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Abstract.

Biological ion channels are protein nanotubes embedded in, and passing through,

the bilipid membranes of cells. Physiologically, they are of crucial importance in

that they allow ions to pass into and out of cells, fast and efficiently, though

in a highly selective way. Here we show that the conduction and selectivity of

calcium/sodium ion channels can be described in terms of ionic Coulomb blockade

in a simplified electrostatic and Brownian dynamics model of the channel. The

Coulomb blockade phenomenon arises from the discreteness of electrical charge, the

strong electrostatic interaction, and an electrostatic exclusion principle. The model

predicts a periodic pattern of Ca2+ conduction vs. the fixed chargeQf at the selectivity

filter (conduction bands) with a period equal to the ionic charge. It thus provides

provisional explanations of some observed and modelled conduction and valence

selectivity phenomena, including the anomalous mole fraction effect and the calcium

conduction bands. Ionic Coulomb blockade and resonant conduction are similar to

electronic Coulomb blockade and resonant tunnelling in quantum dots. The same

considerations may also be applicable to other kinds of channel, as well as to charged

artificial nanopores.

PACS numbers: 87.16.Vy, 41.20.Cv, 05.40.-a, 05.30.-d, 87.10.Mn
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1. Introduction

Biological ion channels are natural nanopores providing fast and highly selective

permeation of physiologically important ions (e.g. cations such as Na+, K+ and Ca2+)

through the bilipid membranes of biological cells [1–3]. The channel proteins carrying the

pores are embedded in the cellular membrane, and are complicated structures consisting

of thousands of atoms.

More than three decades after their discovery, and following a vast number of

experiments, a great deal is now known about ion channels. Yet there remain many

features of their function – including some quite basic features – that are still not

properly understood. Examples include: the selectivity in which e.g. a calcium channel

favours Ca2+ over Na+ by up to 1000:1, even though the ions are essentially the same

size; that this selectivity is combined with fast permeation in which the ion goes through

the channel almost at the rate of free diffusion (as though the channel were an open

hole); the anomalous mole fraction effect (AMFE) where, in a pure NaCl solution, a

Na+ ion can pass easily through a calcium channel, but its passage is blocked by tiny

traces of Ca2+; the exact role of the fixed electric charge at the so-called selectivity

filter in determining the selectivity; and, associated with that, the mechanism by which

mutations that alter the fixed charge can result either in destruction of the channel,

so that it no longer conducts, or in conversion of e.g. a sodium channel into a calcium

channel or vice versa. We will account for these and other experimentally observed

features of channel conduction in terms of a novel vision of the permeation process

inspired by well-understood phenomena in a quite different area of physics, associated

with quantum dots and tunnel diodes.

The conduction and selectivity of a cation-selective channel are determined by the

ions’ movements and interactions inside a short, narrow selectivity filter lined with

negatively-charged protein residues that provide the net fixed negative charge Qf ;

correspondingly, anion-conducting channels possess positive fixed charge [1, 4]. Ions

in solution are surrounded by hydration shells with associated dehydration potential

barriers that are also crucial for selectivity in many cases [5–9]. Selectivity frequently

involves a “knock on” mechanism or, more generally, the correlated motion of several

ions [10–13]. The protein residues forming the “locus” of the selectivity filter are amino

acids, of which aspartate (D) and glutamate (E) have negatively charged side chains

(Qf = −1e where e is the proton charge), lysine (K) has a positively charged side

chain (Qf = +1e), and alanine (A) has a neutral side chain. The nominal Qf value

is defined by which amino acid residues are present. Calcium L-type channels possess

EEEE selectivity filter loci (Qf ≃ −4e) [14–16]. Mammalian Na+ channels have DEKA

inner site loci (and DDEE outer sites) [1, 17] and hence different Qf . Bacterial NaChBac

[18] and NavAb [19, 20] Na+ channels have selectivity filters with EEEE loci like Ca2+

channels but select Na+ ions over Ca2+: an apparent anomaly that awaits explanation.

The modern study of ion channels is based on the existence of the distinct open and

closed states of channels, evident in thousands of experiments as discrete levels of current
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flow measured from individual channel proteins [21]. Site-directed mutagenesis provides

a method for systematically varying the structure and net charge of their selectivity

filter loci. The resultant changes in conduction and selectivity as functions of Qf can

then be measured by use of the patch-clamp technique. Such mutant studies [18, 22–

29] have demonstrated that Qf is a key determinant of conduction and selectivity in

the calcium/sodium family of channels, with the Ca2+/Na+ selectivity growing with

increasing |Qf | [30–33]. However, the underlying mechanism has remained obscure.

Discovery of the structures of the bacterial potassium KcsA [34] and sodium NavAb

[19] channels and the application of all-atom molecular dynamics simulations [20, 28, 35–

37] have yielded deep insight into fine details of the ionic permeation processes, including

the reproduction of currents [38, 39]. However, a multi-scale analysis is still needed [40–

42] to build up a full picture. Self-consistent electrostatic and Brownian dynamics

simulations [15, 30, 43–45] describe ionic motion as an electro-diffusion process, leading

to fast and direct estimation of the currents under non-equilibrium conditions. Such

simulations have shown very clearly that the permeation and selectivity features of

many channels are defined by just the basic electrostatics of narrow water-filled channels,

rather than by the details of the channel structures themselves.

The discreteness of the ionic charge plays a significant role in ion channel conduction

[8, 46–48]. An electrostatic theory of ionic transport in water-filled periodically-charged

nanopores [49, 50], treating the ions as a 1D Coulomb gas [50], revealed ion-exchange

through low-barrier phase transitions as the ion concentration and Qf were varied [51].

It has recently been shown that nanopores can exhibit ionic Coulomb blockade [52], an

electrostatic phenomenon similar to electronic Coulomb blockade in mesoscopic systems

[53–56].

Our earlier simulations of a simple electrostatic model of calcium/sodium ion

channels revealed a periodic set of Ca2+ conduction-bands and stop-bands as a function

of the fixed charge Qf at the selectivity filter [57–59] similar to transitions [51]. The

energetics of that phenomenon has been derived from electrostatics as single- and

multi-ion barrier-less conduction and results were compared with the experimental data

available to date [58, 59].

In this paper we demonstrate that the origin of these conduction bands lies in

ionic Coulomb blockade [52], closely similar to its electronic counterpart in quantum

dots [53]. We thus introduce a Coulomb blockade model of permeation and selectivity

in biological ion channels, describing them as discrete electrostatic devices [56]. The

applicability of Coulomb blockade to biological ion channels follows naturally from an

earlier discussion of the crucial role of electrostatics and the suggestion that there might

be “eigenstates” for conduction [60, 61] in biological ion channels. We will show that

the Coulomb blockade model predicts the positions and shapes of the conduction bands,

defines the channel occupancy as a Fermi-Dirac distribution, and thereby provides an

explanation of divalent block and AMFE, including the exponential dependence of the

divalent block threshold IC50 on Qf .

We will focus on the sodium/calcium family of channels including the voltage-
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gated Ca2+ [14, 28] and Na+ channels [19, 62]. These channels exhibit strong valence

selectivity and can undergo a wide range of transformations as the result of site-directed

mutagenesis, enabling us to test many of the predictions of our model. The picture

that we will develop may, however, be more generally applicable. Section 2 describes

a generic model of calcium/sodium channels, its geometry (2.1), electrostatics (2.2),

Brownian dynamics (2.3) and validity (2.4). Section 3 introduces and verifies the ionic

Coulomb blockade model of ion channel conduction and selectivity; it reviews multi-ion

conduction bands (3.1), describes Coulomb blockade model (3.2), identifies real channels

and mutants (3.3), derives the shape of Coulomb blockade oscillations (3.4) and explains

the selectivity and AMFE (3.5) . Subsection 3.6 contains further considerations. Section

4 draws the results together and presents concluding remarks.

In what follows, with SI units e is the proton charge, T the temperature, z the ionic

valence, kB Boltzmann’s constant and ε0 the electric permittivity of the vacuum. We

use dimensionless units for energy assuming kBT = 1.

2. A generic electrostatic and Brownian dynamics model of the Calcium

channel

2.1. Geometry and general features of the model

Figure 1(a) shows the generic, self-consistent, electrostatic model of the selectivity filter

of a calcium/sodium channel whose properties we will analyse. We consider it as a

negatively-charged, axisymmetric, water-filled, cylindrical pore through the protein hub

in the cellular membrane; and, to match the dimensions of the selectivity filters of the

Na+/Ca2+ channels on which we focus, we suppose it to be of radius R = 0.3 nm and

length L = 1.6 nm [14, 15, 63]. The x-axis is coincident with the channel axis, with

x = 0 in the center of channel. There is a centrally-placed, uniformly-charged, rigid

ring of negative charge 0 ≤ |Qf/e| ≤ 7 embedded in the wall at RQ = R. The left-hand

bath, modeling the extracellular space, contains non-zero concentrations of Ca2+ and/or

Na+ ions. For the Brownian dynamics simulations, the computational domain length

Ld = 10nm, its radius Rd = 10nm, the grid size h = 0.05 nm, and a potential difference

in the range 0− 25mV (corresponding to the depolarized membrane state) was applied

between the left and right domain boundaries.

The mobile sodium and calcium ions are described as charged spheres of radius

Ri ≈ 0.1nm for both ions (allowing use of the implicit solvent model [64, 65] with

neglible ion radii), with diffusion coefficients of DNa = 1.33 × 10−9 m2/s [15, 66] and

DCa = 0.79× 10−9 m2/s [15], respectively.

We take both the water and the protein to be homogeneous continua describable

by relative permittivities εw = 80 and εp = 2, respectively, together with an implicit

model of ion hydration whose validity is discussed elsewhere [58]. We approximate εw,

DNa, and DCa as being equal to their bulk values throughout the whole computational

domain (see below, section 2.4).
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Figure 1. (a) Generic electrostatic model of the selectivity filter of a Ca2+ or

Na+ channel. It is treated as an axisymmetric, water-filled, cylindrical pore of

radius R = 0.3nm and length L = 1.6nm through the protein hub in the cellular

membrane. A centrally-placed, uniform, rigid ring of negative charge Qf in the range

0 ≤ |Qf/e| ≤ 7 is embedded in the wall at RQ = R. Ions inside the channel move

in single file along its axis. (b) Energetics of a moving Ca2+ ion for fixed charge

Qf = −1e. The dielectric self-energy barrier Us (blue solid line) is balanced by site

attraction (green dashed line) resulting in an almost barrier-less energy profile (red

solid line).

2.2. Self-consistent electrostatics of the model

The electrostatic potential U for an ion, and the potential gradients, were derived by

numerical solution of Poisson’s electrostatic equation within the computational domain

shown in figure 1:

−∇(ε0ε∇φ) = ρ0 +
∑

i

ezini (Poisson’s equation) (1)

where ε is the relative permittivity of the medium (water or protein), ρ0 is the density of

fixed charge, zi is the charge number (valence), and ni is the number density of moving

ions.

Self-consistent electrostatics within the narrow, water-filled, channel in the protein

differs significantly from bulk electrostatics [49, 67, 68]. The huge gradient between

εw = 80 and εp = 2, the discreteness of ionic charge and the specific channel geometry,

lead to permeation, quasi-1D axial behaviour of ions inside the channel [49, 50, 69], and

hence to single-filing. Consequently, we use a 1D dynamical model to simulate the axial

single-file movement of cations (only) inside the selectivity filter and in its close vicinity.
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Figure 1(b) shows axial single-ion potential energy profiles for Qf = −1e, including

the repulsive self-energy barrier Us and the attraction energy Ua attributable to the

fixed negative charge. The dielectric self-energy Us plays a crucial role in controlling

ion permeation through the narrow channel. It will be shown below that Us defines the

strength of Coulomb blockade for an ion of particular valence z, and that it determines

the condition for strong valence selectivity [30, 58]. The site attraction is proportional

to z × Qf , so that a variation of Qf can significantly change the resultant profile. In

particular for Qf ≃ −1e, the self-potential barrier of the dielectric boundary force

can be balanced by electrostatic attraction to the fixed charge Qf , resulting in almost

barrier-less conduction [58].

2.3. Brownian dynamics simulation of the ionic current

The ions’ motion through a channels can be described as an electro-diffusion process

and investigated through Brownian dynamics simulations [15, 30, 44, 45, 57, 70–73] of the

ionic trajectories. Taking account of the single-filing required by electrostatics, we can

solve the over-damped, time-discretized, Langevin equation numerically. An axial step

∆xi of the i-th ion is defined as [74],

∆xi = − zeDi∇xφ(xi)∆t +
√

2Di∆t ξi(t) (Langevin equation) (2)

where Di is the ionic diffusion coefficient, ∆t is the time step, ξi(t) is normalized

white noise, zi is the valence of the i-th ion, and the potential φ(xi) is calculated self-

consistently from (1) at each simulation step.

Brownian dynamics simulations of the ion current J and occupancy P were

performed separately for CaCl2 and NaCl solutions, and also for a mixed-salt

configuration, with concentrations [Na] = 30mM and 20µM≤ [Ca] ≤ 80mM.

2.4. Validity and limitations of the generic model

Our reduced model obviously represents a considerable simplification of the actual

electrostatics and dynamics of moving ions and water molecules within the narrow

selectivity filter. The validity and range of applicability of this kind of model have

been discussed in detail elsewhere [35, 58, 75, 76]. The most significant simplifications

are probably: the use of continuum electrostatics; the use of the implicit solvent model;

the use of Brownian dynamics with uncorrelated noise sources for the charged particles;

and the assumption of 1D (i.e. single-file) movement of ions inside the selectivity filter.

We can partially accommodate these simplifications by use of effective values [58].

3. Coulomb blockade model of permeation and selectivity

In this section we introduce the Coulomb blockade picture of permeation and

selectivity and show that the phenomenon manifests itself in the model of figure 1

when its geometrical parameters are appropriate for calcium/sodium channels. We
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Figure 2. Multi-ion Ca2+ conduction and occupancy in the Ca2+/Na+ channel

model vs. the effective fixed charge Qf ; the Brownian dynamics (BD) simulation

results (a),(b) are reworked from [57, 59]. (a) Plots of the Ca2+ current JCa for pure

Ca2+ baths of concentration 20, 40 and 80mM. The BD results of Corry et al [15] are

shown for comparison (blue, dashed, diamonds, in arbitrary units). (b) The channel

occupancy PCa. (c) Plots of the electrostatic energy Un (blue, dashed) and the ground

state (i.e. minimum) energy UG = minn(Un) (red, solid) vs. Qf for channels with

n = 0, 1, 2, 3. Ca2+ ions inside. The conduction bands M0, M1, M2 and the stop bands

Z1, Z2, Z3 (indicated by labels) are discussed in the text.

will show that the model describes well both the simulated conduction bands and

many experimentally-measured phenomena of valence selectivity in calcium/sodium

channels. The Coulomb blockade model provides significant generalisation of our earlier

explanation of conduction bands [58] and connects them with mesoscopic transport and

single-electron devices [52, 54, 56].

We start by reviewing the main outcome of our earlier Brownian dynamics

simulations of conduction bands [57, 58] in order to summarise some of the results that

need to be explained including, in particular, the observation of conduction bands.

3.1. Multi-ion conduction bands

Figures 2(a),(b) and 3(a),(b) present the Brownian dynamics results [57–59] for

permeation of the model channel figure 1(a) by calcium and sodium ions, respectively,

in pure baths of different concentration, plotted in each case as a function of Qf .

Figure 2(a) exhibits a sequence of narrow conduction bands M0, M1, M2, separated

by stop-bands of almost zero-conductance centred on the blockade points Z1, Z2, Z3.

Figure 2(b) shows that the Mn peaks in JCa correspond to transition regimes where

the channel occupancy PCa jumps from one integer value to the next, and that the
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Figure 3. Multi-ion Na+ conduction and occupancy in the Ca2+/Na+ channel

model vs. the effective fixed charge Qf ; the Brownian dynamics simulation results

(a),(b) are reworked from [59]. (a) Plots of the Na+ current JNa for pure Na+

baths of concentration 20, 40 and 80mM. (b) The occupancy PNa. (c) Plots of the

electrostatic energy Un (blue, dashed) and resulting oscillations of the ground state

energy UG = minn(Un) (red, solid) vs. Qf for channels with n = 0, 1, 2...6 Na+ ions

inside. The conduction band L0 is discussed in the text.

stop-bands correspond to saturated regions with integer PCa = 1, 2, 3....

The band M0 corresponds to single-ion low-barrier conduction (see red curve in

figure 1(b)). Band M1 corresponds to double-ion knock-on conduction, which is well-

established for L–type Ca2+ channels [14, 77, 78]; a similar peak was obtained by Corry et

al [15] in Brownian dynamics simulations of the Ca2+ channel. Band M2 corresponds to

triple-ion conduction, a process that can be identified with the permeation of ryanodine

receptor calcium channels [7] (see Table 1 below for further detail). These bands can be

considered as examples of self-organization in ion channels [16, 73].

Comparison of the JCa and PCa plots in figures 2(a) and (b) shows that for the Mn

points near which conduction occurs, Qf = −ze(n + 1/2); whereas the non-conducting

regions of constant P correspond to Zn points with Qf = −zen, i.e. to the neutralized

state [59]. These bands will be interpreted below as strong Coulomb blockade.

Figures 3 (a) and (b) plot the equivalent results for sodium ions in pure NaCl baths

of different concentration showing (a) the sodium current and (b) the occupancy as

functions of Qf . The current JNa exhibits a single-ion peak L0 that would appear to be

analogous to the calcium conduction band M0 of figure 2(a). For larger Qf there are

weak, strongly overlapping, conduction bands between which the current does not fall

to zero, making the sodium conductance relatively independent of Qf . The separations

of the JNa band maxima are approximately half the size of those for the calcium bands,
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reflecting the charge difference between Na+ and Ca2+ ions. We will refer to this scenario

as an example of weak Coulomb blockade.

Figures 2(c) and 3(c) plot the ground state energies characteristic of Coulomb

blockade graphs [56]. They will be discussed in the next section. Note that we use

ground state in the physics sense, implying the state of minimum energy.

3.2. Coulomb blockade oscillations of conductance

We are now in position to introduce the Coulomb blockade model of conduction and

selectivity in Ca2+/Na+ ion channels. We will find that it is able to account for the

pattern of calcium and sodium bands seen in figures 2 and 3 in terms of strong and

weak Coulomb blockade oscillations [55], respectively .

The discreteness and entity of the ionic charge allow to us to introduce exclusive

“eigenstates” {n} of the channel for fixed integer numbers of ions inside its selectivity

filter, with total electrostatic energy Un. The transition {n} → {n+ 1} corresponds to

the entry of a new ion, whereas {n} → {n− 1} corresponds to the escape of a trapped

ion. The n ions’ eigenstates form a discrete exclusive set of {n}-states [79] :

n = {0, 1, 2, ...}
∑

n

θn = 1; Pc =
∑

n

nθn, (3)

The electrostatic exclusion principle (3) leads to Fermi-Dirac statistical distributions

[80] for θn and Pc, as will be derived below.

The total energy Un for a channel in state {n} can be expressed as:

Un = Un,s + Un,a + Un,int (4)

where Un,s is the self-energy, Un,a is the energy of attraction, and Un,int is the ions’

mutual interaction energy.

We approximate Un as the dielectric self-energy Un,s of the excess charge Qn, based

on the assumption that both the ions and Qf are located within the central part of the

selectivity filter, so that application of Gauss’s theorem to the n similar ions captured

within its volume gives a Coulomb blockade-like quadratic dependence of Un on Qf [51]:

Un =
Q2

nL

8πε0εwR2
=

Q2
n

2Cs

( Electrostatic energy )

Qn = zen +Qf ( Excess charge ). (5)

Here, Cs stands for the geometry-dependent self-capacitance of the channel, and Qn

represents the excess charge at the selectivity filter for the n ions as a function of Qf .

A binomial expansion Q2
n in (5) gives first approximations for Un,s, Un,a and Un,int that

are consistent with the energetics analysis in [58] and with the 1D Coulomb gas model

of ion-ion and ion-fixed charge interactions [49, 50]. A more realistic account of the

interactions would result in corrections to (5) and to the formulæ derived from it.

With (5) we arrive at an equation identical to that for electronic Coulomb blockade

(except for the presence of z), and our further consideration follows standard Coulomb
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blockade theory [53, 55]. Remarkably, however, the ionic version of the phenomenon

exhibits valence selectivity precisely because it contains the valence z.

To interpret the conduction bands in terms of Coulomb blockade, we calculate Un

as a function of Qf for n = 0, 1, 2, 3 and examine the minimum (i.e. ground state) energy

UG(Qf ) = min
n

(Un(Qf , n)) (Ground state energy) (6)

for the ground state occupancy nG, and the excess charge QG, all as functions of Qf (see

Figures 2(c) and 3(c)). The ground state (6) is by definition a stable state in thermal

equilibrium.

Coulomb blockade appears in low-capacitance systems on account of quantization

of the quadratic energy in (5) on a grid of discrete states (3), provided that the ground

state {nG} is separated from neighbouring {nG ± 1} states by large Coulomb energy

gaps as function of geometry (R,L) and ion valence z:

Us =
e2

2Cs
=

λBL

2R2
, Us,z = z2Us ≫ 1 (Coulomb gap) (7)

where λB stands for Bjerrum length [49] (0.7nm for water at T = 298K). This is the

applicability condition for the strong electrostatic exclusion principle. Ion channels are

extremely small and have tiny capacitance: the dimensionless self-energies of monovalent

and divalent ions are Us,1 ≈ 5 and Us,2 ≈ 20, respectively, providing strong Coulomb

blockade effects for divalent ions.

It follows from (5) that Un vs. Qf for given z is described by an equidistant set of

identical parabolæ of period equal to the ionic charge ze. These patterns are plotted

for Ca2+ in figure 2(c) and for Na+ in figure 3(c). We note that UG(Qf ) exhibits two

different kinds of ground state singular points, marked as Mn and Zn. The minima of

Un (and correspondingly the blockade regions) appear around the neutralisation points

Zn = −zen where the net charge at the selectivity filter Qn = 0 and the occupancy Pc

is saturated at an integer value [51, 58].

Figure 2(c) illustrates the fact that for Ca2+ the ground state {nG} Zn points

are separated from neighbouring {nG ± 1} states by an impermeable Coulomb gap of

∼ 20 (see (7)) hence providing strong Coulomb blockade. At the neutralized (Qn = 0)

blockade points Zn, Ca
2+ ions are prohibited by the self-energy barrier from entering

the uncharged channel. The crossover points Mn (Un = Un+1) allow low-barrier (almost

barrier-less) {n} ⇆ {n + 1} transitions (cf. figure 1 (b)); they correspond to the Pc

transition regions and to the conduction peaks in J [58]. The Mn points are separated

from higher energy states by impermeable barriers of ∼ 40; these points are equivalent

to the ion-exchange transitions reported by Zhang et al. [51].

The pattern of sodium ground states in figure 3(c) arises from energy gaps Uc that

are 4× smaller than for calcium, They are too small to prevent thermally activated

transitions between neighbouring states and they allow the coexistence of more then

two {n}-states; correspondingly there is only a weak exclusion principle, in turn giving

rise to weak Coulomb blockade.
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Coulomb blockade model of permeation and selectivity in biological ion channels 11

The positions of the singular Qf points in figure 2(a) can be written as:

Zn = − zen± δZn, (Coulomb blockade)

Mn = − ze(n + 1/2)± δMn (Resonant conduction) (8)

where δZn, δMn are possible corrections for the singular parts of the affinity and ion-ion

interaction (see above) and possible electrostatic field leakage. Equations (8) describe

two interleaved periodic sets of points having periods equal to the ionic charge ze, very

similar to their counterparts in electronic Coulomb blockade [54].

The points Zn = −zen are neutralisation points, where the excess charge Qn = 0

and UG takes minimal values. Such points are stable and current is prohibited. Charge

neutrality is important, but it is not the only factor that influences channel conductance:

the term ±δZn accounts formally for the other factors (unaccounted parts of ion-ion/ion-

ligand interactions and hydration energy, fields leaks etc).

The points Mn = −ze(n + 1/2) are where barrier-less conduction occurs, for

which Un = Un+1. Similarly, the terms ±δMn account formally for any unconsidered

perturbations.

We may therefore interpret the Brownian dynamics-simulated calcium conduction

bands of figure 2(a) as Coulomb blockade conductance oscillations [55] which appear

in this case as |Qf | is being increased, and the corresponding occupancy steps in figure

2(b) as a Coulomb staircase [56]. The deviations in the precise positions of Mn and Zn

can be attributed to field leaks and the model simplifications.

3.3. Identification of bands with real calcium channels

Table 1, showing the putative identifications of the bands/singularities in the Coulomb

blockade model with real channels, wild type and mutants in the Ca2+/Na+ family, has

been extended from [57, 58].

Table 1(a) describes shows identifications of conduction bands with wild type

channels.

The single-ion Na+ barrier-less point L0 can be speculatively identified with the

non-selective DEKA sodium channel (Qf = −1e) [1, 17]. The single-ion Ca2+ barrier-

less point M0 can be identified with the non-selective OmpF porin (Qf = −1e) [27], or

with nonselective Na+-K channel [81].

Mammalian calcium channels exist in several modifications. Some of them (L-

type, T-type) share the same highly-conserved 4-glutamate (EEEE) locus at the

selectivity filter with nominal Qf = −4e [14]. The permeation properties (sharp

selectivity, AMFE, double-ion nature of calcium permeation) of these channels are

consistent with the double-ion M1 Ca2+ conduction band [57, 58]. Double-ion knock-on

mechanism of conduction and selectivity of L-type calcium channel has been derived

from experimentally observed double-affinity of AMFE [14, 78]. The same M1 peak can

be also identified with the Ca2+-selective mutant of the Nav sodium channel (Qf = −3e)

[22] and a calcium-selective mutant of OmpF porin (Qf = −4e) [27].
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Coulomb blockade model of permeation and selectivity in biological ion channels 12

Table 1. Putative identification of ionic Coulomb blockade model bands with some

known wild type (WT) channels and mutants sequences (extended from [58]).

N Channel/mutant Site locus Nom.

Qf/e

Band Band’s

Qf/e

(a) WT Na+-selective Nav channel [22] DEKA −1 L0 −0.5

WT Non-selective OmpF [27] KRRRDE −1 M0 −1

WT Ca2+-selective L-type channel [23] EEEE −4 M1 −3

WT NaChBac[18], NavAB [28] EEEE −4 Z2 −4

WT Ca2+-selective RyR channel [7] DDDD(ED) −6 M2 −5

(b) WT Na+-selective Nav channel [22] DEKA −1 L0 −0.5

Ca2+-blocked Nav mutant ⇒ DEKE −2 M0 −1

Ca2+-permeable Nav mutant ⇒ DEEA −3 Z1 −2

Ca2+-selective Nav mutant ⇒ EEEE −4 M1 −3

(c) WT Ca2+-selective L-type channel [23] EEEE −4 M1 −3

Ca2+-blocked Cav mutant ⇒ EEQE −3 Z1 −2

Na+-conductive Cav mutant ⇒ EEKE −2 M0 −1

Na+-selective Cav mutant ⇒ EEKA −1 L0 −0.5

(d) WT Na+-selective NaChBac[18]
EEEE −4 Z2 −4

Ca2+-selective CaChBac mutant
⇒ EEEE+DDDD −7 M3 −8

(e) WT Na+-selective NavAB[28]
EEEE −4 Z2 −4

Ca2+-selective CavAB mutant
⇒ EEEE+DDDD −7 M3 −8

The Ryanodine receptor RyR calcium channel has Qf ≈ −6e and relatively weak

selectivity [7]. We connect it with M2 ≈ −5e three-ion conduction point [57, 58].

Bacterial sodium channels, NaChBac [18] and NavAB [28] possess EEEE loci (with

nominal Qf = −4e), typical of mammalian calcium channels but nonetheless exhibit

Na+-selective features and divalent blockade. We connect them (speculatively) with the

Z2 Ca2+ blockade point for Qf = −4e.

It is evident that the nominal charges of the channel loci exceed the charge of the

model bands by nearly ∆Qf = 1e. For example, at M1 we have Qf = −3e from the

Coulomb blockade model, whereas the nominal Qf = −4e for the EEEE loci of L-type

calcium channels (and there are corresponding discrepancies at the M2 and M3 points).

We speculate that these systematic discrepancies may be connected to field leaks, to the

distant influence of the positive charges of the other ends of the amino acids buried in the

rest of the protein, or to possible protonation of the side chains [82]. Molecular dynamics

simulations [28, 35, 38] could be particularly helpful in determining the effective values

of Qf for wild type and mutant channels.

The above identification scheme can thus account for many mutation transforma-

tions observed in the Ca2+/Na+ channels family. The main test and validation of the

Coulomb blockade model is the correct prediction that single ±1e mutations should lead

to sharp changes of calcium conductance from resonance to blockade and vice versa.
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Coulomb blockade model of permeation and selectivity in biological ion channels 13

Similarly, table 1(b) describes the radical mutation-induced transformation of the

Nav sodium channel to a calcium channel, when the DEKA locus has been sequentially

changed by point mutations [22].

Table 1(c) shows that the downward mutations of EEEE calcium channels described

in [23] lead to a moderate decrease of divalent/monovalent (Ba2+/Na+) selectivity for

EEEE(-4e)→EQEE (-3e) mutation and a sharp, two-order decrease for the EEEE(-

4e)→EKEE (-2e) mutation (though see discussion below).

Table 1(d),(e) show that the upward mutations of the EEEE loci of bacterial sodium

channels (EEEE (−4e) ⇒ EEEE+DDDD (-8e)) calcium channels described in [18, 28]

lead to channel transformation to a calcium-selective mutant CaChBac and CavAB,

respectively. Ca2+ selective mutants demonstrate selectivities of up to 600× in favour

of Ca2+ ions over Na+, and AMFE. We putatively connect these transformations with

the jump Z2 ⇒ M3. Note, that the model predicts rather high numbers of ions inside

the channel (between 3 and 4 for M3) but there is no experimental evidence to support

these specific occupancy numbers.

One of the most striking consequences of the Coulomb blockade oscillations is that,

for channels having Qf ≈ Mn, adding one negative charge should dramatically decrease

the Ca2+ conductance. So far, all mutation chains showed increase of calcium selectivity

with growth of negative Qf which can also, however, be explained by alternative models

[32]. On the other hand these experiments are limited to |Qf | ≤ 4e where the Coulomb

blockade model also predicts an experimental increase of calcium selectivity with growth

of |Qf | in the range |Qf | = 0 − 4e (see Fig. 11 of [58]) but predicts a sharp drop in

calcium selectivity near the neutralisation blockade point Z2.

We can suppose that the NavAB/NaChBac EEEE locus has an effective Qf = Z2 =

−4e, and hence a 1e mutation of the EEEE ring (or a ±1e mutation of the neighbouring

ring of residues) should lead to increase of S for both directions of mutation. The

currently available data (see Table (d),(e)) were obtained for mutation steps of Qs = 4e

and thus cannot resolve the effect of the smaller 1e jumps.

These identifications can be seen as an initial verification of the Coulomb blockade

model predictions, albeit with some discrepancies. Further investigations are needed to

confirm the channel identifications, to understand why the nominal Qf is systematically

slightly smaller than the Qf values of band maxima in the model, and to establish the

reason why mammalian and bacterial channels with EEEE-loci have opposite selectivity

properties.

3.4. Shapes of the Coulomb blockade oscillations

We now develop a description of the (interconnected) shapes of the Coulomb blockade

oscillations in J , and the Coulomb staircase in P . We consider the case of divalent Ca2+

bands arising from strong Coulomb blockade (figure 2).

The equilibrium distribution of Pc in the vicinity of the Mn points (and hence

calculation of the shapes of Pc(U) or Pc(Qf)) follows from standard Coulomb blockade
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Figure 4. The calculated occupancy P and current J as Uc (or equivalently Qf )

is varied. The occupancy Pc (blue, dash-dot) shows the Fermi-Dirac transition from

Pc = 0 to Pc = 1. The currents calculated in the Landauer Jc ∼ dP/dU (green,

solid) and Fermi-GHK (red, dashed) approximations both exhibit resonant peaks in

the transition region.

theory. As mentioned above, the energy level separation for divalent Ca2+ is so large

(≈ 40) that the general set of eigenstates (3) reduces to a simple 2-state exclusive set:

m = {n, n+ 1}; θn + θn+1 = 1; Pc = n+ θn+1. (9)

The electrostatic exclusion principle (9) plays the same role here as that of the Pauli

exclusion principle in quantum mechanics [83–85]; the standard derivation via the

partition function, taking account of exclusion principle (9) leads [86–88] to Fermi-Dirac

statistics for θn+1 and an excess (fractional) occupancy P ∗

c = Pc mod 1 :

P ∗

c = (1 + exp (Un+1 − µ))−1 =
(

1 + P−1

b exp (Uc)
)

−1
, (10)

where µ = µ0 + lnPb is the chemical potential, Pb is a reference occupancy related to

the bulk concentration, and µ0 is a constant potential assumed here to be µ0 = 〈U〉 =

(Un + Un+1)/2. Hence:

Uc = Un+1 − µ0 = (Un+1 − Un)/2. (11)

The Fermi-Dirac equation (10) is equivalent to the Langmuir isotherm [86] and to

Michaelis-Menten saturation. A similar Fermi function was obtained earlier [51] for

the variation of Pc with concentration.

Note that the Fermi-Dirac distribution needed for cases where the exclusion

principle is based on volume exclusion, and the ions have unequal diameters, has been

investigated by Liu and Eisenberg [85, 89, 90].

It follows from (5) that Uc is a linear function of Qf :

Uc = kz
∆Qf

e
, (12)
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where ∆Qf = Qf−Mn and kz = zUs. Hence the Fermi-Dirac function (10) also describes

the dependence of P ∗ on Qf :

P ∗

c =

(

1 + P−1

b exp

(

kz
∆Qf

e

))

−1

, (13)

where for our geometry with for z = 2 (Ca2+ ions) the dimensionless scaling coefficient

kz ≈ 10. This is the final result for the shape of the Coulomb staircase of occupancy vs.

as a function of Qf . Fig. 2(b) shows qualitative agreement of P (Qf) shapes with (13),

including the concentration-dependent shift between curves with different Pb. We will

make a more detailed comparison below.

Approximate forms of the current as a function of energy (or fixed charge) can be

found via the variance σ of the Fermi-Dirac occupancy P due to thermal fluctuations,

as follows from the fluctuation-dissipation theorem and linear response theory [91]. The

ability of an energy level to contribute to the current/conductance is then proportional

to σ2 = dP/dUc via the Landauer approximation [54, 55]:

Jc

Jmax

∝
dP

dUc

= cosh−2

(

Uc

2

)

, (14)

where Jmax is the barrier-less diffusive current. Taking account of scattering, one reaches

the standard Coulomb blockade theory approximation [55, 92]:

Jc

Jmax
= Ucsinh

−1 (Uc) ≈ cosh−2

(

Uc

2.5

)

(15)

Alternatively (15) can be derived by the quasi-equilibrium (or nonequilibrium reaction

rate [93]) approach with explicit solution of the Nernst-Planck equation (i.e. the

Goldman-Hodgkin-Katz (GHK) solution ) taking account of the Fermi-Dirac occupancy

(10), so (15) can thus be called the Fermi-GHK approximation; a similar result was

obtained earlier by Mott [94, 95].

Figure 4 reveals a resonant conductivity as Uc is varied, for both the Landauer

(14) and Fermi-GHK (15) approximations: in each case there is a peak coinciding with

the maximum in the derivative of Pc, dP/dUc. (Note that, from (5), variation of Uc

is equivalent to variation of Qf .) In practical terms, the difference between the two

approximations is small: they both represent double-exponential peaks of half-width

U1/2 ≈ 2.3 . The form of this current is similar to that of the tunneling current in a

quantum dot [54]: an even, double-exponential function of Uc, reflecting the symmetry

of the escape and relaxation trajectories [96]. Note that even small asymmetries, easy

to overlook, can have disquieting effects [97].

For a quantitative comparison of the theory with Pc as obtained from the Brownian

dynamics simulations, we calculate the effective (excess) well depth U∗

c as:

U∗

c = ln
1− P ∗

c

P ∗

c

= kz
∆Qf

e
(16)

The Fermi-Dirac function (10) predicts that U∗

c should be linear in Qf , i.e. (16)

represents linearising coordinates for the Fermi-Dirac equation (10); the Coulomb

blockade model also predicts the geometry-dependent coefficient kz.
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Figure 5. Comparisons of the ionic Coulomb blockade model with Brownian dynamics

(BD) simulation results as Qf is varied. (a) The effective well depth U∗

c (blue

point-down triangles) fitted by Fermi-Dirac function (16) with best-fit slopes (full red

lines) and with analytical slopes kz (green dashed lines). (b) The full green curves

representing the Landauer approximation (14), and the red-dashed lines representing

the Fermi-GHK approximation (15), are compared with the Brownian dynamics

simulations (blue, point-up triangles)..

Figure 5(a) shows a sawtooth-like dependence of U∗

c on Qf , confirming that the

P ∗

c transitions obey the Fermi-Dirac function (10) of Uc. For M1, the slope corresponds

well with analytic kz; the discrepancies in slope at M2 and M3 are attributable to our

neglect of ion-ion interactions.

Figure 5(b) compares the predictions of the Coulomb blockade model with the

conduction bands M0, M1, M2 obtained from the simulations [57]. The Landauer and

Fermi-GHK peaks are calculated using (14) and (15) respectively with the values of U∗

c

taken from plot (a), and there are no adjustable parameters. The BD peak shapes and

positions are described reasonably well by the model, extending the simpler fitting in

[58, 59]. Again, the afgreement is very good for M1, and less good for M2 and M3 on

account of our neglect of field leaks and the singular parts of the interactions.

In general, the results of Brownian dynamics simulations [57, 58] correspond well

with the predictions of the Coulomb blockade model.

3.5. Valence selectivity and AMFE

Comparison of the Ca2+ (z = 2) bands pattern (figure 2) with the Na+ (z = 1) picture

(figure 3 ) clearly shows that, unlike its electronic counterpart, ionic Coulomb blockade

is valence-dependent: the positions of the bands M0 = ze/2, and their period ze, shift

in proportion to z as described by equation (8) and they broaden/narrow in proportion
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Figure 6. Calcium block as a function of the net charge Qf of the sodium channel

inner ring mutants (relative to the wild type (DEKA)). For the indicated mutants

IC50 (i.e. the concentration [Ca2+] necessary to block 50% of sodium inward current)

is plotted as a function of the net charge of the inner ring Qf . Data points are taken

from [24] (blue open circles) and [22] (green open squares). The continuous red line

indicates an exponential function a exp(−b|Qf/e|), with b = 2.29, corresponding to a

least-squares fit to all the data.

to z2 (5) [58].

The ionic Coulomb blockade model attributes selectivity to modification of the UG

dependences on Qf . Valence selectivity is provided by the electrostatic z-dependent

shift of UG(n,Qf ) curves and the corresponding shifts of the Mn and Zn singular points.

Alike-charge selectivity can in principle be accounted by hydration-dependent shifts of

Mn and Zn.

The model also predicts that a monovalent (e.g. sodium) ionic current can be

effectively blocked by a few divalent (e.g. calcium) ions, an effect well-known in calcium

and sodium channels. Calcium blockade is an aspect of AMFE, which is a signature

of EEEE calcium channels [14]. The threshold of the divalent block IC50 is defined as

the Ca2+ concentration which results in a 50% decrease in the monovalent current [14].

We can estimate IC50 on the assumption that the sodium current is proportional to

(1− PCa), i.e. to the fraction of time when the channel is not blocked by calcium ionc.

Hence equations (12, 13) result in an exponential dependence of IC50 on Qf :

IC50 ∝ exp

(

k2
∆Qf

e

)

, (17)

which is a prediction that can be tested.

Mutant studies of the DEKA sodium channel [22, 24, 26] have measured the

dependence of AMFE on the selectivity filter locus and its Qf , and it was shown that
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log(IC50) can successfully be fitted by a linear function of Qf (figure 6), in agreement

with the prediction (17) of the Coulomb blockade model, or

log(IC50) = a + b
Qf

e
, (18)

where a and b are constants. The best-fit line gives b = 2.29 [24] which does not agree

well with the b = k2 ≈10 calculated for our model. This discrepancy can be interpreted

as evidence that the geometrical parameters (R and L) of the selectivity filter of a DEKA

sodium channel differ from values taken in our model (R = 0.3nm, L = 1.6nm). To

be compatible with experiments the selectivity filter would need to be shorter and/or

wider. We can get good agreement for e.g. R = 3.5nm and L = 0.4nm (such a short

selectivity filter would in fact correspond well to the model of [70]) for which k2 = 2.28.

Because the exact values are not yet known, our fitting can be used to estimate these

parameters. Note, however, that the fitting (18) is not unique to the Coulomb blockade

model but follows from the dominance of electrostatics for divalent ions [24].

3.6. Further considerations

Although an ion moving inside a channel is a room-temperature classical system

described by Newtonian dynamics, we see that it exhibits some quantum-like mesoscopic

features [52]. They include the appearance of strong Coulomb blockade oscillations in

conductance, a Coulomb staircase, and a Fermi-Dirac distribution of occupancy for Ca2+

ions. We attribute such behavior to the charge discreteness, to the strong electrostatic

interaction in confinement [52] and to the electrostatic exclusion principle. It has been

shown rigorously that, in the presence of an exclusion principle, Brownian motion leads

to a Fermi-Dirac distribution of the Brownian particles [84].

A parametric study [57] based on Brownian dynamics modelling has shown that,

in accordance with (7), strong Coulomb blockade may be expected in channels of radii

R = 0.25− 0.35nm for ions having z = 2, e.g. for Ca+ ions in calcium/sodium channels.

It is an interesting and significant question whether or not strong blockade and the

corresponding oscillations may also arise in the conduction of monovalent ions in K+

channels. The latter have a selectivity filter of appropriate radius, R ≈ 0.25nm [34].

Furthermore, K+ ions are fully hydrated, which should lead to a stronger electrostatic

interaction and hence to a marked decrease in the effective εw, bringing it close to

εw = 1. In such a case equation (7) suggests that we could expect an observable

Coulomb blockade effect, even for monovalent ions in potassium channels [40, 41], a

speculation that needs to be tested.

The relationship of the stop bands in the model to the subconductance states

seen in experiments, and to the noise of closed channels, remains to be determined.

Subconductance states and unusual baseline noise are found in a wide variety of natural

biological channels [98].
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4. Conclusions

We conclude that ionic Coulomb blockade manifests itself in a simple electrostatic and

Brownian dynamics model of a water-filled charged nanopore with parameters chosen

to correspond to those of biological ion channels. It is a fundamental electrostatic

phenomenon based on charge discreteness, an electrostatic exclusion principle and linear

response theory. For divalent Ca2+ ions in calcium/sodium channels, the blockade is

strong, so that the ionic permeation process is closely analogous to low-temperature

mesoscopic transport in quantum dots. The several similarities include the applicability

of Fermi-Dirac statistics and the appearance of Coulomb blockade oscillations, i.e. the

calcium ion channel can behave as a single-charge discrete electrostatic device.

For the parameter range where it is applicable and strong, the ionic Coulomb

blockade picture leads to several explicit predictions that are unique to the model:

◦ Periodic oscillations of conductance vs.Qf with a period close to the ionic charge ze,

with stop-bands Zn centred on positions −zen, and conduction-bands Mn centred

on −ze(n + 1/2).

◦ Hence, a valence dependence of the pattern of bands, leading to valence selectivity.

◦ Fermi-Dirac occupancy statistics and corresponding shapes of the occupancy bands.

◦ The barrier-less character of conduction at the Mn points.

The approach also provides straightforward (provisional) explanations of many

experimentally observed phenomena in the Ca2+/Na+ channels family including:

◦ Fast permeation, which can be accounted for through barrier-less single- and multi-

ion conductivity.

◦ The strong valence selectivity of calcium channels.

◦ Divalent block of a monovalent current and the anomalous mole-fraction effect

(AMFE).

◦ The mutation transformations of conduction and selectivity.

The ionic Coulomb blockade model of ionic permeation provides a simple and

transparent explanation of a wide range of experimental data that hitherto had

not seemed to be connected, and it reinterprets the calcium conduction bands as

manifestations of a quite general electrostatic phenomenon, common to ion channels,

quantum-dots, and tunnel diodes.

Currently available experimental data do not allow for full validation of the

Coulomb blockade model and, moreover, there are some small discrepancies. Therefore,

we present this theory as something still awaiting full verification through comparison

with experimental results from real biological channels, rather than as something already

“verified”. Further investigations are needed to confirm/refute the tentative channel

identifications, to understand why the nominal Qf is systematically slightly smaller

than the Qf values of band maxima in the model, and to explain why mammalian and

bacterial EEEE-loci channels have different selectivity properties.

Finally, we remark that the results could also be applicable to other ion channels

and to biomimetic nanopores with charged walls.
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[32] Csányi, E., Boda, D., Gillespie, D. & Kristf, T., Current and selectivity in a model sodium

channel under physiological conditions: Dynamic Monte Carlo simulations, Biochim. Biophys.

Acta (BBA) – Biomembranes 1818, 592–600 (2012).

[33] Dudev, T. & Lim, C., Evolution of eukaryotic ion channels: Principles underlying the conversion

of Ca2+-selective to Na+-selective channels, J. Amer. Chem. Soc. 136, 3553–3559 (2014).

[34] Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T.

& MacKinnon, R., The structure of the potassium channel: Molecular basis of K+ conduction

and selectivity, Science 280, 69–77 (1998).

[35] Roux, B., Allen, T., Berneche, S. & Im, W., Theoretical and computational models of biological

ion channels, Quart. Rev. Biophys. 37, 15–103 (2004).

[36] Brooks, B. R. et al., CHARMM: The biomolecular simulation program, J. Comp. Chem. 30,

1545–1614 (2009).

[37] Berneche, S. & Roux, B., Energetics of ion conduction through the K+ channel, Nature 414, 73–77

(2001).

[38] Jensen, M. Ø., Jogini, V., Borhani, D. W., Leffler, A. E., Dror, R. O. & Shaw, D. E., Mechanism

of voltage gating in potassium channels, Science 336, 229–233 (2012).

[39] Shaw, D. E. & et al, Anton 2: raising the bar for performance and programmability in a special-

purpose molecular dynamics supercomputer, in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, 41–53 (IEEE Press,

Piscataway, 2014).
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