν(xi)

ph(xi)
for xi ∈ ∂−, xj ∈ −.
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Interpretation

In the general case the single ion °ux J h(x)
is not known on the boundary, due to the un-

known forces ¹f i(x1,x2, . . . ,xk), for all combi-

nations of species. Thus the boundary condi-

tions couple the equation and boundary con-

ditions for ph,h
0
(x,y) to those of ph(x), and

the same is true for all ph1,...,hk(x1,x2, . . . ,xk)

of all combinations of species. The probabil-

ity °ux density components Jh|h0(x |y) · ν(x)
for x ∈ ∂−, y ∈ −, of the six-dimensional °ux
of ph,h

0
(x,y) are the three-dimensional \normal

components" of the boundary °ux.
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The case of ph(x) = 0

If ph(x) = 0 for x ∈ ∂−, the boundary condi-
tion for ph,h

0
(x,y) at x ∈ ∂−, y ∈ − is

ph,h
0
(x,y) = 0 for x ∈ ∂−, y ∈ −.

because

ph,h
0
(x,y) ≤ ph(x) for all x,y ∈ −.

With these boundary conditions, the FPSEs

for all ph(x) and ph,h
0
(x,y) are coupled through

the single ion °uxes J h(x) and the forces. The
concentration and °ux boundary conditions de-

termine the single ion density and the joint

pdfs, provided the forces are known. However,

the forces are unknown (see analysis below).
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The connection to the correlation

functions of statistical mechanics

The average concentration of the h-species in

the bath is de¯ned as

ρh =
1

|−|
Z
−
ch (x) dx,

where |−| is the volume of −. Thus
ch(x) = Nhph(x) = ρhgh (x) .

The function gh(x) is the non-equilibrium gen-

eralization of the singlet correlation function

of equilibrium statistical physics. It is related

to ph(x) by

gh(x) = |−|ph(x).
ThusZ

−
ph(x) dx = 1,

Z
−
gh(x) dx = |−|,

Z
−
ch(x) dx = Nh.
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The connection to the correlation

functions of statistical mechanics

(continued)

Similarly, we de¯ne another non-dimensional

function,

ch,h
0
(x,y) = ch(x)ch

0
(y)gh,h

0
(x,y).

The function gh,h
0
(x,y) is the non-equilibrium

generalization of the equilibrium pair correla-

tion function. We have the relations

ch,h
0
(x,y) = NhNh

0
ph,h

0
(x,y),

gh,h
0
(x,y) =

ph,h
0
(x,y)

ph(x)ph0(y)
.
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The forces

We assume that the forces acting on a ion

in the bath are an external force E(x), due

to an external ¯eld (e.g., a gravitational force

or hydrodynamical drag), electrostatic interac-

tion force, and a Lennard-Jones force, due to

the presence of all other ions in the bath. The

former is independent of the con¯guration of

the ions, and depends on the location of the

ion in the bath. The interaction force depends

on the con¯guration of all bath ions.

23



The Lennard-Jones interactions

Denote

� LJh (x) =LJ force on an h-ion at x
� LJh,h0 (|y − x|) =LJ force between h and h0
ions, located at x and y, respectively.

Its direction is along x− y. This implies thatZ
−
LJh,h

0
(|y − x|) dy = 0

for x su±ciently far from the boundary. The

total LJ force on an h ion at x is the average

LJh(x) =
X
h0

Z
−
LJh,h

0
(|y − x|)Nh0ph0|h (y |x) dy.

This is the LJ component of the hereto un-

known force in the FPSE.
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Di®usion of LJ ions

In the absence of all forces other than LJ, the

conditional density ph
0|h (y |x) is a function of

the distance |y − x| and the integral vanishes,
due to radial symmetry. The total LJ force on

an h ion at x, given an h0 ion at y, is

LJh|h0 (x | y) = LJh,h
0
(|y − x|) +

X
h00

Z
−
LJh,h

00
(|x− z|)Nh00ph00|h0,h (z |x, y) dz.

In this case ¹f
h|h0
x (x |y) = LJh|h0(x |y). Simi-

larly,

LJh
00|h0,h (z |xy) =

LJh
00,h0 (|z − y|) +LJh

00,h (|z − x|) +
X
h000

Z
LJh

000,h00 (|w − z|)×

Nh
000
ph

000|h00,h0,h (w | z, y, x) dw,
and so on.
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All equations are coupled

The FPSE for the singlet density ph(x), is cou-

pled to that for the pair density ph,h
0
(x,y),

through the force term ¹f
h
(x) and the rela-

tion of the boundary conditions. Similarly, the

FPSE for the pair density is coupled to all

higher order correlation functions through the

force terms. A closure relation is needed.
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The electrostatic forces

Set

� ρperm(x) =permanent charge density
� zh =valence of h ions.
� φ(x) =electrostatic potential
� fhi =electrostatic force the (i, h) ion at xhi
The potential is the solution of Poisson's equa-

tion

∇ · ε(x)∇φ(x) =

− 1
ε0

ρperm(x) +X
h

NhX
j=1

zhδ(x− xhj )
 ,

with boundary conditions at electrodes and the

standard continuity conditions at dielectric in-

terfaces. The force is given by

fhi = −ezh∇x
Ã
φ(x)− 1

4πε0ε(x
h
i )

1

|x− xhi |

!¯̄̄̄
¯
x=xhi

.

The last term on the right hand side removes

the singularity of the potential φ(x) at the lo-
cation of the ion.
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The composition of fhi (~x)

We decomposed the force into

fhi (~x) = fhi (~x, P ) + fhD(x
h
i ),

where

� fhi (~x, P ) =the force exerted by all other ions
in the solution, the permanent charge, the charges

on the electrodes that maintain a ¯xed applied

voltage, and the surface charges induced by

these ions

� fhD(xhi ) =a self induced force produced by

the surface charges induced at the dielectric

interfaces by the ion at xhi .

If there are no dielectric interfaces, this in-

duced force is zero. Note that this force com-

ponent is proportional to the square of the

ion's charge, regardless of its sign. For ex-

ample, it is equal for monovalent anions and

cations alike.
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Calculation of the components

fhi (~x, P ) = −zhe∇x φhi (x, ~xhi )|x=xhi ,
where

∇x · ε(x)∇xφhi (x, ~xhi ) =

− e

ε0
[ρperm(x) + zh

X
(j,h0)6=(i,h)

δ
³
x− xh0j

´
],

(same BCs, the (i, h) ion is removed).

fhD
³
xhi
´
= −zhe×

∇x
Ã
φD(x,x

h
i )−

1

4πε(xhi )ε0

e

|x− xhi |

!¯̄̄̄
¯
x=xhi

,

where

∇x · ε(x)∇xφD(x,y) = − e

ε0
δ(x− y),

with homogeneous BCs at the electrodes.

29



The averaged forces 1

The averaged forces ¹f
h
(x) and ¹f

h|h0
x (x |y) con-

sist of LJ forces, as described above, and elec-

trostatic forces. The electrostatic component

of the force ¹f
h
(x), denoted ¹f

h
E(x), is given by

¹f
h
E(x) = −zhe∇y¹φh(y |x)|y=x+ fhD(x)

with averaged mean ¯eld potentials ¹φh(z |x)
that satisfy the Poisson equations

∇y ·
h
ε(y)∇y ¹φh(y |x)

i
=

− e

ε0

h
ρperm(y) +

X
h0
zh

0
ech

0|h(y |x)
i
,

with the applied voltage conditions on the elec-

trodes. The Poisson equation for the averaged

potential is obtained by averaging the Poisson

equation with the point charges.
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The averaged forces 2

The electrostatic force acting on an h ion at
x, given an h0 ion at y, can be written as

f
h|h0
x (x |y) = fhD(x)− zhe∇xφperm(x)

−zhe∇x¹φh0(x |y)− zhe∇z¹φh,h0(z |x,y) |z=x ,
where

� fhD(x) =is the self force
� φperm(x) =potential of permanent charge

and applied voltage

� ¹φh
0
(x |y) =potential at x of all other ions,

given a point charge zh
0
e at y (0 BCs).

� ¹φh,h0(z |x,y) =potential at z of all other ions,
given an h ion at x and an h0 ion at y (0 BCs).
It satis¯es

∇z · ε(z)∇zφh,h0(z |x,y) =

− e

ε0

ρperm(z) +X
h00
zh

00
ech,h

0
(z |x,y))

 ,
and so on.
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Closure relations

A closure relation, that expresses a higher or-

der correlation function in terms of lower or-

der correlation functions renders the FPSEs ¯-

nitely solvable. A closure at level 2 is a rela-

tionship of type

p(x,y) = F [p(x), p(y)] ,
where F is an operator, renders the ¯rst FPSE

solvable. However, such a closure does not

recover the results of equilibrium theory for the

pair function. A closure relations at level 3 is

p (x,y, z, ) =

F [p(x, z), p(y, z), p(x,y), p (x) , p (y) , p (z)] .

32



Closure relations (continued)

The simple multiplicative closure relation

p(x,y, z) =
p(x,y)p(x, z)p(z,y)

p(x)p(y)p(z)

is also known to be insu±cient, but a multi-

plicative closure at level 4 gives satisfactory

results in equilibrium. Multiplicative closure

relations have probabilistic interpretation and

su±cient conditions can be found for their va-

lidity. This analysis will be done elsewhere.

An iterative scheme for solving any closure

relation, together with the boundary value prob-

lem for the FPSEs, where the °uxes are given

as above, begins with a guess, p
h,h0
(0)

(x,y), for

the pair correlation function ph,h
0
(x,y). This

de¯nes the direct correlation force by a numeri-

cal inversion scheme, the mean force ¹f
h,h0
x (x,y),

and the °ux in the FPSE. Now, the boundary

value problem for the level 2 FPSE de¯nes the

next iteration, p
h,h0
(1)

(x,y), and so on, until the
scheme converges.
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The PNP system revisited

The approximation ci|j(y|x) = ci(y) closes the

system.

Result: Closed PNP system with unconditional

variables, with additional dielectric self force

term

−e∇y ·
Ã
φch(x)−

e

4πεε0|y − x|

!¯̄̄̄
¯
y=x

This term is present only near dielectric inter-

faces. Without this term, the standard PNP

system is recovered.

Conclusion: This approximation neglects all

¯nite size e®ects and discrete charge e®ects.

Therefore PNP is not valid in narrow channels

or near dielectric interfaces.
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Summary

Main Results: 1. Derivation of continuum

equations for ion transport, from molecular model.

The result is a conditional PNP Hierarchy, which

contains ¯nite size & ion-ion electrostatic ef-

fects.

Conclusion: Standard PNP is valid only in

bulk. Not valid in con¯ned geometries or near

interfaces.

2. C-PNP Hierarchy is the non-equilibrium

generalization of the well known BBGKY Hier-

archy of equilibrium statistical physics.

With the C-PNP equations and a closure re-

lation, we can study the microscopic structure

of non-equilibrium systems.

35



Shape of Pair Correlation Function



Open Mathematical Problems & Further

Research

Needed:

� Derivation of non-equilibrium closure rela-

tions

� Derivation of boundary conditions for con-
ditional and higher order densities.

� Criteria for a good closure / Error Analysis
for a given closure ?

Open Problems:

- Computational Problems.

- Connection of small simulations to surround-

ing continuum.

- Non-Equilibrium simulations with °ux ??
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