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Abstract 
Charges are everywhere because most atoms are charged. Chemical bonds are formed by electrons 
with their charge. Charges move and interact according to Maxwell's equations in space and in 
atoms where the equations of electrodynamics are embedded in Schrödinger’s equation as the 
potential. Maxwell’s equations are universal, valid inside atoms and between stars from times 
much shorter than those of atomic motion (0.1 femtoseconds) to years (32 mega-seconds). 
Maxwell’s equations enforce the conservation of current. Analysis shows that the electric field can 
take whatever value is needed to ensure conservation of current. The properties of matter rearrange 
themselves to satisfy Maxwell’s equations and conservation of current. Conservation of current is 
as universal as Maxwell’s equations themselves. Yet equations of electrodynamics find little place 
in the literature of material physics, chemistry, or biochemistry. Kinetic models of chemistry and 
Markov treatments of atomic motion are ordinary differential equations in time and do not satisfy 
conservation of current unless modified significantly. Systems at equilibrium, without 
macroscopic flow, have thermal fluctuating currents that are conserved according to the Maxwell 
equations although the macroscopic averages of the thermal currents are zero. The macroscopic 
consequences of atomic scale fluctuating thermal currents are not known but are likely to be 
substantial because of the nonlinear interactions in systems like these, in which ‘everything 
interacts with everything else’.  

Version 3: Textbook models are described in Version 3, since most scientists are familiar with 
them, however unrealistic they are. Wording is changed a little, hopefully improved. A new section 
derives conservation of current from the continuity equation. 
Version 4: Current and flux of charge in a resistor are described on p. 13.  

 Textbook models describe displacement currents of materials by a dielectric coefficient 
that is a true constant. Textbook treatments automatically satisfy conservation of current. In the 
textbook approximation, the displacement current of matter is proportional to .t∂ ∂E  However, 
dielectric coefficients of real materials cannot be described by a constant because the displacement 
current of real matter is not proportional to t∂ ∂E  with a single proportionality constant. Even in 
the simplest ion solutions, dielectric coefficients vary in time by factors ~40× and displacement 
currents need to be described by convolution integrals with memory kernels. Dielectric properties 
in real matter are in fact much more complex than that: no one knows how to describe them in a 
general way. A general formulation of conservation of current is used here that applies whatever 
the properties of matter. We define ‘current’ as anything that creates curl B . Whatever creates 
curl B  is conserved everywhere, under all conditions, at every time. The vacuum displacement 
current 0 tε ∂ ∂E  changes so current is conserved everywhere, under all conditions, at every time. 
 

arXiv: 1607.0669, Version 4, September 21, 2016  
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The reader who prefers equations to words can turn to p.7.  
 

Introduction. Atoms have electric charge, so electricity matters.  
 All of life occurs in solutions with ions. Water without ions is toxic. The ions have charge. 
Ions are dissolved by water molecules that are strongly charged in some places, although the total 
charge of one water molecule is zero. The macromolecules that make the structures of life are 
charged. The proteins, nucleic acids (DNA and RNA), and organic molecules that are the 
biochemical machinery of life have electric charge, often at surprisingly high density (Jimenez-
Morales, Liang, and Eisenberg 2012). Charges are likely to be highly concentrated where they are 
important, in technology and in life.
 Charge creates forces (and moves) according to the Maxwell equations celebrated in every 
textbook of electrodynamics. Those equations accurately describe an enormous range of 
phenomena. Our electrical technology is possible because it is designed by equations, much more 
than by trial and error. Much of that technology depends only on Kirchoff’s current law, which 
describes conservation of current in one dimensional systems, perhaps branched.  
 Kirchoff’s law and electrodynamic equations can be used, without trial and error, because 
they are accurate and transferable from one set of conditions to another. The equations of electrical 
and electronic technology require little tuning of parameters as conditions change. The contrast 
with biochemistry is striking. The equations of biochemistry need substantial tuning as conditions 
change (Eisenberg 2014). The important success of semiconductor technology–that has remade 
our world in less than fifty years–would hardly be possible if the trial and error methods of 
experimental biochemistry and biophysics were used to design semiconductor devices and the 
integrated circuits and computers built from them. 

Biochemistry (along with most of chemistry) is about making new molecules by changing 
their electrons and the orbitals they move in. The energy of these electrons is described by the 
combination of quantum mechanics and Maxwell’s equations written as the Schrödinger equation. 
The potential term of the Schrödinger equation is a solution of the Maxwell equations. 
 Electrons of course are an ultimate source of charge with diameter less than 10-17 meters 
(Gabrielse and Hanneke 2006) and no detectable substructure. They have the remarkable property 
that their charge is the same, no matter how fast they move, unlike mass or spatial dimensions, all 
of which change as velocities approach the speed of light, according to the Lorentz transformations 
of special relativity. This special relativistically invariant property of electrons is confirmed 
experimentally in the many bright photon sources used in structural biology: those sources are 
synchrotrons that depend on the relativistic properties of electrons moving at speeds very close to 
the speed of light. (The 7 GeV beam in the Advanced Photon Source at Argonne moves electrons 
at >99.999999% of the speed of light. Relativistic ‘corrections’ are enormous ~1016 at these 
speeds.) 
 But the equations of electricity do not play a prominent role in textbooks or teaching of 
chemistry. Maxwell equations are not found there and electricity itself is hardly mentioned in 
biochemistry and its textbooks, elementary or advanced. 

Maxwell Matters. Equations (1-4) are meant to show that Maxwell Matters in a concise, 
convincing, but somewhat abstract way. This paper is a successor to a long paper arXiv:1502.0725 
(Eisenberg 2016) that is more concrete than abstract, showing how Maxwell Matters as electricity 
and charge move in many situations and giving many references to the extensive literature. The 
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discussion of Fig. 2 (Eisenberg 2016) in particular describes how charge moves in wires, salt 
solutions, resistors, commercial capacitors, vacuum capacitors, vacuum tube diodes, and 
semiconductor diodes and devices. The current through all these devices is exactly equal at all 
times and locations and conditions because of conservation of current (Kirchoff’s law) in the series 
circuit, even though the physics of current flow is very different in each device. The displacement 
current 0 tε ∂ ∂E takes on whatever value it needs—at every time and location—to guarantee 
conservation of current, see eq. (4). 

 Maxwell introduced the idea of ‘displacement current’ 0 tε ∂ ∂E  and the pre-existing laws 
of electrostatics (Coulomb’s law and Poisson’s equation), and magnetism (Ampere’s law), could 
then describe the unlimited propagation of waves, including the propagation of light. Displacement 
current exists (and thus flows) in a vacuum in a way Maxwell found hard to visualize or explain 
as the movement of charge, as have many others including me.  

 But there is no doubt that 0 tε ∂ ∂E  exists. Light exists because of the 0 tε ∂ ∂E  term, so 
displacement current exists in a vacuum, whether or not I can imagine charges that move in the 
vacuum. Light exists because 0 tε ∂ ∂E  helps create magnetic fields according to Maxwell’s 
version of Ampere’s law—our eq. (1)—that in turn creates electric fields. Electric and magnetic 
fields are coupled together to form radiation like light, that propagates through a vacuum forever. 

 Here I show again what has been known for a very long time: the fundamental equation of 
electromagnetism—Maxwell’s generalization of Ampere’s law eq. (1)—implies that ‘current’ is 
conserved.1 I use a derivation and representation that emphasizes the generality of conservation of 
current.  

Maxwell without Matter. Our formulation eq. (1-4) does not involve the problematic (and 
bewilderingly complex) properties of polarization charge and displacement current in matter. This 
formulation avoids the misleadingly named ‘dielectric constant’ rε . The textbook name for rε  as 
dielectric ‘constant’ seems bizarre to me because experiments show that rε  is almost never 
constant. It varies as conditions change and it always depends on time. For example, rε  varies by 
a factor of around 40× in sea water in experiments or in simulations starting at 10-15 sec reaching 
to phenomena at 10-6 sec.  

 The polarization charge conventionally described by a supposedly constant rε  actually 
varies in so many different ways that no one knows how to describe it in a reasonably general way. 
Formulas like eq. (2*) that involve rε  cannot be universal unless formulas for rε  are universal. 
Eq. (1) – (4) are universal.  

Conservation of current is universal. Maxwell equations are true everywhere, at all times and 
locations, from inside atoms to between stars, we are told by physicists who spend lifetimes 
comparing theory and experiment.  
 If the Maxwell equations are universal, eq. (1-3) show that conservation of current is also 
universal. Conservation of current is then true everywhere, at all times and locations. The electric 
field takes on whatever value it needs—at every time and location—to guarantee conservation 
of current, see eq. (4). New mechanisms of current flow appear if needed to satisfy Maxwell’s 
equations and conservation of current. 

                                                           
1 The definition of current as whatever creates curl B is discussed in Section 2, along with alternative definitions. 
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 The formulation of conservation of current in eq. (1-4) is important because it displays 
conservation in terms of universal variables without confusion from the non-universal properties 
of matter and .rε  Eq. (2*) displays the confusion arising from .rε  

 The universality of conservation of current is important. Many simplified models in the 
literature of biochemistry and biophysics do not satisfy conservation of current (Eisenberg 2014) 
until they are significantly modified. Most chemical kinetic models (using the law of mass action) 
and Markov models using only ordinary differential equations in time suffer from this defect. All 
are customarily written without the displacement current term 0 tε ∂ ∂E  needed to guarantee 
conservation of current. 

Physical mechanisms accommodate conservation of current. Current is conserved no matter 
what the detailed mechanism of that current flow.  

 Maxwell’s equations change the value of 0 tε ∂ ∂E  (and thus the value of E  specified by 
eq. 4) to force physical mechanisms to obey the conservation of current (eq. 2 & 3) exactly, no 
matter what the physical mechanism, or what new physical mechanism needs to appear.  

The physics of charge movement is illustrated by a series circuit made of wires, salt 
solutions, resistors, commercial capacitors, vacuum capacitors, vacuum tube diodes, and 
semiconductor diodes shown in Fig. 2 of (Eisenberg 2016). The mechanism of current flow is very 
different in each component and varies with time in dramatic ways in some of them. These diverse 
mechanisms have the same current through them at any time, as is necessary if they are to follow 
Maxwell’s equations. It is a miracle that these distinct mechanisms can each change in its own 
way so current is conserved. 

 Continuity of current does not arise as a consequence of atomic properties or of 
conservation of matter. It arises because of the universal properties of electrodynamics. 

 Conservation of current is exact because of the 0 tε ∂ ∂E  term in Maxwell’s equation (1). 
The 0 tε ∂ ∂E  does not involve material properties. The 0 tε ∂ ∂E  term can vary so that Maxwell’s 
equations and current conservation are exact, at every time and location. The time rate of change 
of the electric field t∂ ∂E  can take on whatever value it needs (at any time and any location) to 
guarantee that current is conserved exactly everywhere and at every time. 

 Amazingly, the abstract conservation law (eq. 2) changes the atomic properties of systems 
and sometimes even introduces new physics and mechanisms into a system. In every day 
experience, t∂ ∂E and electric fields can become large enough to change the physics of charge 
flow, introducing phenomena not in the original intuitive description of circuits.  
 Pulling the power plug from the electrical socket in a wall can create electric fields large 
enough to create a spark. The fields ionize air, creating a plasma that sparks in the dark. The electric 
fields become large enough to destroy the insulating properties of air. Equations of the normally 
insulating air must be changed if we wish to describe the spark we observe. The constitutive 
equations need to be generalized to deal with the effects of the enormous electric field needed to 
preserve continuity of current. Maxwell’s equations create (seemingly) new physics. 

Maxwell Matters in the models and theories of science in a way not widely recognized. Current 
is conserved everywhere, so it must be conserved in the theories and models of science. Many of 
the models and theories of science are simplified so they depend only on time, using ordinary 
differential equations in time. These models should satisfy conservation of current. They do not 
satisfy conservation of current unless additional constraints are added to their usual formulation. 
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Kinetic models: mass action and Markov. Sadly, the equations of chemical and enzyme kinetics, 
based on the ‘law’ of mass action, and the equations of Markov models in general, are ordinary 
differential equations in time that do not satisfy conservation of current unless modified.  

 A simple computation of the charge that moves in kinetic or Markov scheme A B C   
(Eisenberg 2014) shows that the current from A to B does not equal the current flowing from B to 
C unless additional constraints are imposed. The additional constraints are likely to change the 
qualitative nature of the kinetic or Markov scheme because it needs to include the displacement 
current 0 tε ∂ ∂E  and needs to include spatial dependence with its boundary conditions. 

Models in textbooks of electrodynamics have inadvertently obscured the general significance of 
conservation of current in my opinion. Textbooks present Poisson’s equation with a dielectric 
coefficient rε  (dimensionless, ~79 for water) and permittivity of matter that is a constant, really a 
constant, a single number. In that case, it is easy to apply the continuity equation for the flux of 
charge and show that material displacement current is 0r tε ε ∂ ∂E . No distinction between material 
displacement current and vacuum displacement current is needed.  

 The textbook treatment is unfortunately a serious distortion of reality. The dielectric 
coefficient is never constant independent of time. In biological and chemical applications it varies 
by a factor of 40× in the time scales of interest (linking atomic motions at 10-16 sec and biological 
function starting at 10-4sec). And the properties (even the meaning) of dielectric 
coefficient/permittivity is very different in different systems in which current flows. The 
permittivity of a dielectric capacitor and a vacuum capacitor have little to do with each other; the 
permittivity of the various materials described in Fig. 2 of arXiv:1502.0725 (Eisenberg 2016) are 
all variables not constants and each varies in quite different ways. A general description of 
permittivity and dielectric coefficient of all the materials in a typical electrical circuit is not easy 
to find, if it is in fact known, or possible at all. 

 The general role of conservation of current is obscured by models that pretend matter can 
be described by a constant dielectric coefficient. Only when Maxwell’s equations are written as in 
eq. (1) without invoking the properties of matter, does the significance of conservation of current 
become clear.  
History. Kinetic schemes of chemical reactions, and of Markov models use ordinary differential 
equations that depend only on time. They ignore differential terms in space. The simplification to 
deal with just time is more than understandable historically. Ordinary equations could be 
understood and computed long ago, before computers and numerical methods were available to 
deal with partial differential equations in space and time. But the laws of physics do not change 
because of our technological and intellectual limitations. Conservation of current involves space. 
Models and theories that use only time derivatives need to conserve current. 
Equilibrium systems. Maxwell matters even in equilibrium thermodynamic systems that seem at 
first not to involve current flow, because all systems, including thermodynamic systems at 
equilibrium without macroscopic flow, are made of atoms in thermal motion. These thermal 
motions produce local currents even in systems without global current flow. The thermal motion 
of the charged atoms that make up matter produce local variations in the density of charge and 
thus in the local electric field. These local variations are different in different places. (After all, 
that is what the word ‘local’ means.) Spatial variations in electric field imply current flow. 
Molecular dynamics simulations visualize these current flows and confirm their size and 
importance. Roughly speaking, simulations of ionic solutions show changes of electrical potential 
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of ~1 volt in intervals much shorter than those involved in most of biology or chemical technology, 
in intervals of a few picoseconds (10-12 sec). Thermal currents flow on similar scales. 

 The fluctuating thermal currents are conserved just as all current is conserved. Even 
though the thermal fluctuations average to zero, they need to satisfy equations (1)-(2) in every time 
interval and region of space, no matter how brief or small.  
 Thermal fluctuations are described by coupled nonlinear field equations in which 
‘everything interacts with everything else.’ The thermal fluctuations in current are likely to have 
effects on many time and length scales as the nonlinearity converts atomic fluctuations into 
macroscopic phenomena.  
 The significance of these thermal fluctuating currents in thermodynamic equilibrium 
systems—in systems without macroscopic flow—is not clear to me. In some cases the fluctuating 
thermal currents will average out and not have macroscopic effects (although atomic scale effects 
will be observable by experiments with atomic resolution). But the question remains what are those 
cases? What are the situations in which the fluctuating thermal currents do not average out? The 
implications of conservation of current in thermodynamics remains to be investigated in general. 
Dave Ferry has pointed out a specific case where the thermal fluctuating currents have steady state 
consequences (Ferry 1980).  
 

Conclusion: Maxwell Matters 
Maxwell’s equations need to be included in all our models and theories, in my view. 
Approximate and reduced models need to respect conservation of current with little error because 
of the enormous strength of the electric field in general, so vividly described in the third paragraph 
of Feynman’s textbook on electricity and magnetism (Feynman, Leighton, and Sands 1963). 
Specific estimates of the strength of the electric field are described in (Eisenberg 2016). 
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Section 1: Conservation of Current2: derivation from Ampere’s law 
Maxwell’s generalization of Ampere’s law ensures the existence of (a wave equation for) 
light. Note that the variable J includes all movements of charge. It includes what is usually 
called polarization current as well as transport current.  

One could subtract ideal polarization current 0( 1)r tε ε− ∂ ∂E  if one wished (with rε  a 
constant: see next section of this paper) but the polarization of real materials is not well 
approximated by that term and so 0( 1)r tε ε− − ∂ ∂J E  would contain a description of the 
nonideal properties of polarization in real materials. I prefer not to separate the 

0( 1)r tε ε− ∂ ∂E  term since it does not describe experimental reality. 

 

 ( )0

‘ ’

0 t
µ ε ∂

= +
∂

Current

Ecurl B J


 Note the subscript zero on 0ε . It is crucial.   (1) 

In math language,  

 ( )0

‘ ’

0tε+ ∂ ∂ =
Current

div J E


  because div curl = 0 is an identity. (2) 

In physical language, 

 

‘ ’

0 t
ε ∂

+
∂

Current

EJ


 is conserved exactly, always, everywhere. (3) 

In American/English  
 

Anything that creates curl B  is current. 
Anything that creates curl B  is conserved. 
Current creates curl B .   Current is conserved. 

 
 

Eq. (1) provides an operational definition of J that allows J to be defined by experiments wherever 
curl B  can be measured. Eq. (2) shows that conservation of current can be written without 
reference to the properties of matter. 
 
Remark 1: The polarization current 0( 1)r tε ε− ∂ ∂E  of an hypothetical ideal polarizable material 
(with rε  constant) can be separated and subtracted from J but the polarization of real materials is 
not well approximated by the ideal expression. The difference between real and ideal is 

0( 1) .r tε ε− − ∂ ∂J E  The difference describes the nonideal properties of polarization of actual 
materials. The nonideal polarization is much larger than the ideal polarization, roughly 
corresponding to the ratio of rε  on atomic and macroscopic time scales. That ratio is 40≅ ×  in 
ionic solutions. I prefer not to separate the ideal term 0( 1) ,  with  constant ,r rtε ε ε− ∂ ∂E  since the 

                                                           
2 The definition of current is discussed in Section 2, along with alternative definitions. 
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ideal term does not describe experimental reality and so does not deserve special treatment by 
isolation.  

 I prefer to describe all the polarization properties of a material (both ideal and nonideal, 
the sum being the total real polarization properties measured in experimental 
impedance/admittance measurements) in just one component which is part of the J defined in 
eq. (1) and used in eq. (2).  

 The total actual polarization of each material (as measured in experiments) then is 
described by its own component that describes all movement of charge, whatever its dynamics, 
whether they depend on t∂ ∂E  in part or not.  

 The part of the total actual polarization of each material (as measured in experiments) that 
is strictly proportional to t∂ ∂E  (with a single proportionality constant that is a single real number) 
then corresponds to just the ideal part of polarization, namely the component 0( 1)r tε ε− ∂ ∂E  (for 
that material). That ideal component (but only that ideal component) can be described by a constant 
dielectric coefficient rε  where the constant is a single real number. That ideal component is a 
small part of the total polarization of most materials and so (to repeat) does not deserve isolation 
and special treatment in the theory, in my view.  

Remark 2:  The special term 0 tε ∂ ∂E  describes what happens in empty space, where 0.=J  
0 tε ∂ ∂E is sometimes called the vacuum displacement current. In a vacuum, no matter interferes 

with the perfect time-independent linear relation between ‘current’ and the magnetic and 
electromagnetic field. The ‘current’ is a linear function of E  that is instantaneous (without delay) 
with a proportionality constant that is truly constant, independent of anything.  
 The special term 0 tε ∂ ∂E  also exists inside matter: atoms are almost all empty space 
(with their mass concentrated into a tiny nucleus). Maxwell equations are ‘universal’ in vacuum 
and in matter, from inside atoms to between stars, from time scales of γ -rays (even cosmic rays) 
to steady state, with an accuracy of some 1 part in 1018.  
  

Summary 
Equation (2) says 

‘Current’ defined as 0 tε+ ∂ ∂J E  is conserved exactly, always, everywhere 

E  can be whatever it needs to be to ensure that ( )0 0tε+ ∂ ∂ =div J E .  
E  can be whatever it needs to be because of the vacuum term 0 tε ∂ ∂E .  

The vacuum term 0 tε ∂ ∂E  is independent of matter. 
so t∂ ∂E  can assume any value it must to ensure ( )0 0tε+ ∂ ∂ =div J E , 

no matter what are the properties of matter and J . 
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Section 2:  Conservation of Current: Derivation from Continuity Equation  
  

Conservation of current is often deduced from the continuity equation, as in the classical text of 
Jackson (Jackson 1999), in eq. 6.4 on p. 238.  

 matter matter 0
t t
ρ∂ ∂ + = + = ∂ ∂ 

Ddiv J div J   (1*) 

[Jackson’s symbol for flux is replaced by matterJ  to avoid confusion with J  in eq. (1).] 

 

 D  is defined as 0 ,ε= +D E P  giving (2*) 

 

  ( )0
matter matter

‘

0

’

t t t
ε

ε

 
 ∂ +  ∂ ∂

+ = + +  ∂ ∂ ∂    
 

current

J

E P P Ediv J div J




;   J is defined in eq. (1) (3*) 

 

The conserved quantity ‘current’ is then  

 matter 0‘ ’
t t

ε∂ ∂
+ +
∂ ∂
P Ecurrent = J  (4*) 

 

Idealization implies consistency. The polarization term t∂ ∂P  is often written as if materials 
were ideal. If materials were ideal, we could write t∂ ∂P  as 0( 1)r tε ε− ∂ ∂E  with a constant 
dielectric coefficient .rε  

 The idealization has an important advantage beyond simplicity. If rε  is a constant, the 
electrostatic equation ρ=div D  becomes 0rε ε ρ=div E  and automatically satisfies conservation 
of current as we can see by differentiating with respect to time and combining with the continuity 
equation (1*) using 0( 1)rt tε ε∂ ∂ = − ∂ ∂P E . 

 The idealized model is fully consistent. Every variable satisfies every equation and 
boundary condition, under all circumstances, with one set of parameters. Very large errors quickly 
arising from inconsistent treatments of charge and current are avoided (Appendix of Eisenberg, 
2016). Errors are found in treatments of flow that do not include the vacuum displacement current 

0 tε ∂ ∂E . Such treatments are not rare since many scientists identify electric current with the flux 
of charges, thereby ignoring the vacuum displacement current 0 tε ∂ ∂E  needed to guarantee 
consistency and the universal conservation of current. (An example is given in Eisenberg, 2016,p. 
10, Resistor section and discussed later in this paper, on p. 13).  

Over-simplification is a necessary part of science. The over-simplification that rε  is a constant is 
a fib—a ‘white lie’—that is useful in teaching because it allows so much to be done with minimal 
mathematics. And the over-simplification has the important advantage of guaranteeing 
consistency. But statements of conservation of current that include rε  as a constant are drastic 
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over-simplifications if they do not include excessP  (see eq. 5*) or its equivalent. Materials are not 
ideal, not even approximately in the time/frequency domain of our technology (10-9sec), let alone 
of our atomic scale simulations of molecular dynamics (10-15sec). Polarization and dielectric 
properties vary by factors of 40× in those ranges, and delays and overshoots in charge movements 
are prominent, so alternative formulations are required. 

 Statements of conservation of current that include 0( 1)rε ε−  should be avoided (in my 
opinion) because they are only valid for the tiny range of systems and conditions in which 

0( 1)rε ε−  is constant. 

Consequences of Over-simplifications. Over-simplifications are a necessary part of science, as 
we have said. But they are two edged swords. They simplify and guarantee consistency. But fibs 
undermine credibility. The over-simplification of rε  as a constant hides the universal nature of 
conservation of current (see Appendix).  

 ‘Everyone’ knows that rε  is not constant, so ‘everyone’ thinks that equations involving rε  
are over-simplifications and not universal laws at all. ‘Everyone’ then thinks that conservation of 
current is an over-simplification, and not a universal law.  

 But conservation of current in not an over-simplification. Conservation of current is a 
universal law. It can be written without reference to any property of matter, or any constitutive 
law, as in eq. (3). Indeed, eq. (4) shows that the electric field takes on whatever value it needs to 
ensure conservation of current, independent of any particular constitutive equation. The electric 
field will change that constitutive equation, or enlist a ‘new’ phenomena (e.g., ionization of air) 
with its own constitutive law, if it is needed to ensure conservation of current.  

Polarization. In the classical literature of polarization (using analysis of sinusoids in the frequency 
domain), the dielectric constant rε  (a real number) is often generalized into a complex number 
with amplitude and phase (or real and imaginary parts). Polarization of this type is described in 
the time domain by solutions of ordinary differential equations (usually with constant coefficients) 
or convolution integrals (with memory kernels). (The convolution integrals arise from inverse 
Fourier-Laplace transforms of the frequency dependent .)rε   

 In my view, it is much more useful to define the dielectric coefficient rε  always as a real 
number equal to its value at DC (very low frequencies or long times) and write current as 

 matter 0 0

Material  Displacement

( 1) ;  a real constant‘ ’ excess
r rt t t
ε ε ε ε∂ ∂ ∂

+ + − +
∂ ∂ ∂
P E Ecurrent = J



  (5*) 

The complex properties of matter are then dealt with in the two terms matter excess t+ ∂ ∂J P .  

 Or we can dispense with the polarization term altogether and include it in the flux of matter 
J. Then we have eq. (1)–(2), 

 0‘ ’
t

ε ∂
+

∂
Ecurrent = J  (6*) or (3) 

albeit with a different definition of J from that in classical texts (Jackson 1999). 

Polarization flux is more complex than it seems. Polarization flux includes subtle and complex 
correlations and coupled transport of considerable importance.  

Dielectrophoresis is an example of complexities that occur in real ionic systems. Consider 
dielectrophoresis of ‘uncharged’ particles in an ionic solution. In dielectrophoresis, particles with 
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zero permanent charge can be transported by the electric field because the particles have induced 
polarization charge. That is to say, in formal terms, 2 2

transport = dielectrophoresis0 0x∂ ∂ ≠ ≠⇒E J . 
Phenomena like dielectrophoresis produce both transport matterJ  and material displacement current 
defined in eq. (5*) as excess 0( 1) .rt tε ε∂ ∂ + − ∂ ∂P E   

I prefer the formulation eq. (2) to that of eq. (5*) because eq. (2) does not separate one 
physical phenomenon (like dielectrophoresis) into misleadingly distinct terms described by two 
apparently independent constitutive equations, one for matter dielectrophoresis=  ;J  the other for 1.rε −   
Variational methods. In my opinion, coupled phenomena like dielectrophoresis need to be 
described by energy variational methods that derive field equations from an Euler Lagrange 
process (Ryham, Liu, and Wang 2006; Ryham 2006; Eisenberg, Hyon, and Liu 2010; Horng et al. 
2012; Forster 2013; Wu, Lin, and Liu 2014b, 2014a; Xu, Sheng, and Liu 2014; Wu, Lin, and Liu 
2015; Wang, Liu, and Tan 2016). The Euler Lagrange process ensures that all cross terms in 
constitutive equations are consistent.3  

Attempts to separate transport and material terms before deriving the Euler Lagrange field 
equations are tricky and likely to lead to error. Cross terms are easy to overlook, inadvertently. 
The definition of ‘transport’ and ‘material displacement’ is unlikely to be unique before Euler 
Lagrange equations are actually derived from a variational principle. Different workers are likely 
to classify components of transport and displacement in different ways until the Euler Lagrange is 
used to display explicitly all the components needed in a self-consistent analysis. 

After the variational analysis is completed and Euler Lagrange equations have been 
actually derived, coupled phenomena like dielectrophoresis are described by a unique set of field 
equations and boundary conditions, including cross terms. Coupled phenomena can then be 
separated into transport and material displacement terms and workers can agree on the names and 
classification of cross terms.  

Charge movement in general. The general case requires a general treatment of J because it 
involves charge movement much more diverse and complicated than those of polarization 
phenomena.  

 A complete description of charge movement is different—very different—in different 
systems, because the properties of charge are as diverse as the properties of matter. (After all, 
matter is made of charges and any field induced movement of charge by any type of field must be 
included in the equations, e.g. eq. 1*–4*.) If charge movement is coupled to other fields 
(e.g., diffusion, flow or temperature), an even more complex treatment is needed using variational 
methods (in my opinion). 

 Even the (apparently) simplest consistent treatment of the diffusion and migration of 
charges (Poisson Nernst Planck, called Poisson drift diffusion in the semiconductor literature) 
involves the complex mathematics of field theory. PNP is nonlinear, time dependent, and couples 
‘everything to everything else’. The range of behavior that PNP can describe is astonishing. PNP 
can produce all the nonlinear functions found in digital logic and the analog functions needed to 
use them. The spatial distribution of permanent charge (created by doping) can be designed to 
make semiconductor devices with robust properties. PNP then produces the wide range of 

                                                           
3 ‘Consistent’ means that all independent variables satisfy all field equations and boundary conditions in all 
circumstances. In such systems electrical potential depends on charges. Potential profiles and rate constants that are 
constant, independent of conditions, are found in inconsistent models like the constant field or rate constant models 
of biophysics. Potential profiles and rate constants of those models do not change when charge or structure changes. 
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semiconductor devices found in analog and digital computers and all the nonlinear functions found 
in their digital logic. The properties of charge movement described by PNP are in fact diverse. 
They are diverse enough to describe anything a computer can store or do. 

 No general description of charge movement for all matter is known, or, in my opinion, 
likely to be discovered. Matter just comes in too many forms and its charge movement are just too 
diverse for that.  

 

Section 3: Formula for E that Ensures Conservation of Current 

We now write a formula for the electric field that guarantees that Maxwell eq. (1) and conservation 
of current (2) are satisfied. We start with equation (2) restated here 

 ( )0 0tε+ ∂ ∂ =div J E  (2) 

Eq. 2 is satisfied if  ( )0 ,dtε= −∫E J  (4) 

In words, if the electric field is the time integral of the flow, conservation of current is satisfied. 
The general solution of eq. (2) is much more involved, as Carl Gardner kindly pointed out. This 
particular solution (4) is always available to the system, so eq. (4) is enough to guarantee that E 
can take on whatever value is needed to produce conservation of current. 
 

In summary 

If the electric field in a vacuum,  
including the vacuum within atoms is  

 
0

,dtε= −⌠
⌡

JE  (4) 

the conservation of current defined in eq. (2) is exact,  
no matter what the constitutive equation for .J  
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Section 4: Kirchoff’s Current Law 

Kirchoff’s current law is a restatement of eq. (2) appropriate for electrical circuits. 
Electrical circuits are one dimensional systems that are usually branched, but hardly ever extend 
significantly into three dimensions. They do not have the spatial singularities characteristic of 
Maxwell’s equations in two or three dimensions even when they include transmission lines 
described by the telegrapher’s (partial differential) equation. Most of our electrical, electronic, 
semiconductor, and computer technology is performed by one dimensional branched circuits that 
can be described by Kirchoff’s current law, Kirchoff’s voltage law, and nothing else. 

In unbranched one dimensional systems of components (i.e., in series circuits) the ‘current’ 
of our eq. (2) is the current of Kirchoff’s current law and is independent of location. In the series 
circuit of Fig. 2 (Eisenberg 2016), the current is the same at every time and every location in the 
wires, salt solutions, resistors, commercial capacitors, vacuum capacitors, vacuum tube diodes, 
and semiconductor diodes and devices although the physics of each of these devices is very 
different. The electric field changes the specific physics of each device so the current is exactly 
equal. Indeed, the electric field will recruit new physical phenomena if that is the only way to 
satisfy Maxwell’s equation, as it does when a power plug is pulled out of the electrical socket in 
the wall, when the E  field becomes strong enough to strip electrons from the atoms of air, making 
an insulator into a plasma. 

Ohm’s law and Kirchoff’s law do not accumulate charge. Circuits containing only ideal 
resistors do not allow charge storage, as discussed in Eisenberg, 2016 (p. 10, Resistor section).  

The flux of charges (without the displacement term r tε ∂ ∂E  or 0 tε ∂ ∂E ) that flow into a 
resistor equals the flux of charges (without the displacement term) leaving the resistor at all times, 
and at every time, so there is no difference between input and output flux of charges (without the 
displacement term) and no build-up of net charge. In electrostatics only net charge can produce 
potential, according to Maxwell’s electrostatic equation—e.g., Poisson’s equation—so a one 
dimensional series circuit has no net charge anywhere and no potential anywhere if it is made only 
of resistors that strictly obey Kirchoff’s current law (at all times) for flux of charges (without the 
displacement term).  

Ohm’s law (that defines a resistor in this discussion), and Kirchoff’s current law (applied 
to just the flux of charges without the displacement term r tε ∂ ∂E  or 0 tε ∂ ∂E ) do not provide the 
net charge needed to create a potential (in Maxwell’s electrostatic equation). 

Kirchoff’s law can be generalized. Net charge appears in one dimensional series circuits if 
Kirchoff’s current law is generalized to describe current that includes the displacement term 

r tε ∂ ∂E  or 0 tε ∂ ∂E  instead of flux of charges without the displacement term. When current 
(including the displacement term) is used as the variable in Kirchoff’s law, charge builds and 
potentials change. 

Capacitors can be added. Alternatively, one can use the classical form of Kirchoff’s law (that 
describes the flux of charges without the displacement term r tε ∂ ∂E  or 0 tε ∂ ∂E ) by adding 
capacitors (somewhat artificially) to the circuit that originally contained only resistors. Potentials 
are then produced by charge on the capacitors as required by Poisson’s equation. The capacitors 
introduced at each node allow current ci  to flow from node to node or node to ground with 

ci C V t= ∂ ∂  where V is the electrical potential and C is a true constant perhaps different for each 
capacitor. These capacitors introduce a variable potential V that allows the branched one 
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dimensional system to be consistent with V computed from Maxwell’s equations, including 
conservation of current and charge. Branched circuits are studied with Kirchoff’s current law using 
the techniques of circuit theory. 

Adding capacitors to kinetic and Markov models. This approach can be applied to classical 
models that do not include the displacement term r tε ∂ ∂E  or 0 tε ∂ ∂E  so the classical models 
can be modified to satisfy conservation of current. For example, rate models (of chemical or 
Markov theories) can be modified by adding capacitance into each node of the rate model. The 
capacitance connects the node to ‘ground’ and introduces what the chemists misleadingly call a 
self-energy, even though that energy depends on the location and strength of a dielectric boundary 
that is not a property of ‘self’ at all. 

The details of the capacitor representations need to be worked out to see if they are worth 
the increase in complexity of the resulting expressions for flux and current. It is not clear that 
introducing capacitors will be easier than just solving the ‘real’ problem involving partial 
differential equations in space and time. 

The revised representations will be rather involved because the expressions for rate 
constants often must include the shape of potential barriers, as well as the height of the barriers. 
The flow over such barriers can be computed with simple integrals as shown in Eisenberg, 2011, 
but the integrals depend on the shape of the potential barrier and that is not a local variable. The 
shape of the potential barrier depends on boundary conditions and on more than one ‘reaction’ in 
the rate scheme so spatial dependence is introduced into the system and problem, as it must be if 
current flows. Considerable complexity is expected. 

 

Section 5: Equilibrium Systems without Current Flow 
Equilibrium Systems 

The discussion of the previous pages seems to apply only when current flows. It might 
seem not to apply to classical equilibrium systems of thermodynamics or to systems in which the 
flow of current is zero. 

I argue here, however, that conservation of 0 tε+ ∂ ∂J E  is important in systems without 
net flow, even in classical equilibrium systems of thermodynamics because all systems have 
atomic scale flows of current arising from thermal motion. These flows need to satisfy the 
Maxwell equations because those are universal. These facts are obscured by the many classical 
treatments of Brownian motion in which electric fields are assumed to be independent of time, 
location, or charge density.  

In my opinion, Brownian motion needs to be computed self-consistently, so the electric 
field varies with charge density, and thus with time and location, and electromagnetic phenomena 
are computed from the Maxwell equations (Eisenberg 2006). In this proper treatment of Brownian 
motion, thermal fluctuations in the density of charge must produce thermal fluctuations in the 
electric field. Fluctuations in the electric field imply that 0.t∂ ∂ ≠E  They must produce current 
according to eq. (1)-(3). Those fluctuating thermal currents 0 tε+ ∂ ∂J E  are conserved at every 
point in time and space by eq. (2-3), just as all currents are conserved. The stochastic thermal 
currents are local and fluctuate around a zero mean, since the space and time averages clearly have 
to be zero in thermodynamic systems, or systems with zero macroscopic 0 .tε+ ∂ ∂J E But the 
combination of thermal motion and Maxwell equations support very nonlinear phenomena and it 
is clear that the nonlinear phenomena can extend to macroscopic scales (Ferry 1980). 
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Chemical reactions do not occur uniformly in ionic solutions. It is important to see the 
consequences of thermal fluctuating currents in a thought experiment of a chemical reaction in an 
ionic solution.  

Imagine a chemical reaction that depends steeply on concentration of reactants (as many 
do, but certainly not all). Many reactions occur on a time scale of 10-16 or faster because they 
involve movements of electrons in molecular orbitals that are not delayed by inertia or friction. 
Clearly, these reactions will occur mostly in the regions of the solution that have large 
concentrations of reactants. Thermal fluctuations in concentration occur on time scales of say 10-9 
seconds over regions involving large numbers of atoms. Regions of large concentration exist for 
times very much longer than the time of the chemical reaction itself. There is plenty of time for 
chemical reactions to occur in regions that thermally fluctuate to large concentrations. It is clear 
that the concentrations of the molecules actually reacting will not be the spatially average 
concentration. Chemical reactions in ionic solutions will occur mostly in regions that have 
concentrations far from the spatial average. 

We expect that chemical reactions occur nonuniformly in ionic solution. The reactions are 
different in different locations. They occur mostly in special places where concentrations have 
fluctuated to large values. Theories that only use average values of concentration will not describe 
what is happening in these situations. Theories are most useful when they are robust and can be 
transferred from one situation to another without changing parameters. Theories of chemical 
reactions in solutions need to include spatial and temporal thermal variations, and concomitant 
thermal fluctuating flows of current (eq. 1-3). Everything is coupled to everything else in such 
systems and they are usually very nonlinear because of the coupling. Theories need to describe 
that coupling and the resulting nonlinearity. Only energy variational methods (that include 
dissipation) can do that, as far as I know.  
Kinetic Models of Biochemical Reactions rarely fit experimental data if conditions are changed, 
even in quite simple ways (Eisenberg 2014). Models are said in chemical language to be not 
‘transferable’ if different rate constants are observed in different situations.  

Rate constants of chemical reactions observed experimentally usually change with 
(1) changes in ‘background’ salt concentration—by adding Na+Cl− for example; (2) changes in the 
type of ‘background’ ion (from say K+Cl− to Na+Cl−); (3) changes in divalent concentration 
(typically Ca2+ or Mg2+); even with (4) changes in concentrations of the reactant or enzyme.  

Rate constants imply free energies. Changes in rate constants imply changes in free 
energies in the underlying chemical reaction. When changes in rate constants are needed to fit data 
in a new set of conditions, the original chemical reaction and its kinetic model need an additional 
free energy to fit experimental data in those new conditions. The last sentence is a polite way of 
saying the original reaction scheme is incomplete, and in that sense incorrect.  

Reaction schemes are not transferable because they leave out a component of free energy. 
Rate constants change as the reaction is transferred from one set of conditions to another because 
the reaction scheme and kinetic model leave out a component of free energy. The new model needs 
to adjust its rate constants to make up for the free energy it has left out.  

Kinetic models can be revised so they are consistent with Maxwell equations. Perhaps the 
revised models will remove the unexplained free energy of nontransferable models and allow 
reaction schemes to fit data with one set of rate constants, over a range of conditions, so they 
become transferable and more useful in dealing with physiological situations.  

Transferable models of this type would be helpful in practical applications. Biochemical 
reactions are usually studied in idealized laboratory conditions quite different from the situations 
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(e.g., salt concentrations) present in biological cells. Models are needed that calculate rates 
correctly in conditions different from those in the laboratory. Big data analysis will find it difficult 
to remove errors introduced by rate constants that are very different from those assumed.  

Models of semiconductor devices do quite well over a range of conditions. They are 
designed to satisfy Maxwell equations. Perhaps chemical reaction schemes can do as well once 
they are modified to conserve current and be consistent with the Maxwell equations.  

Models that assume constant dielectric constants and permittivity hide the significance of 
conservation of current. Models with constant permittivity automatically satisfy conservation of 
current because they include a material displacement current that does not describe the 
displacement current in real materials, even approximately (over a range of conditions and times) 
as described above.  
Miracle of Maxwell’s equations. The miracle is that 0 tε ∂ ∂E  (vacuum displacement current) 
always assumes the value needed to guarantee conservation of current everywhere, at every time, 
in all conditions, with a single constant 0ε . 

 

Appendix: Misleading Formulations 
 

It is tempting to oversimplify Maxwell’s version of Ampere’s law as 

 ( )0 transport 0r t
µ ε ε ∂

= +
∂
Ecurl B J   (A-1) 

yielding the conservation law of ideal materials 

 transport 0 0r t
ε ε ∂ + = ∂ 

Ediv J  (A-2) 

Statements like A-2 tend to obscure the universal nature of conservation of current and so are 
inadvertently misleading.  
 ‘Everyone’ knows that rε  varies from ~79 to 2 in water and is never a constant. So 
‘everyone’ thinks that equations involving rε  are convenient over-simplifications and not 
universal laws at all. So ‘everyone’ thinks of conservation of current (A-2) in this light, as a fib, a 
white lie, hardly a universal law. But conservation of current can be written another way (see eq. 3) 
showing that it is always true. That is what this paper is about.  
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