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Abstract We investigate Ussing’s unidirectional fluxes and flux ratios of charged tracers
motivated particularly by the insightful proposal ofHodgkin andKeynes on a relation between
flux ratios and channel structure. Our study is based on analysis of quasi-one-dimensional
Poisson–Nernst–Planck type models for ionic flows through membrane channels. This class
of models includes the Poisson equation that determines the electrical potential from the
charges present and is in that sense consistent. Ussing’s flux ratios generally depend on all
physical parameters involved in ionic flows, particularly, on bulk conditions and channel
structures. Certain setups of ion channel experiments result in flux ratios that are universal
in the sense that their values depend on bulk conditions but not on channel structures; other
setups lead to flux ratios that are specific in the sense that their values depend on channel
structures too. Universal flux ratios could serve some purposes better than specific flux ratios
in some circumstances and worse in other circumstances. We focus on two treatments of
tracer flux measurements that serve as estimators of important properties of ion channels.
The first estimator determines the flux of the main ion species frommeasurements of the flux
of its tracer. Our analysis suggests a better experimental design so that the flux ratio of the
tracer flux and the main ion flux is universal. The second treatment of tracer fluxes concerns
ratios of fluxes and experimental setups that try to determine some properties of channel
structure. We analyze the two widely used experimental designs of estimating flux ratios and
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show that the most widely used method depends on the spatial distribution of permanent
charge so this flux ratio is specific and thus allows estimation of (some of) the properties of
that permanent charge, even with ideal ionic solutions. The work presented in this paper is
a first step showing how measurements of fluxes and flux ratios can give important insights
into channel structure and function.

Keywords Unidirectional flux · Flux ratio · Channel structures

Mathematics Subject Classification 34A26 · 34B16 · 92C35

1 Introduction

Challenges in study of ion channel functions The atomic structure of the channel protein is
important for functions of ion channels (see, e.g., [9,10,16–18,22,27,30,36,37,43,44,60,61,
64,71,74,79–81]). The atomic structure determines the class of mechanisms of ion channel
functions, in an important but qualitative sense, and provides the basis for describing correla-
tions in continuummodels, increasing the resolution and realismof thesemodels in significant
ways. The structures being discussed are determined from crystals, with somewhat perturbed
locations of atoms and forces (or they would not crystallize), in solutions remote from the
physiological solutions in which the channels function, without gradients of electrical or
chemical potential essential for channel function, and often at temperatures around 100K.
The disorder of crystals ismuch less at 100K than at the biological temperatures (300K,more
or less) where they were evolved to function. Entropic terms important at 300K are much less
visible at 100K. Changes in entropy with temperature can change the qualitative properties
of materials. Semiconductors are insulators at low temperatures when their entropy is small
but conductors at higher temperatures where entropy is larger. The structural approach does
not deal at all with experimental measurements of current (that are the biological function
of most channels). Current versus voltage or concentration curves are not found in papers
using the qualitative approach to selectivity. For example, a recent summary [65] in a leading
journal includes neither current voltage relations, nor equations. Qualitative study is of great
importance but it must not be confused with attempts at quantitative models. It is difficult to
compare or improve qualitative models because they do not provide a basis for comparison.
Qualitative models omit the specific fits to experimental data that allow one model to be
compared to another. Quantitative models are needed to provide such comparisons.

The quantitative treatment of ion channel functions and structures taken in this paper
(reviewed in [11–14,19,20,23–26,31,33–35,47,48,53,66,68,69], etc.) differs from the usual
classical treatment in several important respects. Most importantly the quantitative approach
used here includes structure. Classical treatments omit most structural information includ-
ing the structure of electrical charge (permanent and polarization) that underlies so much
of protein function and is canonized with the classical biochemical classification of amino
acid side chains, as acid (negative permanent charge), basic (positive permanent charge),
nonpolar (small dielectric coefficient) or polar (large dielectric coefficient). The quantita-
tive approach based on continuum models treats ion channel functions as expressions of the
current flow through a channel under a variety of conditions, namely different membrane
potentials, different concentrations and compositions of ionic solutions, and different muta-
tions. The quantities from computations/analyses of models can be compared directly with
experimental measurements of current. The quantitative models are dramatically reduced in
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complexity compared to structures or simulations of structures in atomic detail, but they are
precise. Such is the nature of most physical models of condensed phases. It is obviously
impossible to include all the interactions of the tremendous number of particles involved.
Both qualitative and quantitative approaches are needed and complement each other.

It is convenient to treat ion channels as electric nano-devices with well defined reasonably
robust input output relations and easily predicted interactions with their surroundings. The
quantitative treatments of ion channel functions are extremely important due to nanoscale,
multi-scales, nonlocal interaction, limitations of experimental measurements, measurable
characteristic quantities of ionic flows versus characteristics of channel structures.
Importances of a mathematical theory and numerics The challenges in understanding ion
channel functions and structures strongly suggest the importance of mathematical analysis
and numerical simulations as complementary tools to the physiological theory and experi-
ments. A sound mathematical theory provides direct relations between the outputs and the
inputs, at least for the simplified settings used in actual biological experiments. Once tested
experimentally, the theory can make predictions and guide numerical designs for simulations
and actual experiments.

The enormous literature on channels and transporters from 1947 to say 1990 used mea-
surements of fluxes, fluxes of radioactive isotopes, and their ratios as amain tool. The purpose
of this paper is to define such fluxes in precise mathematical language so modern theories can
be comparedwith those thousands of papers.Modern theories compute potentials from distri-
butions of charge and have the advantage of being compatible with the Maxwell description
of electrodynamics. Modern measurements are mostly of the structure and fluxes of channels
and transporters. We believe measurements of structures, and fluxes, must be combined with
electrodynamics to understand how channels and transporters work. We begin this process
here by taking one precisely defined class of models (PNP type) and defining and computing
the fluxes and flux ratios measured with such effort in so many laboratories for so many
years. Transporters and channels have been studied in thousands of papers because they
control most biological functions and are directly involved in a wide range of diseases. Our
approach will identify the issues involved and pave the way for computations of fluxes and
flux ratios in the substantial sequence of models that seek to remove the obvious limitations
of classical PNP. It is the purpose of this paper to examine the Poisson–Nernst–Planck theory
to see if the consistency of these models is significant. It turns out the consistency of the PNP
type models is crucial.

1.1 Important Previous Works on Flux Ratios

The arguably most important quantity for ion channel functions is the total current, which is
nowadays routinely measured based on an electric property of ionic flows. The total current
is a combination of individual fluxes of all ion species in the steady state where, in particular,
displacement current (ε0∂E/∂t where E is the electric field) is zero, and provides crucial
information on ion channel properties such as permeation and selectivity. Of course, the
fluxes of individual ion species will provide more information. While individual fluxes are
(additive) components of the total current, they cannot be decomposed frommeasurements of
the total current using just electrical measurements. The flux ratio is needed as well, together
with the flux measurements based on radioactive properties.
Ussing’s work on flux ratios Ussing, a physiologist, considered fluxes soon after the second
world war, when radioactive isotopes of sodium first became available. At that time the role
of proteins in membranes was not known so of course his analysis could not include effects
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of the structure of proteins let alone their spatial distribution of charge. Indeed, the modern
idea of protein structure was then just a dream in the mind of a few young workers mostly
at Cambridge (UK and USA). In [78], based on an insightful observation from the Nernst–
Planck equation (without using Poisson equation for electric potential explicitly), Ussing
introduced and studied the flux ratio between the influx J [i] (the inward unidirectional flux
from outside x = 0 to inside x = 1 of a channel measured at x = 1) and the efflux J [o]
(the outward unidirectional flux measured at x = 0) of the same ion species. Note that the
channel length is normalized to 1 (see (5.2) for a normalization). Ussing’s formula (equation
(8) in [78]) is recast below

J [i]

J [o] = f (0)

f (1)
· c(0)
c(1)

e
e0
kB T zV0 = c(0)

c(1)
e

e0
kB T zV0+ 1

kB T μex (0)− 1
kB T μex (1)

, (1.1)

where the quantity e0 is the (positive) elementary charge, kB is the Boltzmann constant and
T is the absolute temperature, z is the valence (number of charges per ion) of the ion species,
c(0) and c(1) are the concentrations of the ion species at left boundary x = 0 and the right
boundary x = 1, respectively, μex (0) and μex (1) are the respective excess components (so

f (0) = e
1

kB T μex (0)
and f (1) = e

1
kB T μex (1)

are the respective activity coefficients), V0 is the
transmembrane electic potential—the difference between the electric potential at x = 0 and
that at x = 1.

An apparent advantage of flux ratios over individual fluxes is that its dependence on
physical parameters involved in ionic flow is much simpler. As far as we know, physical
scientists had not anticipated the importance and subtleness of the ratio of unidirectional
fluxes despite the large physical literature on Nernst–Planck equations. Physiologists seem
to have been the first to recognize the physical importance of flux ratios. This essentially
abstract, physical andmathematical estimatorwas used universally to distinguish transporters
from channels in thousands of experimental papers from 1949 to 1990 or so. The estimator
proved to be quite robust in classical models that assumed electric potentials independent of
the distribution of charge [5,6,62,63].

Note that formula (1.1) provides a direct relation between the flux ratio with the data
at two points x = 0 and x = 1. On the other hand, the activity coefficients f (0) and
f (1) (or equivalently, the excess components μex (0) and μex (1)) cannot be determined by
the data (V0, c(0), c(1)) alone. Multicomponent systems like ionic solutions are complex
fluids in which ‘everything depends on everything else’, as shown directly in the thousands
of experimental measurements of activity coefficients in different solutions. The electrical
potential is a global quantity depending on (for example) boundary conditions far away.
The concentrations (more generally the chemical potentials) can depend on the shape of the
structure confining them and on the electrical potential as well as on the interactions with
ions of different type and variable concentration.

Teorell [76], and Hodgkin and Huxley [40] used the ‘independence principle’ that states,
with a constant potential difference across the membrane, the chance of any individual ion
crossing the membrane in a given time interval is not affected by the other ions that are
present, to derive the flux ratio formula below

J [i]

J [o] = c(0)

c(1)
ezζ0V0 , (1.2)

where ζ0 = e0
kBT

. The independence principle is useful, we now know, for highly selective
channels that function independently in membranes (like the sodium and potassium channels
studied by Hodgkin and Huxley). The independence principle does not apply to less selective
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channels (of which there are many, including the acetylcholine activated channel studied
extensively by Katz, a collaborator of Hodgkin and Huxley) or to crowded bulk solutions.1

Formula (1.2) is simpler than (1.1). In particular, the right-hand side of formula (1.2)
involves only the data (V0, c(0), c(1)) at the boundary points. But formula (1.2) requires
the independence hypothesis, and hence, could only be used to compare with experimental
measurements of flux ratios as a TEST for independence hypotheses.
Work of Hodgkin and Keynes In [45], Hodgkin and Keynes pointed out that “Examples
of mechanisms to which such an independence relation should apply are those involving
combinationwith carries where only a small proportion of the carrier is combined, or systems
involving diffusion where the ions are present at fairly low concentrations throughout the
membrane, and have no tendency to concentrate in narrow channels.” In comparing their
experimentally measured flux ratio from potassium channels with that from formula (1.2)
for a broad range of experimental designs, they found the deviation between these two flux
ratios could be significant and concluded that independence hypotheses do not hold for ion
channels in general. It is a fascinating fact that flux ratios for sodium channels (which were
of great interest to Hodgkin and coworkers) have very different properties from potassium
channels and do NOT show the interactions so characteristic of potassium channels. In fact
sodium channels follow the independence principle [7,72] nearly exactly, while potassium
channels do not. Perhaps sodium channels function at very low occupancy and so only one
ion is in the channel at a time and that ion cannot interact with neighbors even though the
channel is narrow [7,15,72].

In the same paper [45], based on a fitting function to the experimental data, Hodgkin and
Keynes introduced the flux ratio exponent n′ through the relation

J [i]

J [o] =
(
c(0)

c(1)
ezζ0V0

)n′

. (1.3)

They argued that the flux ratio exponent n′ estimates the average number of sites occupied by
ions in the membrane. There is an enormous biological, physical, chemical and mathemat-
ical literature building on the original work of Hodgkin and Keynes on single file diffusion
because nearly one dimensional systems are found in ion channels, zeolites, and throughout
the physical and biological world (see, e.g., [8,52] and references therein). Hille summarizes
the biological situation in Table 15.1 in [36].

In practice, one could determine the flux ratio exponent n′ easily: by computing the value
c(0)
c(1)e

zζ0V0 from experimental designs of boundary conditions and experimentally measuring

the flux ratio J [i]/J [o], and then using the relation (1.3). This procedure of determining the
flux ratio exponent n′ has been used in thousands of experimental papers.

The treatment of Hodgkin and Keynes, and its users following Hille [36] more than
anyone else, involved electric fields that did not depend on the charge of the protein. Proteins
are highly charged and the structure of their charges is an important determinant of their
function: the location of acid and base groups and polar and nonpolar amino acids is a
structural feature of the greatest importance. Charge changes electric fields in all models
of electrodynamics (e.g., Maxwell equations) so the question arises whether the Hodgkin–
Keynes–Hille interpretation of the flux ratio exponent is correct. The interpretation of n′

1 The independence principle played a large part in the early thinking of Hodgkin, Huxley, and Katz [38–44]
and was widely used by physiologists and biochemists to describe bulk solutions perhaps for that reason.
Hodgkin was unaware of the evidence (personal communications ALH to RSE) that the Kohlraush principle
of independent migration (∼1880) had been disproven by measurements showing that properties of dilute
sodium chloride solutions depended on the square root of concentration (because of the screening of the ionic
atmosphere approximated by Debye-Hückel theory).
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by Hodgkin and Keynes [45] was a startling insight and was widely thought to be a general
property of channels resulting from their narrow structure (seeHille [36]) even though sodium
channels in fact turn out to have independent fluxes similar to those in bulk solutions. The
question is how much can we rely on the conclusions of this experimental work interpreted
by using a theory assuming an electric field independent of protein structure and charge?

To understand the flux ratio of Hodgkin–Keynes–Hille, we need a theory that includes the
channel structure, mainly its permanent charges. Analysis could determine how the crucial
property of the flux ratio varies with conditions. The simplest treatment of channels in which
the electric field is computed from charge is probably the classical Poisson–Nernst–Planck
theory (see, e.g., [1–4,28,29,55,56,59,70]). The classical PNP is just a beginning since it
ignores correlations produced by the crowding of ions of finite size, although it does include
long range correlations produced by charge through the Poisson equation.We study flux ratios
of the PNP type that also includes ion-to-ion correlations due to ion sizes, trying to present
a formulation that can easily accommodate generalizations that include more correlations.
Universal flux ratios and specific flux ratios It seems that formula (1.1) suggests that flux
ratios depend on bulk conditions only. It is not the case in general. First of all, Ussing’s design
that leads to his formula (1.1) is special in the sense that the two unidirectional fluxes are
produced in one experiment (essentially the same setup as in the two-isotope-setup discussed
in Sect. 4.2). Still, in this case, the excess potentials μex (0) and μex (1) at x = 0 and x = 1
are involved in the formula. The excess potentials μex (0) and μex (1) generally also depend
on the channel structure except when we use local models (see Hypothesis 2.2) for excess
potentials. Other experiment designs will lead to flux ratios that depend on channel structures
evenwhen local models are used for excess potentials, in fact, even if the classical PNPmodel
is used where the excess potentials are totally ignored.

It is reasonable and important to classify types of flux ratios due to different experiment
designs, relative to the channel structure, into two types: universal and specific. More pre-
cisely, if the flux ratio from a certain experimental design is dependent only on properties of
bulk solutions (boundary conditions), particularly, not on the channel structure, the flux ratio
is called universal (see part (i) and Setup 2 in part (ii) of Sect. 1.2 for examples of universal
flux ratios); if the flux ratio depends on the channel structure too, then it is specific (see Setup
1 in part (ii) of Sect. 1.2 for an example of specific flux ratios).

We emphasize that it is the detail of an experimental design that dictates the type of flux
ratios. For the same channel, some experimental designs could lead to universal flux ratios
(see Corollary 3.2 and particularly Remark 3.3); some experimental designs could lead to
specific flux ratios (see Corollary 4.2).

We point out that this classification is rough but helpful. The flux ratio in formula (1.1) is,
strictly speaking, specific. But, for reasonably dilute bulk solutions, local model for excess
potentials are good enough so the flux ratio is nearly universal. Also, the terminology could
be misunderstood to mean that the universal flux ratios are useless. Indeed, universal flux
ratios are not directly useful for detecting channel structures. But universal flux ratios are
helpful in understanding other channel properties (see the discussion of treatment (i) of flux
ratios in Sect. 1.2).

1.2 Experiments on Flux Ratios and Poisson–Nernst–Planck Theory

Motivated by the works of Ussing, and of Hodgkin and Keynes, flux ratios have been used
in many studies of various properties of ion channels. Two major applications will be briefly
described below and will be carefully analyzed based on PNP type models in the main part
of this paper.
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(i) Flux ratios of a main ion species and its tracer One application of flux ratios is to
determine the flux of a main ion species by measuring the flux of its tracer (a radioactive
isotope). Roughly speaking, one adds a small amount of a radioactive isotope of the main ion
species andmeasures the flux of the isotope from its radioactive property, namely the number
of disintegrations per unit time (detected by the radiation products of the disintegration such
as gamma rays), and then estimates the flux of the main ion species by determining the
flux ratio—proportionality constant—between the flux of the tracer and that of the main ion
species. In view of Ussing’s work, the proportionality constant can be well approximated and
easily determined from the boundary conditions alone (see Corollary 3.2).

An ideal experimental design for this purpose uses a universal flux ratio so that the propor-
tionality constant can be precisely and easily determined, independent of the often unknown
channel structure. Based on analysis of PNP typemodels, we discover an experimental design
(proposed in Remark 3.3) so that, if the design can be practically implemented, the resulting
flux ratio is indeed universal.
(ii) Flux ratios versus channel structuresAnother setup for flux ratios ismotivated by thework
of Hodgkin andKeynes [45] discussed above. These setups are designed so the estimated flux
ratios are NOT universal. Rather these flux ratios suppose to depend on the characteristics of
the channel, which would allow one to extract information on channel structure—permanent
charge, in principle. We consider two different experimental setups (see Sect. 4) that produce
estimates of flux ratios. One setup, the one-isotope-setup (Setup 1), uses one isotope in two
experiments, and the other, the two-isotope-setup (Setup 2), uses two isotopes in the same
experiment (essentially the same setup Ussing used in deriving formula (1.1)). With the
specific setups described in Sect. 4, it will be clear that the two flux ratios from the two setups
are nearly, but not quite equal (numerically).

Analysis of PNP type models indicates that the issue of experimental setups in this appli-
cation of flux ratios is subtle. In Sect. 4, we analyze the flux ratios from the two different
setups based on PNP type models with local excess potential models. Our analysis shows
that the two different setups make a significant qualitative difference—the flux ratio from the
one-isotope-setup (Setup 1) is specific so the flux ratio depends on the permanent charge,
even with ideal ionic solutions; the flux ratio from the two-isotope-setup (Setup 2), for PNP
type with local excess potential models, is universal, totally independent of the permanent
charge.

The ultimately important issue is the relation between the flux ratio and the chan-
nel structure. As mentioned above, for the two-isotope-setup (Setup 2), the PNP model
with local excess potential does not provide any relation between the flux ratio and the
channel structure. But, for the one-isotope-setup (Setup 1), PNP with local excess poten-
tials, even PNP with only ideal electrochemical potentials, does provide such a relation
although not in an explicit form yet. To further examine the relevance of the flux ratio
from the one-isotope-setup (Setup 1) to channel structures, we consider the case where
the permanent charge is small relative to the characteristic concentration and a local hard-
sphere is included in the electrochemical potential. An approximation formula of the
flux ratio is obtained with the leading terms explicitly expressed in terms of boundary
conditions and the assumed channel structure. This formula allows one to analyze the rela-
tion between the flux ratio and the permanent charge in this simple case. We emphasize
that our work in this paper is only the starting point of our investigation so the results
are far from a complete theory on relationship between the flux ratio and the channel
structure. Indeed, one of the reasons for this paper is to pose this important biological
language in precise mathematical form so more complete theories can be developed and
applied.
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A comment on the sign of unidirectional flux In formulas (1.1), (1.2) and (1.3), J [i] and J [o] are
both defined as positive quantities, although they flow in opposite directions. In the following,
we will fix one spatial orientation in our formulas for all fluxes. Thus J [i] is positive and J [o]
is negative. This produces a minus sign in our formulas for flux ratio J [i]/J [o].
Organization of the paper In Sect. 2, a quasi-one-dimensional PNP type model for ionic flow
is reviewed and our assumption on the excess potentials is introduced.

In Sect. 3, a formula (3.1) for individual fluxes is provided. We then examine the pro-
portionality between the flux of the main ion species and the unidirectional flux of a tracer.
A formula (3.7) for the proportionality constant is derived and, based on the formula, we
propose an extremely useful experimental design in Remark 3.3 from which this flux ratio is
universal—the ideal situation for the purpose of determining the proportionality constant.

In Sect. 4, we discuss two widely used experimental setups for measuring unidirectional
fluxes and their flux ratios of unidirectional fluxes, and their differences are discussed. For
PNP type models with local excess potentials, the analysis indicates that the flux ratio from
the two-isotope-setup (Setup 2) is universal and does not provide any information on channel
structures but the flux ratio estimated from the one-isotope setup (Setup 1) is specific and
contain information of channel structure.

In Sect. 5, we consider a special case for the one-isotope-setup (Setup 1) to illustrate that
the flux ratio is indeed specific, in a concrete way. The permanent charge is described in (5.1)
and is assumed to be small relative to the characteristic concentration, a local hard-sphere
approximation for excess potential is specified in (5.5), and, particularly, the dimensionless
quantity ε defined in (5.2) is assumed to be small. We only examine the zeroth order (in ε)
term of this specific flux ratio. (For convenience, we refer to this zeroth order (in ε) term of the
flux ratio simply as the flux ratio.) Then approximation formulas (5.14) and (5.18) for the flux
ratios are derived for the one-isotope-setup (Setup 1)with different boundary electroneutrality
conditions. The approximate formulas for the flux ratios are expressed explicitly in terms of
boundary conditions and the prescribed permanent charge distribution. Section 6 contains a
summary of our results and further discussions on our work.

The derivation of formulas (5.14) and (5.18) for the one-isotope-setup (Setup 1) is provided
in “Appendix” (Sect. 7). Section 7.1 gives a reformulation of the flux ratio formula for the
special case considered in Sect. 5. Formula (5.14) for electroneutrality boundary conditions
among all three ion species is derived in two parts: Sect. 7.2.1 handles the contribution to the
flux ratio from (small) permanent charge and Sect. 7.2.2 treats the contribution of ion sizes
with a local hard-sphere potential. Formula (5.18) for electroneutrality boundary conditions
among only themain ion species and the counter ion species is derived based on the derivation
of formula (5.14) with necessary modifications indicated.

2 PNP Type Models and Electrochemical Potentials

2.1 The Boundary Value Problem

The following quasi-one-dimensional PNP type model was suggested by Nonner and Eisen-
berg [67] (see [57] for a justification from the three-dimensional PNP for a special case):

1

h(x)

d

dx

(
εr (x)ε0h(x)

d

dx
φ
)

= −e0
( n∑

s=1

zscs + Q(x)
)
,

d

dx
Jk = 0, −Jk = 1

kBT
Dk(x)h(x)ck

d

dx
μk, k = 1, 2, . . . , n

(2.1)
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where φ is the electric potential, kB is the Boltzmann constant, T is the absolute temperature,
e0 is the elementary charge, εr (x) is the relative dielectric coefficient, ε0 is the dielectric
constant of vacuum; h(x) is the cross-section area over the longitude coordinate x of the
channel, Q(x) is the permanent charge; for the kth ion species, ck is the concentration,
zk is the valence, Jk is the flux density across each cross-section of the channel, Dk(x) is
the diffusion coefficient, μk is the electrochemical potential (that depends on φ and {c j } in
general).

The boundary conditions are, for k = 1, 2, . . . , n,

φ(0) = V0, ck(0) = Lk; φ(1) = 0, ck(1) = Rk . (2.2)

The concentrations of ionsmanipulated in experiments are represented by the set of boundary
values of concentrations Lk’s on the left side and Rk’s on the right side. We remark that the
channel has been normalized from x = 0 to x = 1 by a scaling of its longitude variable (see
(5.2) for the full dimensionless rescaling).

2.2 Electrochemical Potential

The electrochemical potential μk = μid
k + μex

k , consisting of the ideal component μid
k and

the excess component μex
k , is the most important variable in a model of ions in solutions or

channels. The ideal component

μid
k = kBT ln

ck
c0

+ zke0φ, (2.3)

where c0 is a characteristic concentration, reflects the contribution of ions as point-charges.
For nearly infinite dilute ion solutions, the ideal component μid

k is a good approximation of
the electrochemical potential μk .

The excess component μex
k measures the deviation of the electrochemical potential from

the ideal component, in particular, it accounts for ion size effects and presumably channel size
in turn. This description of nonideal properties uses the excess component μex

k as an additive
component to the ideal component. Another equivalent description of nonideal properties is
in terms of activity coefficient (discussed below) asmultiplication factor to the one associated
with the ideal component. The nonideal property of kth ion species depends, in principle,
on everything involved such as the temperature, the medium (water), ion-ion interactions
due to ion sizes, the concentrations of all ion species of the mixture, etc. Models of μex

k are
not fully understood and developed. There are various explicit approximations of μex

k that
are particularly important in models of ionic solutions in and around biological cells. These
are all derived from seawater, and so are quite concentrated mixtures (≈0.2 M) and so have
substantial and important excess components. Indeed, animal cells depend on the difference
between potassium and sodium: without that difference they cannot survive, and potassium
and sodium ions differ only because of their excess properties due to their different sizes.

The activity ak is another standard characteristic of the electrochemical potential of kth ion
species and describes nonideal properties through its activity coefficient fk as a multiplicative
factor to the one associatedwith the ideal component (up to a reference potential). The activity
ak is dimensionless and is defined by

ak = e
1

kB T (μk−μ0
k ) = e

1
kB T μex

k e
1

kB T (μid
k −μ0

k ), (2.4)
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where, in general, μ0
k can be any reference potential and, in this sense, the activity ak is a

relative term. The activity coefficient fk is the pre-factor in the last expression in (2.4)

fk = e
1

kB T μex
k . (2.5)

Note that fk = 1 for ideal ionic solutions. The deviation of fk from 1 measures the nonideal
nature of the ionic solution. The relation (2.5) is used to get the second expression of the
flux ratio in (1.1). For a solute in solution, a standard convention is to take μ0

k = μid
k . In this

case, one has ak = fk . If we take μ0
k = zke0φ (only the electric component of μid

k ) and the
characteristic concentration c0 = ∑

j c j , then

ak = fk
ck
c0

= fk xk,

where xk is the concentration fraction of kth ion species, is another form of activity. If we
take μ0

k = 0, then (2.4) can be rewritten as

ak = fke
1

kB T μid
k or ln ak = ln fk + ln

ck
c0

+ zkζ0φ.

The latter is the equation (3)with c0 = 1 in [78] used byUssing to define the (electrochemical)
activity ak that includes the electrical potential φ as a part.

In the following, we will use the excess components μex
k ’s to characterize the nonideal

nature of ionic solutions.
For all results in Sects. 3 and 4, we will make two assumptions about the electrochemical

potentials adopted in the PNP type model (2.1).

Hypothesis 2.1 For a given fixed ionic mixture, if j th ion species and kth ion species have
the same valence and diameter, then the excess potentials and diffusion coefficients for j th
ion species and for kth ion species are the same; that is, if z j = zk and d j = dk , then
μex

j (x) = μex
k (x) and Dj (x) = Dk(x).

The validity of Hypothesis 2.1 in great generality was explicitly pointed out by Ussing in
the last paragraph on page 45 of [78]. In our work, Hypothesis 2.1 will be applied to a main
ion species and its isotopic tracer that have the same valence and diameter.

For a solution (φ(x),C(x), J ) of the boundary value problem (BVP) (2.1) and (2.2),
we will thus use the following notation for μex

k (x) to indicate explicitly its dependence on
(zk, dk):

μex
k (x) = μex

k (x; zk, dk). (2.6)

Hypothesis 2.2 The excess potentials are taken to be local in the sense that, for kth ion
species, its excess potentialμex

k (x; zk, dk) at location x depends pointwise on concentrations
C(x) = {c j (x) : j = 1, . . . , n} of all ion species of the ionic mixture but only at the location
x ; that is, μex

k (x; zk, dk) = μex
k (C(x); zk, dk).

For a nonlocal model of the excess potential μex
k , its value μex

k (x) at x is often taken
to be dependent on the values of C(y) for y in a neighborhood of x where the size of the
neighborhood is typically about the maximum of (d j + dk)/2 for j = 1, 2, . . . , n and the
Debye screening length at x .

The local nature of excess potentials assumed in Hypothesis 2.2 is an approximation and
is often good enough. We will further comment on this hypothesis in Remark 2.3 and at other
places that it is crucial.
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In the following, we separate the ideal gas component from the electrical and nonideal
terms to make our formulas more tidy and concise, that is, we introduce

pk(x; zk, dk) = zkζ0φ(x) + 1

kBT
μex
k (x; zk, dk), (2.7)

where ζ0 = e0/kBT . Therefore, for kth ion species, kBT pk(x; zk, dk) is the component
beyond the ideal gas (non-charged) component kBT ln(ck(x)/c0), that is, the total electro-
chemical potential μk(x) is

μk(x) = kBT ln
ck(x)

c0
+ kBT pk(x; zk, dk).

We also purposely include zk and dk in the expression pk(x; zk, dk) to remind the readers
of Hypothesis 2.1; that is, for j th ion species and kth ion species, if z j = zk and d j = dk ,
then pk(x; zk, dk) = p j (x; z j , d j ).

Remark 2.3 We claim that, for all the results in Sects. 3 and 4, the local assumption (2.2)
on the excess potentials μex

k (x; zk, dk)’s can be relaxed under one general condition; that is,
one needs μex

k (x; zk, dk) to be local only outside the channel (near x = 0 and x = 1), in
particular, nonlocal models for the excess potentials are allowed inside the channel, provided
the corresponding BVP (2.1) and (2.2) is well-posed. This claim follows from the proofs of
all the results in Sects. 3 and 4 without any change. On the other hand, when nonlocal models
for excess potentials are used at inside and outside (particularly near x = 0 and x = 1) of the
channel, the correspondingBVP (2.1) and (2.2) is known to be severely under determined, and
it is not completely understood how to formulate “correct” boundary conditions for the BVP
to be well-posed. In [75], an initial attempt for a correct formulation of boundary conditions
that are natural to the biological setups is taken. Further studies would be necessary for a
better understanding of the roles of nonlocal nature of the excess potentials.

3 Unidirectional Flux and Proportionality Constant

For the results in this section and in Sect. 4, we only assume that the BVP specified in Eq. (2.1)
and the boundary condition (2.2) has a solution. It is not assumed that the solution of the
BVP (2.1) and (2.2) is unique (of course, the results are referred to a given solution of the
BVP (2.1) and (2.2)). We also do not assume electroneutrality boundary conditions so there
might be boundary layers. Experimental designs often use “four electrode” arrangements to
remedy possible boundary layers. In those arrangements, two ‘working’ electrodes (that carry
current) are inserted far away from the channel so boundary conditions that may produce
boundary layers do not reach the ends of the channel. Two other electrodes are inserted near
the ends of channel and away from possible boundary layers and used to measure electric
potential and concentrations.

3.1 An Important Formula for Jk and Unidirectional Flux

Proposition 3.1 below has been derived in classical channel models for ideal solutions where
pk(x; zk, dk) = zkζ0φ(x) (see, e.g., [49]).

Proposition 3.1 Assume Hypotheses 2.1 and 2.2. If (φ,C, J ) is a solution of the BVP (2.1)
and (2.2), then

Jk =
(
Lke

pk (0;zk ,dk ) − Rke
pk (1;zk ,dk )

)( ∫ 1

0

epk (x;zk ,dk )

Dk(x)h(x)
dx

)−1
, (3.1)
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where pk(x; zk, dk) is defined in (2.7).
In particular, if, at the boundaries (outside the channel), we do not include the excess

component, this is, if we take μk(0) = μid
k (0) and μk(1) = μid

k (1), then

Jk =
(
Lke

zkζ0V0 − Rk

)( ∫ 1

0

epk (x;zk ,dk )

Dk(x)h(x)
dx

)−1
. (3.2)

Proof It follows from Nernst–Planck equations in (2.1) that

−Jk = Dk(x)h(x)e−pk (x;zk ,dk )
(
cke

pk (x;zk ,dk )
)′

. (3.3)

Divide the three factors on the right-hand side of (3.3) and integrate to get

−Jk

∫ 1

0

epk (x;zk ,dk )

Dk(x)h(x)
dx =

∫ 1

0

(
cke

pk (x;zk ,dk )
)′
dx

= ck(1)e
pk (1;zk ,dk ) − ck(0)e

pk (0;zk ,dk ).

The formula (3.1) for Jk then follows from the boundary conditions (2.2).
When taking μk(0) = μid

k (0) and μk(1) = μid
k (1), one has pk(0; zk, dk) = zkζ0V0 and

pk(1; zk, dk) = 0. Formula (3.2) then follows from formula (3.1). ��
Formula (3.3) is the same as Ussing’s formula (5) in [78], from which Ussing derived his

formula (1.1). The extra step leading to formula (3.1) proves to be useful at several occasions,
for example, for obtaining formulas (3.7) and (4.3) below which are not direct consequences
of Ussing’s formula (1.1).

Formula (3.1) for Jk has the advantage that the only unknown quantity on the right-hand
side is the function pk(x; zk, dk) which, from Hypothesis 2.1, is the SAME for ion species
with the SAME (zk, dk) such as for an ion species and its isotopes.

We end this part by illustrating an immediate use of formula (3.1): a definition of unidi-
rectional fluxes. This has been demonstrated for ideal ionic solutions in [49].

Formula (3.1) can be rewritten as follows to give a decomposition of Jk as the sum of two
unidirectional fluxes Jk = J [i]

k + J [o]
k where

J [i]
k = Lke

pk (0;zk ,dk )
( ∫ 1

0

epk (x;zk ,dk )

Dk(x)h(x)
dx

)−1
,

J [o]
k = −Rke

pk (1;zk ,dk )
( ∫ 1

0

epk (x;zk ,dk )

Dk(x)h(x)
dx

)−1
(3.4)

are the so-called influx and efflux of kth ion species, respectively. (Note the minus sign in J [o]
k

is due to the fact that we use the same spatial orientation of positive current for both fluxes.)
Formulas in (3.4) provide a mathematically meaningful definition of influx and efflux. It

should be stressed that the unidirectional influx J [i]
k (respectively, efflux J [o]

k ) depends also on
all other quantities in the boundary conditions as well as the permanent charge of the problem
through the global profile of pk(x; zk, dk). The ratio between these two unidirectional fluxes

J [i]
k

J [o]
k

= − Lkepk (0;zk ,dk )

Rkepk (1;zk ,dk )

agrees with Ussing’s formula (1.1). When local excess potentials are used, the above ratio
is independent of channel structures, and hence, the flux ratio is ‘approximately’ universal.
This formula, under the hypothesis that, near x = 0 and x = 1, ionic solutions are dilute
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enough, would reduce to formula (1.2); in particular, the flux ratio is universal, independent
of channel structures.

3.2 Proportionality Between Flux of Main Ions and that of Its Tracer

While most experiments today measure the total current, it is important to measure the
fluxes of individual ions—the components of the current—and such flux measurements were
the basis of hundreds if not thousands of classical papers and almost all work on vesicle
preparations widely used by molecular biologists. (The references [36,37,77] are good entry
points to the classical literature.) For example, for Na+Cl− solutions, one can add a tiny
amount of a radioactive isotope of sodium denoted by TNa . The flux of TNa can be measured
by its radioactivity. The isotope TNa has exactly the same electrical and chemical properties
as the main ion species (the NON-radioactive Na) so one expects their fluxes are proportional
to each other in a simple manner. Determining the proportionality constant would provide a
measurement of the flux of the main ion species by measuring the tracer flux of radioactive
TNa . A general analysis of the proportionality constant or ‘specific activity’ (the favorite name
of experimentalists) is not possible, of course, because the ‘constant’ varieswith experimental
setup. Experimental setups leading to universal flux ratios are preferred.

Since the value of the proportionality constant is different in different setups, we will
consider one experimental setup that iswidely used in the experimental literature and propose,
in Remark 3.3, a specific experimental setup that has a substantial advantage.

For simplicity, we consider three ion species in this subsection: the main ion species (for
example, Na+), its tracer (an isotope of Na+), and the counter ion (for example, Cl−). For
the relative quantities, we use the following notation. We use the same subscript 1 for both
the main ion species and its isotope to indicate that they have the same valence, etc., but use
different superscripts [m] for the main ion species and [t] for the tracer to distinguish them.
The symbols for the boundary concentrations are used in the similar way.

Concentration Valence Flux

Main ion species c[m]
1 z1 > 0 J [m]

1

Tracer c[t]1 z1 > 0 J [t]
1

Counter ion c2 z2 < 0 J2

For the moment, we do not specify the boundary concentrations of the tracer but will do so
afterwards. Thus, the BVP (2.1) and (2.2) for the main ion species, the tracer and the counter
ion species becomes

1

h(x)

d

dx

(
εr (x)ε0h(x)

d

dx
φ
)

= −e0
(
z1

(
c[m]
1 + c[t]

1

) + z2c2 + Q(x)
)
,

d

dx
J [m]
1 = d

dx
J [t]
1 = d

dx
J2 = 0,

−J [m]
1 = 1

kBT
D1(x)h(x)c[m]

1
d

dx
μ

[m]
1 ,

−J [t]
1 = 1

kBT
D1(x)h(x)c[t]

1
d

dx
μ

[t]
1 , (3.5)

−J2 = 1

kBT
D2(x)h(x)c2

d

dx
μ2
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with boundary conditions,

φ(0) = V0, c[m]
1 (0) = L [m]

1 , c[t]
1 (0) = L [t]

1 , c2(0) = L2;
φ(1) = 0, c[m]

1 (1) = R[m]
1 , c[t]

1 (1) = R[t]
1 , c2(1) = R2.

(3.6)

Recall that the main ion species and its tracer have the SAME valence, diameter and
diffusion coefficient. The following result is then a direct consequence of Proposition 3.1,
not a direct consequence of Ussing’s formula (1.1).

Corollary 3.2 Assume Hypotheses 2.1 and 2.2. For BVP (3.5) and (3.6), the proportionality
constant between the flux J [t]

1 of the tracer and the flux J [m]
1 of the main ion species is

J [t]
1

J [m]
1

= L [t]
1 ep1(0;z1,d1) − R[t]

1 ep1(1;z1,d1)

L [m]
1 ep1(0;z1,d1) − R[m]

1 ep1(1;z1,d1)
. (3.7)

Furthermore, if we take μ1(0) = μid
1 (0) and μ1(1) = μid

1 (1), then

J [t]
1

J [m]
1

= L [t]
1 ez1ζ0V0 − R[t]

1

L [m]
1 ez1ζ0V0 − R[m]

1

. (3.8)

Proof Since both the main ion species and the tracer have the same valence z1 and diameter
d1, and hence, the function p1(x; z1, d1) in (3.1) is the same for both of them. Also both
the main ion species and the tracer have the same diffusion coefficient D1(x). Formula in
Proposition 3.1 yields the formula for the quotient. ��

Note that, since excess potentials are approximated by local models, the proportionality
constant or the flux ratio given by formula (3.7) is approximately universal.

We now apply the results to specific boundary concentrations of tracers widely used in
experiments. It is arranged so that the radioactivity on one side of the channel is kept nearly
zero (by flowing solution by the channel). If one takes L [t]

1 > 0 and R[t]
1 = 0, then (3.7) gives

the proportionality constant

J [t]
1

J [m]
1

= L [t]
1 ep1(0;z1,d1)

L [m]
1 ep1(0;z1,d1) − R[m]

1 ep1(1;z1,d1)
,

where J [t]
1 = J [t,i]

1 is the inward unidirectional flux (influx) of the tracer. This flux ratio,
with any local models for excess potentials in the solution outside the channel, is universal.
Given boundary conditions, one still needs to estimate p1(0; z1, d1) and p1(1; z1, d1), which
depend on specifics of local models for excess potentials, to determine the proportionality
constant. If this experiment involves dilute ionic mixtures, then one can apply formula (3.8)
to approximate the proportionality constant

J [t]
1

J [m]
1

= L [t]
1 ez1ζ0V0

L [m]
1 ez1ζ0V0 − R[m]

1

.

Finally in the remark below, we make an observation and propose a possible design of
experiments for a simple and precise determination of a proportionality constant.

Remark 3.3 One experimental setup provides simple and exact results and sowe recommend
using it, where practicable. If one designs experiments so that

L [t]
1 /L [m]

1 = R[t]
1 /R[m]

1 = σ, (3.9)
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then it follows from formula (3.7) that

J [t]
1

J [m]
1

= σ (3.10)

where J [t]
1 = J [t,i]

1 + J [t,o]
1 is the total flux of the tracer and J [m]

1 is the flux of the main ion
species. Note that this simple relation is universal and remains true independent of specifics
of local models for excess electrochemical components and even if nonlocal models are used
as long as the boundary value problem is well-posed.

If one can design this experimentally andmeasure the total tracer flux J [t]
1 = J [t,i]

1 + J [t,o]
1 ,

then formula (3.10) gives us a beautiful result. It says that if the “specific activity” defined in
Eq. (3.9) is the same in the left and right hand solutions, then the radioactive species does in
fact trace the movement of nonradioactive species robustly essentially without error. We do
not know whether or not this design has been discovered and used for tracer measurements
and regretfully we do not know how to find the appropriate reference in the vast literature.

There is a further powerful and beautiful result of this simpler and accurate formula.
Consider a setup with two tracers T1 and T2, two isotopes of the main ion species with
different radioactivity. One designs the boundary concentrations for tracers as follows:

for tracer T1 : L [t1]
1 > 0 at x = 0 and R[t1]

1 = 0 at x = 1;
for tracer T2 : L [t2]

1 = 0 at x = 0 and R[t2]
1 > 0 at x = 1.

If L [t1]
1 /L [m]

1 = σ and R[t2]
1 /R[m]

1 = σ , then

J [m]
1 = 1

σ

(
J [t1,i]
1 + J [t2,o]

1

)

where J [t1,i]
1 is the influx of tracer T1 and J [t2,o]

1 is the efflux of tracer T2. Under these
conditions, the tracer in fact traces the main ion flux exactly.

4 Flux Ratios from Two Setups

In this section, we move to a different but related topic; that is, we examine the flux ratios of
two unidirectional fluxes of tracers in two setups corresponding to two different experimental
designs for the purpose of detecting channel structures. Two issues are relevant: the first (the
focus of this section) is whether or not each flux ratio is universal or specific and is able to
provide any information on channel structures, and to compare their differences based on
PNP type models with local excess potentials; the second is the detailed relation between the
specific flux ratios and the channel structure. The latter will be examined by case studies in
Sect. 5.

Since our PNP type models contain local excess potentials, our results apply for non-ideal
ionic solutions and, as direct consequences, we also include relevant results for ideal ionic
solutions.

4.1 Flux Ratio for the One-Isotope-Setup (Setup 1)

For this setup, one uses one main ion species, one tracer (an isotope of the main ion species),
and one counter ion species. Two sets of experiments are performed.

123



J Dyn Diff Equat

In one experiment, the boundary conditions for the tracer are nonzero concentration
L [t,i]
1 > 0 on left boundary x = 0 and zero concentration R[t,i]

1 = 0 on the right x = 1. This

would produce an influx J [t,i]
1 of the tracer.

In the other, the boundary conditions for the tracer are zero concentration L [t,o]
1 = 0 on

left boundary x = 0 and nonzero concentration R[t,o]
1 > 0 on the right x = 1. This would

produce an efflux J [t,o]
1 of the tracer.

We will examine the flux ratio J [t,i]
1 /J [t,o]

1 associated with these two experiments.
According to the two different experiments, two different sets of boundary conditions are

as follows.

(BVi) :

⎧⎪⎪⎨
⎪⎪⎩

φ[i](0) = V0, φ[i](1) = 0,
c[m,i]
1 (0) = L [m,i]

1 > 0, c[m,i]
1 (1) = R[m,i]

1 > 0, (main ions)
c[t,i]
1 (0) = L [t,i]

1 > 0, c[t,i]
1 (1) = R[t,i]

1 = 0, (tracer)
c[i]
2 (0) = L [i]

2 > 0, c[i]
2 (1) = R[i]

2 > 0. (counterions)

(4.1)

(BVo) :

⎧⎪⎪⎨
⎪⎪⎩

φ[o](0) = V0, φ[o](1) = 0,
c[m,o]
1 (0) = L [m,o]

1 > 0, c[m,o]
1 (1) = R[m,o]

1 > 0, (main ions)
c[t,o]
1 (0) = L [t,o]

1 = 0, c[t,o]
1 (1) = R[t,o]

1 > 0, (tracer)
c[o]
2 (0) = L [o]

2 > 0, c[o]
2 (1) = R[o]

2 > 0. (counterions)

(4.2)

We will thus consider TWO boundary value problems: one has system (2.1) with the
boundary conditions (BVi) in (4.1) and the other has system (2.1) with the boundary con-
ditions (BVo) in (4.2). The key difference between these two boundary conditions concerns
the tracer concentration: it is zero at x = 1 for (BVi) and it is zero for (BVo) at x = 0. For
simplicity, the boundary condition for the electric potential φ will be kept the same for both
BVPs. The boundary concentrations for the main ion species and those for the counter ion
species could be different for the two BVPs for the purpose of detailed case studies in Sect. 5.

For the boundary condition (BVi) where L [t,i]
1 > 0 and R[t,i]

1 = 0, the absorbing boundary
is at the right end x = 1 where the tracer concentration is zero and the tracer is inserted from
the left end with concentration L [t,i]

1 > 0 at x = 0; in particular, the flux of the tracer is the

influx J [t,i]
1 . The notation in the next table will be used.

BVi Concentration Valence Flux

Main ion c[m,i]
1 z1 > 0 J [m,i]

1

Tracer c[t,i]1 z1 > 0 J [t,i]
1

Counter ion c[i]2 z2 < 0 J [i]
2

Similarly, for the boundary condition (BVo) where L [t,o]
1 = 0 and R[t,o]

1 > 0, the flux of

the tracer is the efflux J [t,o]
1 . For this case, we use the notation in next table.

Concerning the flux ratio between J [t,i]
1 and J [t,o]

1 , we have the following formula.

Theorem 4.1 Assume Hypotheses 2.1 and 2.2. For the one-isotope-setup (Setup 1) with one
tracer in two experiments, let J [t,i]

1 be the influx of the tracer associated with the boundary

conditions (BVi) in (4.1) for one experiment; let J [t,o]
1 be the efflux of the tracer associated

with the boundary conditions (BVo) in (4.2) for the other experiment.

123



J Dyn Diff Equat

BVo Concentration Valence Flux

Main ion species c[m,o]
1 z1 > 0 J [m,o]

1

Tracer c[t,o]1 z1 > 0 J [t,o]
1

Counter ion c[o]2 z2 < 0 J [o]
2

Then the flux ratio between J [t,i]
1 and J [t,o]

1 is

J [t,i]
1

J [t,o]
1

= − L [t,i]
1 ep

[i]
1 (0;z1,d1)

R[t,o]
1 ep

[o]
1 (1;z1,d1)

∫ 1

0

ep
[o]
1 (x;z1,d1)

D1(x)h(x)
dx

( ∫ 1

0

ep
[i]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1
, (4.3)

where p[i]
1 (x; z1, d1) defined in (2.7) is determined by the profiles of concentrations from the

solution of BVP associated with the boundary condition (BVi), and p[o]
1 (x; z1, d1) defined

in (2.7) is determined by the profiles of concentrations from the solution of BVP associated
with the boundary condition (BVo).

Proof For the experiment associated with the boundary conditions (BVi) where L [t,i]
1 > 0

and R[t,i]
1 = 0, formula (3.1) gives the influx of the tracer

J [t,i]
1 =L [t,i]

1 ep
[i]
1 (0;z1,d1)

( ∫ 1

0

ep
[i]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1
.

Similarly, for the experiment associated with the boundary conditions (BVo) where
L [t,o]
1 = 0 and R[t,o]

1 > 0, formula (3.1) gives the efflux of the tracer

J [t,o]
1 = −R[t,o]

1 ep
[o]
1 (1;z1,d1)

( ∫ 1

0

ep
[o]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1
.

Formula (4.3) for the ratio of J [t,i]
1 and J [t,o]

1 then follows. ��
Corollary 4.2 Assume Hypotheses 2.1 and 2.2. For the one-isotope-setup (Setup 1) with
ideal ionic mixtures, the flux ratio of the two unidirectional fluxes is

J [t,i]
1

J [t,o]
1

= − L [t,i]
1 ez1ζ0V0

R[t,o]
1

∫ 1

0

ez1ζ0φ
[o](x)

D1(x)h(x)
dx

( ∫ 1

0

ez1ζ0φ
[i](x)

D1(x)h(x)
dx

)−1
,

where φ[i](x) is the profile of electric potential associated to the boundary condition (BVi)
and φ[o](x) is that associated to the boundary condition (BVo).

Note that, even for ideal ionic mixtures where (see (2.7))

p[i]
1 (x; z1, d1) = z1ζ0φ

[i](x) and p[o]
1 (x; z1, dt ) = z1ζ0φ

[o](x),

the two profiles φ[i](x) and φ[o](x) are different due to different boundary conditions in
(BVi) and (BVo). This difference in the electrical potential reflects the effects of permanent
charge, more than the difference in boundary conditions. Thus, even for ideal ionic mixtures,
the PNP model shows that the flux ratio in the one-isotope-setup (Setup 1) is specific and
contains information on the permanent charge.
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4.2 Flux Ratio for the Two-Isotope-Setup (Setup 2)

For this setup, one uses one main ion species, one counter ion species, and TWO tracers
T1 and T2 (two different isotopes of the main ion species) in the SAME experiment. This is
essentially the same setup used by Ussing in his derivation of formula (1.1). It turns out the
flux ratio from this setup is universal when local models for excess potentials are used.

The boundary concentrations for tracers are as follows:

for tracer T1 : L [t1]
1 > 0 at x = 0 and R[t1]

1 = 0 at x = 1;
for tracer T2 : L [t2]

1 = 0 at x = 0 and R[t2]
1 > 0 at x = 1.

This would yield an estimate for the influx J [t1,i]
1 of tracer T1 and an estimate for the efflux

J [t2,o]
1 of tracer T2. We will examine the flux ratio J [t1,i]

1 /J [t2,o]
1 .

In the following table, we summarize the notations used.

Setup 2 Concentration Valence Flux

Main ion c[m]
1 z1 > 0 J [m]

1

Tracer T1 c
[t1]
1 z1 > 0 J

[t1,i]
1

Tracer T2 c
[t2]
1 z1 > 0 J

[t2,o]
1

Counter ion c2 z2 < 0 J2

The superscript [t1] in c[t1]
1 , J [t1,i]

1 , etc. indicates the corresponding quantity is associated

with tracer T1, and the superscript i in J [t1,i]
1 indicates that it is the inward unidirectional flux

of tracer T1. Similar remark applies to [t2] and o for tracer T2.
Let

(
φ(x), c[m]

1 (x), c[t1]
1 (x), c[t2]

1 (x), c2(x), J
[m]
1 , J [t1,i]

1 , J [t2,o]
1 , J2

)
be a solution of boun-

dary value problem of system (2.1) with boundary conditions

φ(0) = V0, c[m]
1 (0) = L1, c[t1]

1 (0) = L [t1]
1 , c[t2]

1 (0) = 0, c2(0) = L2;
φ(1) = 0, c[m]

1 (1) = R1, c[t1]
1 (1) = 0, c[t2]

1 (1) = R[t2]
1 , c2(1) = R2.

(4.4)

The crucial observation is, since the two tracers are involved in the same experiment and
they are assumed to have the same electrical and chemical properties (such as same valence
z1 and same diameter d1, etc), both tracers have the same function

p1(x; z1, d1) = z1ζ0φ(x) + 1

kBT
μex (x; z1, d1)

defined in (2.7) and the same diffusion coefficient D1. Concerning the flux ratio, we have the
following.

Theorem 4.3 Assume Hypotheses 2.1 and 2.2. For the two-isotope-setup (Setup 2) with two
tracers T1 and T2 of the same valence and same diameter in one experiment, the flux ratio
between the influx J [t1,i]

1 of tracer T1 and the efflux J [t2,o]
1 of tracer T2 is

J [t1,i]
1

J [t2,i]
1

= − L [t1]
1

R[t2]
1

ep1(0;z1,d1)

ep1(1;z1,d1)
. (4.5)
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Proof Since the two tracers are involved in the same experiment and they have the same
valence and diameter, the profile of the excess potential beyond the ideal component
kBT p1(x; z1, d1) is the same for both tracers T1 and T2. Note also that the two tracers
would have the same diffusion coefficient D1.

Thus, for the tracer T1 with L [t1]
1 > 0 and R[t1]

1 = 0, formula (3.1) gives its influx

J [t1,i]
1 =L [t1]

1 ep1(0;z1,d1)
( ∫ 1

0

ep1(x;z1,d1)

D1(x)h(x)
dx

)−1
.

Similarly, for the tracer T2 with L [t2]
1 = 0 and R[t2]

1 > 0, its efflux is

J [t2,o]
1 = −R[t2]ep1(1;z1,d1)

( ∫ 1

0

ep1(x;z1,d1)

D1(x)h(x)
dx

)−1
.

The formula (4.5) for the ratio of J [t1,i]
1 and J [t2,o]

1 then follows directly. ��
Note that, with local models for excess components, p1(0; z1, d1) and p1(1; z1, d1) in

formula (4.5) are determined by the boundary concentrations of the whole ionic solution,
not just those of tracers. Nevertheless, when local models for excess components are used
in PNP models, the flux ratio from this setup (Setup 2) is completely determined by the
boundary conditions—independent of the channel structure. It is universal for all channel
types (described by PNP type models) independent of the parameters of the channel.

Corollary 4.4 Assume Hypotheses 2.1 and 2.2. For the two-isotope-setup (Setup 2) with two
tracers in one experiment, if ionic mixture is treated as ideal ionic solution, then the flux ratio
between the influx J [t1,i]

1 of tracer T1 and the efflux J [t2,o]
1 of tracer T2 is

J [t1,i]
1

J [t2,o]
1

= − L [t1]
1

R[t2]
1

ez1ζ0V0 . (4.6)

Proof For ideal ionic solutions, it follows from (2.7) that p1(x; z1, d1) = z1ζ0φ(x).
Formula (4.6) for ideal ionic mixtures is then a direct consequence of (4.5). ��

4.3 The One-Isotope-Setup (Setup 1) Versus the Two-Isotope-Setup (Setup 2) for
Flux Ratios

We comment more on differences among estimators of flux ratios from the two setups.
At this moment, we are not able to give a comprehensive comparison between the flux

ratios from the two setups. But, for the following situations, one may conclude that the flux
ratio from the one-isotope-setup (Setup 1) is better than that from the two-isotope-setup
(Setup 2) if the goal is to learn about the permanent charge.

For simplicity, for the one-isotope-setup (Setup 1), we take, L [t,i]
1 = ρ at x = 0 and

R[t,i]
1 = 0 at x = 1 for (BVi) in (4.1), and L [t,o]

1 = 0 at x = 0 and R[t,o]
1 = ρ at x = 1

for (BVo) in (4.2); for the two-isotope-setup (Setup 2), we take, L [t1]
1 = ρ and L [t2]

1 = 0 at

x = 0, and R[t1]
1 = 0 and R[t2]

1 = ρ at x = 1.
(i) We already see that, for PNP with any local model for the excess potentials, the flux ratio
from the two-isotope-setup (Setup 2) is given by (4.5) recast as follows:

J [t1,i]
1

J [t2,o]
1

= −ep1(0;z1,d1)−p1(1;z1,d1).
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In particular, the two-isotope estimator has nothing to do with the channel structure. The two
isotope estimator is universal.

On the other hand, it follows from (4.3), the estimator of the flux ratio from the one-
isotope-setup (Setup 1) is

J [t,i]
1

J [t,o]
1

= −ep
[i]
1 (0;z1,d1)−p[o]

1 (1;z1,d1)
∫ 1

0

ep
[o]
1 (x;z1,d1)

D1(x)h(x)
dx

( ∫ 1

0

ep
[i]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1
.

For PNP with local model for the excess potentials, we do have

ep
[i]
1 (0;z1,d1)−p[o]

1 (1;z1,d1) = ep1(0;z1,d1)−p1(1;z1,d1),

and hence, the first factor in the expression of J [t,i]
1 /J [t,o]

1 from the one-isotope-setup (Setup

1) equals, itself, to the flux ratio J [t1,i]
1 /J [t2,o]

1 from the two-isotope-setup (Setup 2). The

last two factors in the expression of J [t,i]
1 /J [t,o]

1 contain significant information, namely,
both factors involve permanent charge effects, even for PNP with ideal electrochemical
components only. In this sense, the flux ratio measured in the one-isotope-setup (Setup 1)
contains more information on channel structure than that in the two-isotope-setup (Setup 2).
Although this came as a surprise to some of us, who had been inoculated with traditional
views of unifluxes long ago [21,46], it should not have. Setup 1 with one tracer involves two
different spatial arrangements, and so it should give more information, particularly about any
asymmetry in the charge distribution.

Recall that p[i]
1 (x; z1, d1) is determined by the profiles of concentrations from the solution

of BVP associated to the boundary condition (BVi) in (4.1) and p[o]
1 (x; z1, d1) is determined

by the profiles of concentrations from the solution of BVP associated to the boundary con-
dition (BVo) in (4.2). The difference between p[o]

1 (x; z1, d1) and p[i]
1 (x; z1, d1) should be

of order ρ. We are expecting that the channel structure appears in terms of order ρ. This is
indeed true as shown in formula (5.14) for the simple case that was treated in Sect. 5.
(ii) As claimed in Remark 2.3, the above discussion is valid even if the local assumption
(2.2) on the excess potentials is required only in the ionic solution outside the channel. We
now consider PNP with nonlocalmodels for the excess potentials everywhere (assuming the
BVP is well-defined).

It is a reasonable assumption that the nonlocal model for the excess potentials and its local
version differ in terms that are higher order (quadratic) in ionic diameters.

Denote c0 a characteristic concentration (number per length for one-dimensional model)
of the ionic mixture. Let z be the valence and d be the diameter of the tracer.

We will assume the ionic mixture is reasonably dilute near x = 0 and x = 1, and the
permanent charge is small relative to the characteristic concentration.

For clarity of the statement, denote the flux ratio from the one-isotope-setup (Setup 1) by
σ1(ρ, d, Q) and the flux ratio from the two-isotope-setup (Setup 2) by σ2(ρ, d, Q). Then,
one can argue that,

σ1(ρ, d, Q) = − ezζ0V0
(
1 + a1(ρ, c0)(c0d) + a2(ρ, c0)(c0d)2

+ G(ρ, c0)
Q

c0
+ h.o.t.

)
,

σ2(ρ, d, Q) = − ezζ0V0
(
1 + a1(ρ, c0)(c0d) + a2(ρ, c0)(c0d)2
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+ b(ρ, c0)
Q

c0
(c0d)2 + h.o.t.

)
.

Note that the first three terms for both σ1 and σ2 are the same and they DO NOT contain
information of channel structure. Those terms are universal. The term G(ρ, c0)

Q
c0

for σ1 and

the term b(ρ, c0)
Q
c0

(c0d)2 for σ2 contain information of channel structure. They are specific.

The dilute assumption would imply that (c0d)2 � 1 (for one-dimensional PNP).
Therefore, permanent charge Q appears in the zeroth order O(d0)-term in σ1 but it appears

in σ2 until the quadratic order O(d2). We conclude that the one-isotope-setup (Setup 1) is
better than the two-isotope-setup (Setup 2) in capturing the effect of permanent charge in
this situation.

When the ionic mixture is crowded, the above formulas for σ1 and σ2 are not valid and
we would not be able to compare them in any definite terms at this moment.

5 Case Studies for Flux Ratios from the One-Isotope-Setup

In this section, we consider specific flux ratios from the one-isotope-setup (Setup 1) in
special cases to illustrate further some detailed information of channel structure that could
be extracted from flux ratios. We assume

(A1) the permanent charge is given by

Q(x) =
{
0 for x ∈ (0, a) ∪ (b, 1),
Q0 for x ∈ (a, b),

(5.1)

where 0 < a < b < 1 and Q0 is a constant.
Note that the channel length has been normalized to 1 (see below for a dimensionless

rescaling).

5.1 Rescaling of the Model System (2.1)

The main results for this special case rely heavily on the work in [51,56] where the results
are stated in terms of dimensionless variables after a rescaling.We will translate the results in
terms of the original variables but for the reader’s convenience in comparing the statements,
we present a full dimensionless rescaling below.

The following rescaling (see [32]) or its variations have been widely used for convenience
of mathematical analysis. Set

C0 = max
{
sup
x

|Q(x)|, Lk, Rk
}
, D̂0 = sup

x,k
{Dk(x)}, ε̂r = sup

x
εr (x).

Let the channel length be l. Note that, in the previous sections, we have normalized the
length of the channel to l = 1 and will still use this normalization except in the following
rescaling. We make the re-scaling to get dimensionless variables

ε2 = ε̂rε0kBT

e20l
2C0

, D̂k(x) = Dk(x)

D̂0
, Q̂(x) = Q(x)

C0
, ε̂r (x) = εr (x)

ε̂r

φ̂(x) = e0
kBT

φ(x) = ζ0φ(x), ĉk(x) = ck(x)

C0
, Ĵk = Jk

lC0 D̂0
.

(5.2)

123



J Dyn Diff Equat

In terms of the new variables, the BVP (2.1) and (2.2) becomes

ε2

h(x)

d

dx

(
ε̂r (x)h(x)

dφ̂

dx

)
= −

n∑
s=1

zs ĉs − Q̂(x),

1

kBT
D̂k(x)h(x)ĉk

dμk

dx
= − Ĵk,

d Ĵk
dx

= 0,

(5.3)

with boundary conditions at x = 0 and x = 1

φ̂(0) = ζ0V0, ĉk(0) = Lk

C0
; φ̂(1) = 0, ĉk(1) = Rk

C0
. (5.4)

We will assume a special form for the permanent charge and include a hard-sphere poten-
tial. More precisely, we assume

(A2) ε̂r (x) and D̂k(x) = Dk are constants, and the dimensionless quantity ε is small.
(A3) a one-dimensional local hard-sphere potential model is

1

kBT
μLHS
k (x) = − ln

(
1 −

n∑
j=1

d jC0ĉ j (x)
)

+ dk
∑n

j=1 C0ĉ j (x)

1 − ∑n
j=1 d jC0ĉ j (x)

=
n∑
j=1

(d j + dk)C0ĉ j (x) + O(dkd j )

(5.5)

where d j is the diameter of the j th ion species.

The PNP model with local hard-sphere models (5.5) was studied in [54]. The local hard-
sphere model (5.5) is an approximation of the nonlocal hard-sphere model adopted in [50,58]
from [73].

The effects of the permanent charge and ion sizes on flux ratios will be examined. This will
be accomplished by considering the permanent charge effect first and followed by ion size
effect, and then the combination of these two.All these are donewith extra assumptions so that
a regular perturbation approach allowsus to obtain detailed anduseful information.Hopefully,
this perturbation result provides insights and indications for more realistic models and for the
real biological problem. While our analysis is neither general nor perfect, we (immodestly)
believe it significantly more helpful than no discussion at all [37,77] or analysis that assumes
electrical potentials are independent of charge and structure.

In the rest, we consider an ionic mixture of two (n = 2) ion species containing one main
ion species with valence z1 > 0 and diameter d1 and a counter ion species with valence
z2 < 0 and diameter d2. Our assumptions are (A1)-(A3), in addition to Hypotheses 2.1 and
2.2. Set d = d1 and λ = d2/d1. For the local hard-sphere model (5.5) in (A3), in terms of
the original variables, one has, from (2.7),

p1(x; z1, d1) = z1ζ0φ(x) + 1

kBT
μLHS
1 (x)

= z1ζ0φ(x) + d(2c1(x) + (1 + λ)c2(x)) + O(d2).
(5.6)

5.2 Approximations of Specific Flux Ratios

Consider the one-isotope-setup (Setup 1) with one tracer but two sets of boundary conditions.
For one experiment, the tracer is injected from the left boundary with concentrations L [t,i]

1 =
ρ and R[t,i]

1 = 0 that produces the influx J [t,i]
1 . In another experiment, the same tracer is
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injected from the right boundary with concentrations R[t,o]
1 = ρ and L [t,o]

1 = 0 that produces

the efflux J [t,o]
1 .

Our goal here is to provide an explicit approximation formula for the flux ratio. Of course,
this is nearly impossible in general and only approximations are possible. Experimentalists
are mostly concerned with particular cases, particular channels of biological and medical
interest. Each of those cases will allow its own appropriate approximations because each
case will be known in detail experimentally. Thus, the lack of generality is much less serious
than it seems. The tools provided here will allow analysis appropriate for any particular
system that is reasonably well studied. Our approximation has two levels. More precisely,
with the assumption that ε is small, we will only examine the zeroth order in ε term of the flux
ratio. (We will abuse the notion in the following to refer to the zeroth order in ε term of the
flux ratio simply as the flux ratio.) Then the flux ratio depends on ion diameters, permanent
charge, and the injected concentrations of the tracer, and, with the assumption that these
quantities are also small, we are able to obtain an approximate formula of the flux ratio with
explicit leading order terms in these quantities.

The following quantities will be needed to state the results. Recall that h(x) is the cross-
section area of the channel over x , and Q(x) = Q0 for x ∈ (a, b) and Q(x) = 0 for
x /∈ [a, b]. We denote H(x) = ∫ x

0 h−1(s)ds. For ease of notation, we set

s = L1

R1
, α = H(a)

H(1)
, β = H(b)

H(1)
, (5.7)

and define f1(s), f2(V0, s), g1(V0, s, α, β), and g2(s, α, β) as

f1(s) = 2s ln s − s2 + 1

s(s − 1) ln s
,

f2(V0, s) = s + 1

s(z1ζ0V0 + ln s)
− ez1ζ0V0 + 1

sez1ζ0V0 − 1
, (5.8)

g1(V0, s, α, β) = − (β − α)[(α + β − 2αβ)(s − 1)2 + 2s]
(z1 − z2)[(1 − α)s + α]2[(1 − β)s + β]2(ln s)2

(
z2ζ0V0 + ln s

)

+ 2(β − α)(s2 − 1)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β]s(ln s)3
(
z2ζ0V0 + ln s

2

)

+ (β − α)(s + 1)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β](s − 1) ln s
z2ζ0V0

+ (2 ln s + s − 1/s)
[
ln((1 − β)s + β) − ln((1 − α)s + α)

]
(z1 − z2)(s − 1)2(ln s)2

z2ζ0V0,

g2(s, α, β) = s + 1

(z1 − z2)s(s − 1) ln s
ln

(1 − β)s + β

(1 − α)s + α

+ (β − α)(s2 − 1)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β]s(ln s)2 . (5.9)

Denote the boundary concentrations of the main ion species and the counter ion species,
before the tracer is added, by (L1, L2) at x = 0 and (R1, R2) at x = 1, and assume the
electroneutrality conditions among them

z1L1 + z2L2 = 0 and z1R1 + z2R2 = 0. (5.10)

For the electroneutrality boundary conditions, we consider the following two cases.
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5.2.1 Total Electroneutrality Boundary Conditions

The first case is, after the tracer is included, one requires the total electroneutrality bound-
ary conditions among all three ion species; that is, the boundary conditions for the two
experiments are, respectively,

(BVi) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ[i](0) = V0, φ[i](1) = 0,
c[m,i]
1 (0) = L1, c[m,i]

1 (1) = R1, (main ions)

c[t,i]
1 (0) = ρ > 0, c[t,i]

1 (1) = 0, (tracer)

c[i]
2 (0) = L2 − z1

z2
ρ, c[i]

2 (1) = R2; (counterions)

(5.11)

(BVo) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ[o](0) = V0, φ[o](1) = 0,
c[m,o]
1 (0) = L1, c

[m,o]
1 (1) = R1, (main ions)

c[t,o]
1 (0) = 0, c[t,o]

1 (1) = ρ > 0, (tracer)
c[o]
2 (0) = L2, c[o]

2 (1) = R2 − z1
z2

ρ. (counterions)

(5.12)

That is, for (BVi), one adds the extra amount −z1ρ/z2 of counter ion concentration at x = 0
to compensate the inclusion of the tracer concentration ρ at x = 0; and, for (BVo), one adds
the extra amount−z1ρ/z2 of counter ion concentration at x = 1 to compensate the inclusion
of the tracer concentration ρ at x = 1. Therefore,

For (BVi): z1(L1 + ρ) + z2(L2 − z1ρ/z2) = 0 and z1R1 + z2R2 = 0,

For (BVo): z1L1 + z2L2 = 0 and z1(R1 + ρ) + z2(R2 − z1ρ/z2) = 0.
(5.13)

Then we have

Theorem 5.1 Assume d, ρ, and |Q0| are small. The flux ratio between the influx J [t,i]
1 asso-

ciated to the boundary condition (5.11) and the efflux J [t,o]
1 associated to the boundary

condition (5.12) is, with s = L1/R1,

J [t,i]
1

J [t,o]
1

= − ez1ζ0V0
(
1 + (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

− ez1ζ0V0 ( f1(s) + f2(V0, s))
ρ

R1
− ez1ζ0V0g1(V0, s, α, β)

Q0

R1

ρ

R1

+ O(ρ2, ρd, d2, ρQ2
0, ρ

2Q0, ρdQ0),

(5.14)

where α and β are in (5.7), f1 and f2 are in (5.8), and g1 are in (5.9).

Formula (5.14) will be established in “Appendix” (Sect. 7). The flux ratio is specific due to
the third term involving the key parameters Q0, α and β of the prescribed channel structure
(see (5.1) and (5.7)).

5.2.2 Partial Electroneutrality Boundary Conditions

The other case is to simply keep the concentrations of the main ion species and the counter
ion species for both experiments after the tracer is included; that is, the boundary conditions
are

(BVi) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ[i](0) = V0, φ[i](1) = 0,
c[m,i]
1 (0) = L1, c[m,i]

1 (1) = R1, (main ions)

c[t,i]
1 (0) = ρ > 0, c[t,i]

1 (1) = 0, (tracer)

c[i]
2 (0) = L2 > 0, c[i]

2 (1) = R2 > 0. (counterions)

(5.15)
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(BVo) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ[o](0) = V0, φ[o](1) = 0,
c[m,o]
1 (0) = L1 > 0, c[m,o]

1 (1) = R1 > 0, (main ions)

c[t,o]
1 (0) = 0, c[t,o]

1 (1) = ρ > 0, (tracer)

c[o]
2 (0) = L2 > 0, c[o]

2 (1) = R2 > 0. (counterions)

(5.16)

In this case, one has

For (BVi): z1(L1 + ρ) + z2L2 = z1ρ ≈ 0 and z1R1 + z2R2 = 0,

For (BVo): z1L1 + z2L2 = 0 and z1(R1 + ρ) + z2R2 = z1ρ ≈ 0.
(5.17)

Thus, one only has approximate electroneutrality boundary conditions after the tracer is
added. But, since the amounts of tracers injected are small and the net amounts of charge
resulting from approximate electroneutrality are exceedingly small, this approximate elec-
troneutrality boundary condition is realistic and more practical too.

Theorem 5.2 Assume d, ρ, and |Q0| are small. The flux ratio between the influx J [t,i]
1 asso-

ciated to the boundary condition (5.15) and the efflux J [t,o]
1 associated to the boundary

condition (5.16) is, with s = L1/R1,

J [t,i]
1

J [t,o]
1

= − ez1ζ0V0
(
1 + (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

− ez1ζ0V0
( −z2
z1 − z2

f1(s) + f2(V0, s)

)
ρ

R1

− ez1ζ0V0
−z2

z1 − z2

(
g1(V0, s, α, β) + g2(s, α, β)

)Q0

R1

ρ

R1

+ O(ρ2, ρd, d2, ρQ2
0, ρ

2Q0, ρdQ0),

(5.18)

where α and β are in (5.7), f1 and f2 are in (5.8), and g1 and g2 are in (5.9).

The derivation of formula (5.18) will also be given in “Appendix” (Sect. 7).

5.3 Comments on Formulas (5.14) and (5.18)

Thederivation of formulas (5.14) and (5.18) inSect. 7 is rather complicated. Togain additional
confidence in the correctness of the formula, we have cross-checked it using a symmetry of
the problem, that is, the result should be symmetric if one swaps the channel between the
left end and the right end. More precisely, if we set x̂ = 1 − x , then x = 0 becomes x̂ = 1,
and x = 1 becomes x̂ = 0. If we denote the relevant quantities for the new situation with
an overhat, then L̂ j = R j , R̂ j = L j , V̂0 = −V0, ŝ = L̂1/R̂1 = 1/s, Ĵ [t,i]

1 = −J [t,o]
1 and

Ĵ [t,o]
1 = −J [t,i]

1 , etc. Therefore, one should have

Ĵ [t,i]
1

Ĵ [t,o]
1

= J [t,o]
1

J [t,i]
1

.

The latter is equivalent to, up to the leading orders in (5.14) and (5.18), the relations

f1(1/s) = −s f1(s), f2(−V0, 1/s) = −s f2(V0, s),

g1(−V0, 1/s, 1 − β, 1 − α) = −s2g1(V0, s, α, β),

g2(1/s, 1 − β, 1 − α) = −s2g2(s, α, β)
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where f1, f2, g1 and g2 are defined in (5.8) and (5.9). We have verified them all!
For ideal ionic solutions, formulas (5.14) and (5.18) reduce to, for the total electroneutrality

boundary conditions (5.11) and (5.12),

J [t,i]
1

J [t,o]
1

= −ez1ζ0V0 − ez1ζ0V0
(
f1(s) + f2(V0, s) + g1(V0, s, α, β)

Q0

R1

)
ρ

R1

+ O(ρ2, ρQ2
0),

(5.19)

and, for the approximate electroneutrality boundary conditions (5.15) and (5.16),

J [t,i]
1

J [t,o]
1

= −ez1ζ0V0 − ez1ζ0V0
( −z2
z1 − z2

f1(s) + f2(V0, s)

)
ρ

R1

− ez1ζ0V0
−z2

z1 − z2

(
g1(V0, s, α, β) + g2(s, α, β)

)Q0

R1

ρ

R1
+ O(ρ2, ρQ2

0).

(5.20)

It is noted that, even for ideal ionic solutions, the flux ratio from the one-isotope-setup
(Setup 1) is specific and captures some properties of the channel structure.
Implications of formula (5.14) The following properties of f1, f2, g1, and g2 can be estab-
lished easily and will be used in the discussions below.

Lemma 5.3 For 0 < s < 1, f1(s) > 0, for s > 1, f1(s) < 0,

lim
s→0+ f1(s) = +∞, lim

s→1
f1(s) = lim

s→∞ f1(s) = 0, lim
z1ζ0V0→− ln s

f2(V0, s) = s − 1

2s
,

lim
s→1

g1(V0, s, α, β) = − z2ζ0V0(β − α)

6(z1 − z2)

(
(2α + 2β − 1)2 + 4[(α − 1)2 + (β − 1)2 − 1])

− 2(β − α)(α + β − 1)

z1 − z2
,

lim
s→1

g2(s, α, β) = − (β − α)(α + β − 1)

z1 − z2
. (5.21)

We discuss some indications of each of the three leading terms on the right-hand side of
the formula (5.14). Similar comments apply to formula (5.18).
(a) The first term

− ez1ζ0V0
(
1 + (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

represents directly the asymmetry of the electrochemical potentials (the concentration and
the electrical ‘driving force’ using the language of the laboratory, introduced by Hodgkin
and Huxley) at the two boundary points x = 0 and x = 1 (independent of the concentration
ρ of the tracer). In particular, as ρ → 0 in (5.14),

lim
ρ→0

J [t,i]
1

J [t,o]
1

= − ez1ζ0V0 − ez1ζ0V0
(
2(L1 − R1) + (1 + λ)(L2 − R2)

)
d + O(d2).

Note that, the value for the limit of the flux ratio, NOT equaling to −1 in general, reflects the
asymmetry of the boundary conditions. The effects caused by permanent charge disappears
in the ρ → 0 limit. A direct justification (as an alternative to a consequence of the formula
(5.14)) of the latter is given in Remark 7.1. Remark 7.1 also explains why there is no dQ0

term in the approximation formula (5.14).
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(b) In formula (5.14), the term

−ez1ζ0V0( f1(s) + f2(V0, s))
ρ

R1

represents the interaction between the tracer and the asymmetry of the boundary electro-
chemical potentials.
(c) In formula (5.14), the term

−ez1ζ0V0g1(V0, s, α, β)
ρQ0

R2
1

contains the interaction between the tracer, the asymmetry of boundary electrochemical
potentials, and the permanent charge (in this simplified setting).
(d) If the boundary conditions are symmetric, that is, V0 = 0, L1 = R1 and L2 = R2, then,
from Lemma 5.3, formula (5.14) reduces to

J [t,i]
1

J [t,o]
1

= −1 + 2(β − α)(α + β − 1)

z1 − z2

Q0

R1

ρ

R1
+ O(ρ2, ρQ2

0).

In this case, the effect of permanent charge on the flux ratio is particularly captured.
Flux ratio and the flux ratio exponent n′ Next, we discuss the implications of formula (5.14)
for a relation between the flux ratio with the flux ratio exponent n′ introduced byHodgkin and
Kenyes in (1.3), under further assumptions. Similar comment applies to the term in formula
(5.18).

Recall, from (1.3) with L [t,i]
1 = R[t,o]

1 = ρ, that

J [t,i]
1

J [t,o]
1

= −ez1ζ0V0n
′
.

Therefore, the flux ratio exponent n′ is given by, ignoring the higher order terms,

n′ = 1

z1ζ0V0
ln

(
− J [t,i]

1

J [t,o]
1

)

≈ 1 + g1(V0, s, α, β)Q0/R1 + f1(s) + f2(V0, s)

z1ζ0V0

ρ

R1

+ 2d1(L1 − R1) + (d1 + d2)(L2 − R2)

z1ζ0V0
.

In particular, if the concentrations L j ’s and R j ’s at the boundaries are such that 2d1(L1 −
R1) + (d1 + d2)(L2 − R2) can be ignored, then one has

n′ ≈1 + g1(V0, s, α, β)Q0/R1 + f1(s) + f2(V0, s)

z1ζ0V0

ρ

R1
.

Since the above formula is obtained under the assumption that Q0 is small and the ionic
mixture is reasonably dilute, we cannot apply it to large Q0. BUT, if we pretend that the
formula were true for large Q0, then g1(V0, s, α, β)Q0/R1 dominates f1(s) + f2(V0, s),
and hence,

n′ ≈ 1 + g1(V0, s, α, β)Q0

z1ζ0V0

ρ

R2
1

,
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which implies, when g1(V0, s, α, β) �= 0,

n′ > 1 if
g1(V0, s, α, β)

z1ζ0V0
Q0 > 0 and n′ < 1 if

g1(V0, s, α, β)

z1ζ0V0
Q0 < 0;

that is, n′ > 1 for Q0 with one sign and n′ < 1 for Q0 with the opposite sign.
Detecting (α, β, Q0) using (5.14) Assume the permanent charge has the general structure
characterized by (α, β, Q0). We will propose a procedure for determining these quantities.
Rearrange formula (5.14) to get

e−z1ζ0V0
J [t,i]
1

J [t,o]
1

+ 1 +
(
2(L1 − R1) + (1 + λ)(L2 − R2)

)
d

+ ( f1(s) + f2(V0, s))
ρ

R1

= −g1(V0, s, α, β)
ρQ0

(R1)2
+ O(ρ2, ρd, d2, ρQ2

0, ρ
2Q0, ρdQ0).

All terms on the left-hand side can be determined either by experimental setup or by mea-
surement. Under the assumption, the first term on the right-hand side is the leading term
that contains information on net or overall effect of permanent charge and channel geometry
through its dependence on Q0 and (α, β). In general, three choices of (V0, L1, R1) lead to
three equations for (Q0, α, β) that could determine the values of Q0, α and β.

6 Discussion

As an extremely important experimental method in studying of channel properties, flux ratios
have been widely applied [37,77]. Their dependence on physical parameters is subtle and is
dictated by details of experimental designs. To emphasize the importance of the subtleness
of flux ratios, we classify them into two main classes: universal and specific. Universal flux
ratios are those independent of channel structures and specific flux ratios contain information
of channel structures.

In this paper, we have examined two applications of flux ratios: (i) proportionality constant
of the flux of a main ion species and the flux of its tracer; (ii) flux ratios of tracers associated
to two experimental setups.

For the first topic, it is shown that, based on analysis of PNP type models including
local excess potentials in Sect. 3, the proportionality constant of the flux of a main ion
species and the flux of its tracer is universal and can be completely determined by boundary
conditions, and hence, one can estimate the flux of the main ion species from that of its tracer.
Furthermore, an experimental design is proposed (Remark 3.3) based on the analysis so that
the proportionality constant can be determined in a simple and precise way even for PNP
models with nonlocal models of excess potentials.

For the second topic, based on analysis of PNP type models with local excess potentials
in Sect. 4, we examined two popular experimental designs for measuring flux ratios of
tracers. We showed that the two-isotope-setup (Setup 2) yields universal flux ratios that do
not reveal channel structure but the one-isotope-setup (Setup 1) is specific even with dilute
ionic mixtures. As claimed in Remark 2.3, it is not hard to see that the local nature in
Hypothesis 2.2 can be replaced by assuming the hypothesis only at the bathes as long as the
BVP is well-posed.
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Presumably, if one takes PNP with nonlocal excess potential models (inside and outside
of the channel), then the flux ratios for both setups might capture information on channel
structures. However, at this moment, it is not clear how different they are, and this requires
a serious investigation of PNP systems with nonlocal excess potential models. To our best
knowledge, PNP including nonlocal excess potential models has not been mathematically
analyzed. In fact, the well-posedness issue for such a model is not clear due to its infinite
number of freedoms; that is, what should be “the boundary conditions” in order for the
boundary value problem of a PNP model with nonlocal excess potentials to have a unique or
finite many solutions? An initial effort is taken in [75] for a simplified setup and hope this
activity can stimulate further investigations on PNP model with nonlocal excess potentials.

Acknowledgements We thank the anonymous reviewer for his/her invaluable comments that help improve
the manuscript. This work is partially supported by the University of Kansas GRF (Grant No. #2301055) and
NSF of China (Grant Nos. 11322105 and 11671071).

7 Appendix: Derivations of Results in Sect. 5.2

In this section, we provide a derivation of formula (5.14) in Theorem 5.1 and formula (5.18)
in Theorem 5.2 from the basic formula (4.3) in Theorem 4.1 for flux ratios from the one-
isotope-setup (Setup 1). The derivation for both formulas are similar so we will provide
the detailed derivation for formula (5.14) in Sect. 7.2 and comment on differences in the
derivation for formula (5.18) in Sect. 7.3.

7.1 A Reformulation of (4.3) for Cases in Sect. 5.2

We will first recall the setup of the case specified in Sect. 5.2 and give a new form of formula
(4.3) for the special case, which is convenient for us to apply previously established results
in late part.

Recall that, for the one-isotope-setup (Setup 1), one tracer is used for two experimental
settings with two different sets of boundary conditions for tracers. For one experiment, the
tracer is injected from the left boundarywith concentration L [t,i]

1 = ρ and zero right boundary

concentration R[t,i]
1 = 0 that produces the influx J [t,i]

1 . In another experiment, the same tracer

is injected from the right boundary with concentration R[t,o]
1 = ρ and zero left boundary

concentration L [t,o]
1 = 0 that produces the efflux J [t,o]

1 .

Formula (4.3) in Theorem 4.1 for the flux ratio between J [t,i]
1 and J [t,o]

1 is

J [t,i]
1

J [t,o]
1

= − L [t,i]
1 ep

[i]
1 (0;z1,d1)

R[t,o]
1 ep

[o]
1 (1;z1,d1)

∫ 1

0

ep
[o]
1 (x;z1,d1)

D1(x)h(x)
dx

( ∫ 1

0

ep
[i]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1
, (7.1)

where p[i]
1 (x; z1, d1) defined in (2.7) is determined by the profiles of concentrations from the

solution of BVP associated with the boundary condition (BVi), and p[o]
1 (x; z1, d1) defined

in (2.7) is determined by the profiles of concentrations from the solution of BVP associated
with the boundary condition (BVo).

Remark 7.1 Note that, as ρ → 0, one has p[i]
1 (x; z1, d1) = p[o]

1 (x; z1, d1), and hence,

lim
ρ→0

J [t,i]
1

J [t,o]
1

= − L [t,i]
1 ep

[i]
1 (0;z1,d1)

R[t,o]
1 ep

[o]
1 (1;z1,d1)

;
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in particular, this limit does not contain information on permanent charge Q. An technical
implication is that all terms involving Q0 in the approximation of J [t,i]

1 /J [t,o]
1 should have

a factor of ρ. This explains why there is no dQ0-term in the leading order expansions of
J [t,i]
1 /J [t,o]

1 in formula (5.14) in Theorem 5.1.

For the case studied in Sect. 5.2, we are able to obtain an approximation for the flux ratio,
up to leading orders, explicitly in terms of given quantities of the problem.

It follows from (3.1) in Proposition 3.1 that

( ∫ 1

0

ep
[i]
1 (x;z1,d1)

D1(x)h(x)
dx

)−1 = J [i]
1

(L1 + L [t,i]
1 )ep

[i]
1 (0;z1,d1) − R1ep

[i]
1 (1;z1,d1)

,

where J [i]
1 = J [m,i]

1 + J [t,i]
1 is the sum of the fluxes of the main ion species and its tracer.

Similarly,

∫ 1

0

ep
[o]
1 (x;z1,d1)

D1(x)h(x)
dx = L1ep

[o]
1 (0;z1,d1) − (R1 + R[t,o]

1 )ep
[o]
1 (1;z1,d1)

J [o]
1

,

where J [o]
1 = J [m,o]

1 + J [t,o]
1 is the sum of the fluxes of the main ion species and its tracer.

Therefore,

J [t,i]
1

J [t,o]
1

= −(I ) · (I I ) · J [i]
1

J [o]
1

(7.2)

where the factors (I ) and (I I ) are given by

(I ) = L [t,i]
1 ep

[i]
1 (0;z1,d1)

R[t,o]
1 ep

[o]
1 (1;z1,d1)

,

(I I ) = L1ep
[o]
1 (0;z1,d1) − (R1 + R[t,o]

1 )ep
[o]
1 (1;z1,d1)

(L1 + L [t,i]
1 )ep

[i]
1 (0;z1,d1) − R1ep

[i]
1 (1;z1,d1)

. (7.3)

The factors (I ) and (I I ) on the right-hand side of (7.2) are determined by boundary
conditions and are independent of the permanent charge. We will first determine these two
factors and determine the last factor J [i]

1 /J [o]
1 afterwards.

7.2 Derivation of Formula (5.14)

For this formula, the electroneutrality boundary conditions (5.13) are assumed to hold among
all ion species including the tracer. It follows from (5.6) that, for the boundary condition
associated to (BVi) in (5.13),

p[i]
1 (0; z1, d1) = z1ζ0V0 + d

(
2(L1 + ρ) + (1 + λ)(L2 − z1ρ/z2)

)
+ O(d2),

= z1ζ0V0 + d
(
2L1 + (1 + λ)L2

)
+ O(d2, dρ),

p[i]
1 (1; z1, d1) = d

(
2R1 + (1 + λ)R2

)
+ O(d2);

and, for the boundary condition associated to (BVo) in (5.13),

p[o]
1 (0; z1, d1) = z1ζ0V0 + d(2L1 + (1 + λ)L2) + O(d2),
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p[o]
1 (1; z1, d1) = d(2(R1 + ρ) + (1 + λ)(R2 − z1ρ/z2)) + O(d2)

= d(2R1 + (1 + λ)R2) + O(d2, dρ).

Thus, the factor (I ) on the right-hand side of (7.2) is

(I ) = ep
[i]
1 (0;z1,d1)−p[o]

1 (1,z1,d1)

= ez1ζ0V0
(
1 + (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

+ O(d2, dρ),
(7.4)

and the factor (I I ) on the right-hand side of (7.2) is, with s = L1/R1,

(I I ) = L1ez1ζ0V0 − (R1 + ρ) + [
(2L2

1 + (1 + λ)L1L2)ez1ζ0V0 − (2R2
1 + (1 + λ)R1R2)

]
d

(L1 + ρ)ez1ζ0V0 − R1 + [
(2L2

1 + (1 + λ)L1L2)ez1ζ0V0 − (2R2
1 + (1 + λ)R1R2)

]
d

+ O(ρ2, ρd, d2)

= 1 − ez1ζ0V0 + 1

sez1ζ0V0 − 1

ρ

R1
+ O(ρ2, ρd, d2). (7.5)

It remains to approximate the factor J [i]
1 /J [o]

1 in (7.2) that depends on the permanent
charge Q and hence the full profile of the electric potential and the ion concentrations. Its
approximation is complicated even for the simple case we considered in Sect. 5. We start
with a general expression

J [i]
1

J [o]
1

= S0(ρ) + S1(ρ)d + S2(ρ)Q0 + O(d2, ρdQ0, ρQ
2
0),

and determine the quantities Sk(ρ)’s for k = 0, 1, 2. In particular, we are interested in S0(ρ)

up to O(ρ) order, S1(ρ) = S1(0)+O(ρ) due to the factor d in S1(ρ)d , and S2(ρ) up to O(ρ).
The reason for the latter is, from Remark 7.1, any term involving Q0 should have a factor ρ.
The advantage of this expression is as follows. One can assume the ionic solution is ideal to
get the term S0(ρ) + S2(ρ)Q0 (Sect. 7.2.1) and then assume the ionic solution is nonideal
but the permanent charge is zero to get S0(ρ) + S1(ρ)d (Sect. 7.2.2). The superposition of
them then provides the approximation for J [i]

1 /J [o]
1 .

7.2.1 Case with Ideal Ionic Solution for S0(ρ) + S2(ρ)Q0

We will apply results from [51] for the classical PNP for this case.
It follows from results in [51] (displays (4.4) and (4.5) in [51]) that the influx of the tracer

for the boundary concentrations in (BVi) is

J [i]
1 =J [i]

10 + J [i]
11 Q0 + O(Q2

0), (7.6)

where

J [i]
10 = D1(L1 + ρ − R1)

H(1)(ln(L1 + ρ) − ln R1)

μ
δ,i
1

kBT
,

J [i]
11 = D1A[i](z2(1 − B[i])ζ0V0 + ln(L1 + ρ) − ln R1)

(z1 − z2)H(1)
(
ln(L1 + ρ) − ln R1

)2 μ
δ,i
1

kBT
,

(7.7)

and

1

kBT
μ

δ,i
1 := 1

kBT

(
μ[i](0) − μ[i](1)

)
= z1ζ0V0 + ln(L1 + ρ) − ln R1, (7.8)
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is the difference between the boundary electrochemical potentials for (BVi), and

A[i] = − (β − α)(L1 + ρ − R1)
2

((1 − α)(L1 + ρ) + αR1)((1 − β)(L1 + ρ) + βR1) ln
L1+ρ
R1

,

B[i] = 1

A[i] ln
(1 − β)(L1 + ρ) + βR1

(1 − α)(L1 + ρ) + αR1
.

(7.9)

Similarly, the efflux of the tracer for the boundary concentrations in (BVo) is

J [o]
1 = J [o]

10 + J [o]
11 Q0 + O(Q2

0), (7.10)

where

J [o]
10 = D1(L1 − (R1 + ρ))

H(1)(ln L1 − ln(R1 + ρ))

μ
δ,o
1

kBT
,

J [o]
11 = D1A[o](z2(1 − B[o])ζ0V0 + ln L1 − ln(R1 + ρ))

(z1 − z2)H(1)
(
ln L1 − ln(R1 + ρ)

)2 μ
δ,o
1

kBT
,

(7.11)

and

1

kBT
μ

δ,o
1 := 1

kBT

(
μ[o](0) − μ[o](1)

)
= z1ζ0V0 + ln L1 − ln(R1 + ρ) (7.12)

is the differences between the boundary electrochemical potentials (BVo), and

A[o] = − (β − α)(L1 − R1 − ρ)2

((1 − α)L1 + α(R1 + ρ))((1 − β)L1 + β(R1 + ρ)) ln L1
R1+ρ

,

B[o] = 1

A[o] ln
(1 − β)L1 + β(R1 + ρ)

(1 − α)L1 + α(R1 + ρ)
.

(7.13)

Therefore,

J [i]
1

J [o]
1

= J [i]
10 + J [i]

11 Q0

J [o]
10 + J [o]

11 Q0
+ O(Q2

0)

= F0

(
1 + F1

F0
Q0

)
+ O(Q2

0),

(7.14)

where

F0 = J [i]
10

J [o]
10

= L1 + ρ − R1

L1 − (R1 + ρ)

ln L1 − ln(R1 + ρ)

ln(L1 + ρ) − ln R1

μ
δ,i
1

μ
δ,o
1

,

F1
F0

= J [i]
11

J [i]
10

− J [o]
11

J [o]
10

=
A[i]

(
z2(1 − B[i])ζ0V0 + ln(L1 + ρ) − ln R1

)
(z1 − z2)(L1 + ρ − R1)

(
ln(L1 + ρ) − ln R1

)

−
A[o]

(
z2(1 − B[o])ζ0V0 + ln L1 − ln(R1 + ρ)

)
(z1 − z2)(L1 − (R1 + ρ))

(
ln L1 − ln(R1 + ρ)

) .

(7.15)

Lemma 7.2 With s = L1/R1, one has

F0 = 1 +
(
f1(s) + s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1
+ O(ρ2),
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where f1(s) is defined in (5.8), and

F1
F0

= g1(V0, s, α, β)
ρ

R2
1

+ O(ρ2),

where g1(V0, s, α, β) is given in (5.9). As a consequence,

S0(ρ) = 1 +
(
f1(s) + s + 1

s(z1ζ0V0 + ln s)

) ρ

R1
and S2(ρ) = g1(V0, s, α, β)

ρ

R2
1

. (7.16)

Proof For the term F0, it follows (7.15), (7.8) and (7.12) that

F0 = s − 1 + ρ
R1

s − 1 − ρ
R1

· ln s − ln(1 + ρ
R1

)

ln s + ln(1 + ρ
sR1

)

z1ζ0V0 + ln(s + ρ
R1

)

z1ζ0V0 + ln s − ln(1 + ρ
R1

)
,

= 1 +
(
2s ln s − s2 + 1

s(s − 1) ln s
+ s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1
+ O(ρ2),

which is the claimed formula for F0.
The approximate formula for F1/F0 is lengthy but otherwise straightforward.
With s = L1/R1 and L [t,i]

1 = R[t,o]
1 = ρ, it follows from (7.15) that

F1
F0

= z2(A[i] − A[i]B[i])ζ0V0
(z1 − z2)R1(s − 1 + ρ/R1)

(
ln s + ρ/(sR1)

)

+ A[i]

(z1 − z2)R1(s − 1 + ρ/R1)

− z2(A[o] − A[o]B[o])ζ0V0
(z1 − z2)R1(s − 1 − ρ/R1)

(
ln s − ρ/R1

)

− A[o]

(z1 − z2)R1(s − 1 − ρ/R1)
+ O(ρ2).

Next, we fix A[i], B[i], A[o] and B[o], and expand the above in ρ to get

F1
F0

= z2ζ0V0(A[i] − A[i]B[i] − A[o] + A[o]B[o])
(z1 − z2)R1(s − 1) ln s

+ (s − 1)(A[i] − A[o])
(z1 − z2)R1(s − 1)2

− z2ζ0V0[(A[i] − A[i]B[i])(ln s + 1 − 1/s) + (A[o] − A[o]B[o])(ln s + s − 1)]
(z1 − z2)(s − 1)2(ln s)2

ρ

R2
1

− A[i] + A[o]

(z1 − z2)(s − 1)2
ρ

R2
1

+ O(ρ2).

Now, we expand A[i], A[o], B[i] and B[o] defined in (7.9) and (7.13) in ρ as

A[i] = A[i]
0 + A[i]

1
ρ

R1
+ O(ρ2),

A[o] = A[o]
0 + A[o]

1
ρ

R1
+ O(ρ2),

A[i]B[i] = (A[i]B[i])0 + (A[i]B[i])1
ρ

R1
+ O(ρ2),
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A[o]B[o] = (A[o]B[o])0 + (A[o]B[o])1
ρ

R1
+ O(ρ2).

It follows directly that

A[i]
0 = A[o]

0 = −(β − α)
(s − 1)2

[(1 − α)s + α][(1 − β)s + β] ln s ,

A[i]
1 = −(β − α)

2(s − 1)

[(1 − α)s + α][(1 − β)s + β] ln s
+ (β − α)

(s − 1)2[2(1 − α)(1 − β)s + α + β − 2αβ]
[(1 − α)s + α]2[(1 − β)s + β]2 ln s

+ (β − α)
(s − 1)2

[(1 − α)s + α][(1 − β)s + β]s(ln s)2 ,

A[o]
1 = (β − α)

2(s − 1)

[(1 − α)s + α][(1 − β)s + β] ln s
+ (β − α)

(s − 1)2[(α + β − 2αβ)s + 2αβ]
[(1 − α)s + α]2[(1 − β)s + β]2 ln s

− (β − α)
(s − 1)2

[(1 − α)s + α][(1 − β)t + β](ln s)2 ,

(A[i]B[i])0 = (A[o]B[o])0 = ln
(1 − β)s + β

(1 − α)s + α
,

(A[i]B[i])1 = 1 − β

(1 − β)s + β
− 1 − α

(1 − α)s + α
,

(A[o]B[o])1 = β

(1 − β)s + β
− α

(1 − α)s + α
.

(7.17)

In particular,

A[i]
0 − A[o]

0 = 0, (A[i]B[i])0 − (A[o]B[o])0 = 0,

A[i]
0 − (A[i]B[i])0 = − (β − α)(s − 1)2

[(1 − α)s + α][(1 − β)s + β] ln s − ln
(1 − β)s + β

(1 − α)s + α
,

A[i]
1 − A[o]

1 = − 4(β − α)(s − 1)

[(1 − α)s + α][(1 − β)s + β] ln s
+ (β − α)(s − 1)2[(2 − 3α − 3β + 4αβ)s + α + β − 4αβ]

[(1 − α)s + α]2[(1 − β)s + β]2 ln s
+ (β − α)(s + 1)(s − 1)2

[(1 − α)s + α][(1 − β)s + β]s(ln s)2 ,

(A[i]B[i])1 − (A[o]B[o])1 = 1 − 2β

(1 − β)s + β
− 1 − 2α

(1 − α)s + α
.

Combining the above estimates, one has

F1
F0

= − 4(β − α)z2ζ0V0
(z1 − z2)[(1 − α)s + α][(1 − β)s + β](ln s)2

ρ

(R1)2

+ (β − α)z2ζ0V0(s − 1)[(2 − 3α − 3β + 4αβ)s + α + β − 4αβ]
(z1 − z2)[(1 − α)s + α]2[(1 − β)s + β]2(ln s)2

ρ

(R1)2

+ (β − α)z2ζ0V0(s + 1)(s − 1)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β]s(ln s)3
ρ

(R1)2
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− z2ζ0V0
(z1 − z2)(s − 1) ln s

[ 1 − 2β

(1 − β)s + β
− 1 − 2α

(1 − α)s + α

] ρ

(R1)2

+ (β − α)z2ζ0V0(2 ln s + s − 1/s)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β](ln s)3
ρ

(R1)2

+ z2ζ0V0(2 ln s + s − 1/s)

(z1 − z2)(s − 1)2(ln s)2
ln

(1 − β)s + β

(1 − α)s + α

ρ

(R1)2

− (β − α)[(α + β − 2αβ)(s − 1)2 + 2s]
(z1 − z2)[(1 − α)s + α]2[(1 − β)s + β]2 ln s

ρ

(R1)2

+ (β − α)(s + 1)(s − 1)

(z1 − z2)[(1 − α)s + α][(1 − β)s + β]s(ln s)2
ρ

(R1)2
+ O(ρ2).

The fifth term above can be split and combine with the first and the third terms to get the
formula for F1/F0 claimed in the statement of the lemma. ��

7.2.2 A Case with a Hard-Sphere Component for S0(ρ) + S1(ρ)d

In this section, we examine the flux ratio for PNP models with a hard-sphere component
(point-charge with volume exclusion) and assume zero permanent charge.

Recall the local hard-sphere potential (5.5)

1

kBT
μLHS
k (x) = − ln

(
1 −

n∑
j=1

d j c j (x)
)

+ dk
∑n

j=1 c j (x)

1 − ∑n
j=1 d j c j (x)

=
n∑
j=1

(d j + dk)c j (x) + O(dkd j )

where d j is the diameter of the j th ion species.
For two ion species with diameters d1 and d2, set d = d1 and d2 = λd , and expand the

fluxes as Jk = Jk0 + Jk1d + O(d2), k = 1, 2. As observed in [29], the Nernst–Planck equa-
tions imply that the flux Ji is proportional to the transmembrane electrochemical potential
μδ
i = μi (0) − μi (1) where

1

kBT
μδ
1 = z1ζ0V0 + ln L1 − ln R1

+ 2z2 − (1 + λ)z1
z2

(L1 − R1)d + O(d2),

1

kBT
μδ
2 = z2ζ0V0 + ln L2 − ln R2

− (1 + λ)z2 − 2λz1
z1

(L2 − R2)d + O(d2).

(7.18)

It follows from results in [50,54], for example, from Corollary 3.6 in [54] (with different
but equivalent expressions) that the flux J [i]

1 is given by

J [i]
1 =

(
1 + 2(λz1 − z2)

z1z2
w

[i]
1 d

)
D1w

[i]
0

z1H(1)

μ
δ,i
1

kBT
+ O(d2),

where, with ρ = L [t,i]
1 = R[t,o]

1 ,

1

kBT
μ

δ,i
1 = z1ζ0V0 + ln(L1 + ρ) − ln R1
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+ 2z2−(1+λ)z1
z2

(L1 + ρ − R1)d + O(d2)

is the difference between the boundary electrochemical potentials for (BVi), and

w
[i]
0 = z1(L1 + ρ − R1)

ln(L1 + ρ) − ln R1
and

w
[i]
1 = z1(L1 + ρ − R1)

ln(L1 + ρ) − ln R1
− z1(L1 + ρ + R1)

2
.

Similarly, the flux J [o]
1 is given by

J [o]
1 =

(
1 + 2(λz1 − z2)

z1z2
w

[o]
1 d

)
D1w

[o]
0

z1H(1)

μ
δ,o
1

kBT
+ O(d2),

where

1

kBT
μ

δ,o
1 = z1ζ0V0 + ln L1 − ln(R1 + ρ)

+2z2 − (1 + λ)z1
z2

(L1 − R1 − ρ)d + O(d2)

is the difference between the boundary electrochemical potentials for (BVo), and

w
[o]
0 = z1(L1 − R1 − ρ)

ln L1 − ln(R1 + ρ)
and

w
[o]
1 = z1(L1 − R1 − ρ)

ln L1 − ln(R1 + ρ)
− z1(L1 + R1 + ρ)

2
.

Recall that s = L1/R1. One gets

1

kBT
μ

δ,i
1 = z1ζ0V0 + ln s + ρ

sR1
+ 2z2 − (1 + λ)z1

z2
(s − 1)R1d + O(ρd, d2),

w
[i]
0 = s − 1

ln s
z1R1 + s ln s − (s − 1)

s(ln s)2
z1ρ + O(ρ2),

w
[i]
1 = s − 1

ln s
z1R1 − s + 1

2
z1R1 +

(
s ln s − (s − 1)

s(ln s)2
− 1

2

)
z1ρ + O(ρ2);

1

kBT
μ

δ,o
1 = z1ζ0V0 + ln s − ρ

R1
+ 2z2 − (1 + λ)z1

z2
(s − 1)R1d + O(ρd, d2),

w
[o]
0 = s − 1

ln s
z1R1 + s − 1 − ln s

(ln s)2
z1ρ + O(ρ2),

w
[o]
1 = s − 1

ln s
z1R1 − s + 1

2
z1R1 +

(
s − 1 − ln s

(ln s)2
− 1

2

)
z1ρ + O(ρ2).

Thus,

μ
δ,i
1

μ
δ,o
1

= 1 + s + 1

s(z1ζ0V0 + ln s)

ρ

R1
+ O(ρ2, ρd, d2),

w
[i]
0

w
[o]
0

= 1 + 2s ln s − s2 + 1

s(s − 1) ln s

ρ

R1
+ O(ρ2),

w
[i]
1 − w

[o]
1 = 2s ln s − s2 + 1

s(ln s)2
z1ρ + O(ρ2).

123



J Dyn Diff Equat

Therefore, the ratio between the fluxes J [i]
1 and J [o]

1 is given by

J [i]
1

J [o]
1

= z1z2 + 2(λz1 − z2)w
[i]
1 d

z1z2 + 2(λz1 − z2)w
[o]
1 d

· w
[i]
0

w
[o]
0

μ
δ,i
1

μ
δ,o
1

+ O(d2)

=
(
1 + 2(λz1 − z2)

z1z2
(w

[i]
1 − w

[o]
1 )d

)
w

[i]
0

w
[o]
0

μ
δ,i
1

μ
δ,o
1

+ O(d2)

= 1 +
(
2s ln s − s2 + 1

s(s − 1) ln s
+ s + 1

t (z1ζ0V0 + ln s)

)
ρ

R1
+ O(ρ2, ρd, d2).

As a consequence,

S0(ρ) = 1 +
(
2s ln s − s2 + 1

s(s − 1) ln s
+ s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1
and S1(0) = 0. (7.19)

Note that S0(ρ) obtained here agrees with that in (7.16), as expected. The conclusion S1(0) =
0 implies that there is not linear term in d in the approximation for J [i]

1 /J [o]
1 .

7.2.3 Approximation of J [i]
1 /J [o]

1

The superposition of (7.16) and (7.19) then gives

J [i]
1

J [o]
1

= 1 +
(
2s ln s − s2 + 1

s(s − 1) ln s
+ s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1

+ g1(V0, s, α, β)
ρQ0

R2
1

+ O(ρ2, d2, ρdQ0).

(7.20)

Finally, formula (5.14) in Theorem 5.1 can be obtained from the formula (7.2) by multi-
plying the three factors estimated in (7.4), (7.5) and (7.20).

7.3 Derivation of Formula (5.18)

We now derive formula (5.18) for the case where approximate electroneutrality boundary
conditions are assumed; that is, we assume the boundary concentrations L1 and R1 for the
main ion species and those L2 and R2 for the counterion species stay the same when tracer
is added. Therefore, the electroneutrality boundary conditions are only approximate with the
tracer concentrationρ being small. In this approximate electroneutrality boundary conditions,
there will be boundary layers to compensate the imperfect electroneutrality.

More precisely, for (BVi) with tracer concentrations c[t,i]
1 (0) = L [t,i]

1 = ρ > 0 at x = 0

and c[t,i]
1 (1) = R[t,i]

1 = 0 at x = 1, one has

(BVi): z1(L1 + ρ) + z2L2 = z1ρ ≈ 0 and z1R1 + z2R2 = 0,

and there will be one boundary layer at x = 0.
For (BVo) with tracer concentrations c[t,o]

1 (0) = L [t,o]
1 = 0 at x = 0 and c[t,o]

1 (1) =
R[t,o]
1 = ρ > 0 at x = 1, one has

(BVo): z1L1 + z2L2 = 0 and z1(R1 + ρ) + z2R2 = z1ρ ≈ 0,

and there will be one boundary layer at x = 1.
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For (BVi), let (φ[i]∞ , c[i]
1,∞, c[t,i]

1,∞, c[i]
2,∞) be the corresponding values of (φ[i], c[i]

1 , c[t,i]
1 , c[i]

2 )

at the limiting point of the boundary layer at x = 0. Then, it follows from [56] (Lemma 3.2
and Proposition 3.3 in [56]) and (5.17) that

φ[i]∞ = V0 − 1

ζ0(z1 − z2)
ln

−z2L2

z1(L1 + ρ)
= V0 + 1

ζ0(z1 − z2)

ρ

L1
+ O(ρ2),

c[i]
1,∞ = L1

(
L1

L1 + ρ

) z1
z1−z2 = L1 − z1

z1 − z2
ρ + O(ρ)2,

c[t,i]
1,∞ = ρ

(
L1

L1 + ρ

) z1
z1−z2 = ρ − z1

z1 − z2

ρ2

L1
+ O(ρ)3

c[i]
2,∞ = L2

(
L1

L1 + ρ

) z2
z1−z2 = L2 − z1L2

(z1 − z2)L1
ρ + O(ρ)2.

(7.21)

It is easy to check that z1(c
[i]
1,∞ + c[t,i]

1,∞) + z2c
[i]
2,∞ = 0, which is known to be true for the

limiting point [56].
Similarly, for (BVo), let (φ[o]∞ , c[o]

1,∞, c[t,o]
1,∞, c[o]

2,∞) be the corresponding values of (φ[o], c[o]
1 ,

c[t,o]
1 , c[o]

2 ) at the limiting point of the boundary layer at x = 1. Then,

φ[o]∞ = − 1

ζ0(z1 − z2)
ln

−z2R2

z1(R1 + ρ)
= 1

ζ0(z1 − z2)

ρ

R1
+ O(ρ2),

c[o]
1,∞ = R1

(
R1

R1 + ρ

) z1
z1−z2 = R1 − z1

z1 − z2
ρ + O(ρ)2,

c[t,o]
1,∞ = ρ

(
R1

R1 + ρ

) z1
z1−z2 = ρ − z1

z1 − z2

ρ2

R1
+ O(ρ)3,

c[o]
2,∞ = R2

(
R1

R1 + ρ

) z2
z1−z2 = R2 − z1R2

(z1 − z2)R1
ρ + O(ρ)2.

(7.22)

One can derive the formula (5.18) following exactly the same procedure as in Sect. 7.2.
Another approach is to make use of the derivation in Sect. 7.2 with necessary modifications.
We have used both approaches and, not surprisingly, got the same approximate formula
(5.18). The latter is simpler and is presented below.

More precisely, we need some modifications in the derivation in Sect. 7.2.
For (BVi), the boundary conditions should be replaced by

(φ[i]∞ , c[i]
1,∞, c[t,i]

1,∞, c[i]
2,∞) at x = 0; (0, R1, 0, R2) at x = 1.

For (BVo), the boundary conditions should be replaced by

(V0, L1, 0, L2) at x = 0; (φ[o]∞ , c[o]
1,∞, c[t,o]

1,∞, c[o]
2,∞) at x = 1.

With these modifications, it is not hard to get, from (5.6) that, for the boundary condition
associated to (BVi) in (5.17),

p[i]
1 (0+; z1, d1) = z1ζ0φ

[i]∞ + d
(
2(c[i]

1,∞ + c[t,i]
1,∞) + (1 + λ)c[i]

2,∞
)

+ O(d2)

= z1ζ0V0 + z1
z1 − z2

ρ

L1
+ d

(
2L1 + (1 + λ)L2

)
+ O(d2, dρ),

p[i]
1 (1; z1, d1) = d

(
2R1 + (1 + λ)R2

)
+ O(d2);
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and, for the boundary condition associated to (BVo) in (5.17),

p[o]
1 (0; z1, d1) = z1ζ0V0 + d(2L1 + (1 + λ)L2) + O(d2),

p[o]
1 (1−; z1, d1) = z1ζ0φ

[o]∞ + d(2(c[o]
1,∞ + c[t,o]

1,∞) + (1 + λ)c[o]
2,∞) + O(d2)

= z1
z1 − z2

ρ

R1
+ d(2R1 + (1 + λ)R2) + O(d2, dρ).

Thus, it follows from the definitions of the factors in (7.2) that

(I ) = c[t,i]
1,∞
c[t,o]
1,∞

(
ep

[i]
1 (0;z1,d1)−p[o]

1 (1−;z1,d1)
)

=
(
1 + z1(s − 1)

(z1 − z2)s

ρ

R1

)
ez1ζ0V0

×
(
1 + z1(1 − s)

(z1 − z2)s

ρ

R1
+ (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

+ O(d2, dρ, ρ2)

= ez1ζ0V0
(
1 + (

2(L1 − R1) + (1 + λ)(L2 − R2)
)
d
)

+ O(d2, dρ, ρ2),

(7.23)

and

(I I ) = L1ep
[o]
1 (0;z1,d1) − (c[o]

1,∞ + c[t,o]
1,∞)ep

[o]
1 (1−;z1,d1)

(c[i]
1,∞ + c[t,i]

1,∞)ep
[i]
1 (0+;z1,d1) − R1ep

[i]
1 (1;z1,d1)

+ O(ρ2, ρd, d2)

= 1 − ez1ζ0V0 + 1

sez1ζ0V0 − 1

ρ

R1
+ O(ρ2, ρd, d2).

(7.24)

Also, F0 in (7.15) should be replaced by

F0 = c[i]
1,∞ + c[t,i]

1,∞ − R1

L1 − (c[o]
1,∞ + c[t,o]

1,∞)

ln L1 − ln(c[o]
1,∞ + c[t,o]

1,∞)

ln(c[i]
1,∞ + c[t,i]

1,∞) − ln R1

× z1ζ0φ
[i]∞ + ln(c[i]

1,∞ + c[t,i]
1,∞) − ln R1

z1ζ0φ
[o]∞ + ln L1 − ln(c[o]

1,∞ + c[t,o]
1,∞)

.

A straightforward calculations gives

F0 = 1 +
( −z2
z1 − z2

f1(s) + s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1
+ O(ρ2),

where f1(s) is defined in (5.8).
The most complicate term is F0/F1 in (7.15). By a close examination of the terms

involved in the expression, the following modifications are needed. One is to replace ρ

with −z2ρ/(z1 − z2). The other is, in the last expression of F0/F1 in (7.15), to replace V0
by φ

[i]∞ in the first term and to replace V0 by V0 − φ
[o]∞ in the second term. The combined

effect of the latter is the extra term

(E) = A[i](1 − B[i])

(z1 − z2)
(
L1 − z2

z1−z2
ρ − R1

) (
ln(L1 − z2

z1−z2
ρ) − ln R1

) z2
z1 − z2

ρ

sR1

+ A[o](1 − B[o])

(z1 − z2)
(
L1 − R1 + z2

z1−z2
ρ
) (

ln L1 − ln(R1 − z2
z1−z2

ρ)
) z2
z1 − z2

ρ

R1
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= z2
(z1 − z2)2

A[i]
0 + A[0]

0 s

s(s − 1) ln s

ρ

R2
1

− z2
(z1 − z2)2

A[i]
0 B[i]

0 + A[0]
0 B[0]

0 s

s(s − 1) ln s

ρ

R2
1

.

Using the expressions of A[i]
0 , A[0]

0 , A[i]
0 B[i]

0 and A[0]
0 B[0]

0 in (7.17), one gets

(E) = g2(s, α, β)
−z2

z1 − z2

ρ

R2
1

,

where g2(s, α, β) is given in (5.9). Therefore, we have

F1
F0

= −z2
z1 − z2

g1(V0, s, α, β)
ρ

R2
1

+ (E)

= −z2
z1 − z2

(
g1(V0, s, α, β) + g2(s, α, β)

) ρ

R2
1

+ O(ρ2),

and hence,

J [i]
1

J [o]
1

= F0

(
1 + F1

F0
Q0

)
= 1

+
( −z2
z1 − z2

f1(s) + s + 1

s(z1ζ0V0 + ln s)

)
ρ

R1

+
(
g1(V0, s, α, β) + g2(s, α, β)

) −z2
z1 − z2

ρQ0

R2
1

+ O(ρ2, d2, ρdQ0).

(7.25)

The formula (5.18) in Theorem 5.2 then follows from (7.2), and the estimates (7.23),
(7.24) and (7.25).
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