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Abstract. The combinatorial explosion of empirical parameters in tens of thousands

presents a tremendous challenge for extended Debye-Hückel models to calculate activity

coefficients of aqueous mixtures of most important salts in chemistry. The explosion of pa-

rameters originates from the phenomenological extension of the Debye-Hückel theory that

does not take steric and correlation effects of ions and water into account. In contrast, the

Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuni-

form hard spheres of any size with interstitial voids and includes ion-water and ion-ion

correlations. We present a Poisson-Fermi model and numerical methods for calculating the

individual or mean activity coefficient of electrolyte solutions with any arbitrary number of

ionic species in a large range of salt concentrations and temperatures. For each activity-

concentration curve, we show that the Poisson-Fermi model requires only three unchanging

parameters at most to well fit the corresponding experimental data. The three parameters

are associated with the Born radius of the solvation energy of an ion in electrolyte solution

that changes with salt concentrations in a highly nonlinear manner.
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1. INTRODUCTION

Thermodynamic modeling of aqueous electrolyte solutions plays an important role in

chemical and biological sciences [1—13]. Despite intense efforts in the past century, robust

thermodynamic modeling of electrolyte solutions still presents a difficult challenge and re-

mains a remote ambition in the extended Debye-Hückel (DH) models due to the enormous

number of parameters needed to adjust carefully and often subjectively [11, 13]. For exam-

ple, the Pitzer model requires 8 parameters for a ternary system and up to 8 temperature

coefficients (parameters) for every Pitzer parameter in a temperature interval from 0 to

about 200 ◦C [11, 13]. It is indeed a frustrating despair (frustration on p. 11 in [9] and

despair on p. 301 in [1]) that approximately 22,000 parameters for combinatorial solutions

of the most important 28 cations and 16 anions in salt chemistry have to be extracted from

the available experimental data for one temperature [11]. The Pitzer model is still the most

widely used DH model with unmatched precision for modeling aqueous electrolyte solutions

over wide ranges of composition, temperature, and pressure [13].

The Pitzer model and its variants [13] are all derived from the Debye-Hückel theory [14]

that in turn is based on a linear Poisson-Boltzmann (PB) equation [5] although potentials

calculated from PB near ions (for example) are often far beyond linear. The PB equation

treats ions as point charges without steric volumes and water molecules as a homogeneous

dielectric medium without steric volumes either and with a constant dielectric constant that

neglects ion-water and ion-ion correlations. These simplifications give rise to the elegant,

simple, and useful DH theory. However, it is precisely because of the linearization and

simplifications on steric and correlation effects that extended DH models have needed an

explosion in the number of parameters in order to overcome the deficiencies (simplifications)

of the classical Poisson-Boltzmann theory. The nonlinear PB equation was developed by

Gouy and Chapman [15, 16].

In the past few years, we have intensively investigated these two effects in a range of areas

from electric double layers [17, 18], ion activities [19], to biological ion channels [18, 20—24]

and consequently developed an advanced theory – the Poisson-Fermi (PF) theory – that

treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids

and includes many of the correlation effects of ions and water. We refer to our previous

papers and references therein for a historical account of the literature of this theory. In [19],
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we proposed a PF model for calculating activity coefficients of individual ions in aqueous

single NaCl and CaCl2 electrolyte solutions at the temperature 298.15 K. The model is

further tested in this paper for eight 1:1 electrolytes (LiCl, LiBr, NaF, NaCl, NaBr, KF,

KCl, and KBr), six 2:1 electrolytes (MgCl2, MgBr2, CaCl2, CaBr2, BaCl2, and BaBr2), one

mixed electrolyte (NaCl + MgCl2), one 1:1 electrolyte (NaCl ) at various temperatures from

298.15 to 573.15 K, and one 2:1 electrolyte (MgCl2) at various temperatures from 298.15 to

523.15 K, for which the experimental data were compiled by Valiskó and Boda in [25] and

Rowland et al. in [13] from various experimental sources in [26—35].

The PF model is developed to calculate individual ion activities for which experimental

measurements and determination [10, 36, 37], interpretation of measurement data [26, 37—

39], and comparison of different experimental methods [37, 40] have been extensively in-

vestigated by Wilczek-Vera, Rodil, and Vera in the past two decates. PF results on mean

activity coefficients can be compared with experimental measurements using the Debye-

Hückel eqution of individual ion activities [5].

In contrast to the Pitzer model, we show that all experimental data sets of individual

or mean activity coefficients as a function of variable concentration in single electrolytes or

mixtures at various temperatures can be well fitted by the PF model with only 3 parameters

at most for each activity-concentration data curve. The model is characterized by three

different domains, namely, the Born ion, hydration shell, and remaining solvent domains in

which the Born ion domain is most crucial because all activities around an ion are mainly

governed by the singular charge of the ion located at the center of the domain. The Born ion

domain is defined by the Born radius of the solvated ion, which is unknown and changes with

salt concentrations in a highly nonlinear manner. The 3 empirical parameters are associated

with three orders of approximation of the Born radius in terms of ionic concentrations. The

physical origin of these parameters is clear unlike that of most parameters in the Pitzer

method [11, 41]. It may even be possible in later work to calculate some of these parameters

from more detailed versions of our model.

Our approach to partition the free energy domain of a solvated ion into the above three

sub-domains yields a better approximation to calculate the free energy since these sub-

domains are determined by the experimental data of solvation and thus separate short- and

long-range interactions of the ion in a more accurate way. This nevertheless incurs more

complicated numerical methods for solving the nonlinear partial differential equations of the
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FIG. 1: The model domain Ω is partitioned into the ion domain Ωi (with radius RBorni ), the

hydration shell domain Ωsh (with radius Rshi ), and the remaining solvent domain Ωs.

PF model in different domains with suitable interface conditions [17]. We therefore present

numerical methods in detail for future verification and development of the present work.

2. THEORY

For an aqueous electrolyte solution with K species of ions, the Poisson-Fermi theory

proposed in [18, 21] treats all ions and water of any diameter as nonuniform hard spheres

with interstitial voids between these spheres. The activity coefficient γi of an ion of species

i in the solution describes the deviation of the chemical potential of the ion from ideality

(γi = 1). The excess chemical potential µexi = kBT ln γi can be calculated by [19, 42]

µexi = ∆Gi −∆G0i , ∆Gi =
1

2
qiφ(0), ∆G0i =

1

2
qiφ

0(0), (1)

where kB is the Boltzmann constant, T is an absolute temperature, qi is the ionic charge of

the hydrated ion (also denoted by i), φ(r) is a potential function of spatial variable r in the

domain Ω = Ωi∪Ωsh∪Ωs shown in Fig. 1, Ωi is the spherical domain occupied by the ion i,

Ωsh is the hydration shell domain of the ion, Ωs is the remaining solvent domain, 0 denotes

the center (set to the origin) of the ion, φ(0) is the value of φ(r) at r = 0, and φ0(r) is a
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potential function when the solvent domain Ωs does not contain any ions at all with pure

water only. The potential function φ(r) can be found by solving the Poisson-Fermi equation

[18]
�
l2c∇2 − 1

�
∇ · ǫ(r)∇φ(r) = ρ(r), (2)

ǫ(r) =




ǫs = ǫwǫ0 in Ωsh ∪ Ωs
ǫi = ǫionǫ0 in Ωi

, lc =




2aj in Ωsh ∪ Ωs
0 in Ωi

, (3)

ρ(r) =





ρs(r) =
�K

k=1 qkCk(r) in Ωs

0 in Ωsh

ρi(r) = qiδ(r− 0) in Ωi

, (4)

Ck(r) = CB
k exp

�
−βkφ(r) +

vk
v0
Strc(r)

	
in Ω, (5)

Strc(r) = ln

�
Γ(r)

ΓB

	
in Ω, (6)

where ǫ0 is the vacuum permittivity, ǫw is the dielectric constant of bulk water, ǫion is a

dielectric constant in Ωi, aj is the radius of a counterion of the ion i, and δ(r − 0) is the
delta function at the origin.

The concentration function Ck(r) is described by a Fermi distribution (5), where CB
k is a

constant bulk concentration for all k = 1, · · · , K + 1, qK+1 = 0, βk = qk/kBT , vk = 4πa3k/3,

v0 =

�K+1

k=1 vk

�
/(K+1) an average volume of all kinds of hard spheres, Strc(r) is called the

steric potential, ΓB = 1−�K+1
k=1 vkC

B
k is a constant void fraction, Γ(r) = 1−�K+1

k=1 vkCk(r)

is a void fraction function, and K+1 denotes water. The radii of Ωi and the outer boundary

of Ωsh are denoted by RBorni and Rshi , respectively, whose values will be determined by

experimental data. It is natural to choose the Born radius RBorni (not the ionic radius ai)

as the radius of Ωi [42]. We consider both first and second shells of the ion [43, 44].

The potential φ0(r) (in Eq. (1)) of the ideal system is obtained by setting ρs(r) = 0 in

(4), i.e., all particles in Ωs do not electrostatically interact with each other since qk = 0 for

all k. The domain Ω is chosen to be sufficiently large so that φ(r) = 0 on the boundary

of the domain ∂Ω. The ideal potential φ0(r) is then a constant, i.e., ∆G0i is a constant

reference chemical potential independent of CB
k .

The distribution (5) is of Fermi type since all concentration functions have an upper

bound, i.e., Ck(r) < 1/vk for all particle species with any arbitrary (or even infinite) potential

φ(r) at any location r in the domain Ω [21]. The Poisson-Fermi equation (2) and the Fermi
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distribution (5) reduce to the Poisson-Boltzmann equation and the Boltzmann distribution

when lc = Strc = 0, i.e., when the correlation and steric effects are not considered. The

Boltzmann distribution Ck(r) = CB
k exp (−βkφ(r)) would however diverge if φ(r) tends to

infinity. This is a major deficiency of PB theory for modeling a system with strong local

electric fields or interactions [45]. If the correlation length lc �= 0, the dielectric operator

�ǫ = ǫs(1− l2c∇2) in Eq. (2) approximates the permittivity of the bulk solvent and the linear

response of correlated ions [17, 20, 46, 47], and yields a dielectric function ǫ(r) as an output

of solving Eq. (2) [21]. The exact value of ǫ(r) at any r ∈ Ωsh ∪Ωs cannot be obtained from

Eq. (2) but can be approximated by the simple formula ǫ(r) ≈ ǫi+ CH2O(r)(ǫs− ǫi)/C
B
H2O

since the water density function CH2O(r) = CK+1(r) is an output of Eq. (5). This formula

is only for visualizing (approximately) the profile of �ǫ or ǫ. It is not an input of calculation.

The input is the correlation length lc in Eq. (3) [17, 20, 46, 47]. The actual outputs are the

numerical solutions of the partial differential equations and boundary conditions.

The factor vk/v0 multiplying the steric potential function Strc(r) in Eq. (5) is a modifica-

tion of the unity used in our previous work [19, 21]. The steric energy −vk
v0
Strc(r)kBT [21, 24]

of a type k particle depends not only on the voidness (Γ(r)) (or equivalently crowding) at r

but also on the volume vk of the particle itself. If all vk are equal (and thus vk = v0), then

all particle species at any location r ∈ Ωsh ∪ Ωs have the same steric energy, i.e., uniform

particles are indistinguishable in steric energy. The steric potential is a mean-field approxi-

mation of Lennard-Jones (L-J) potentials that describe local variations of L-J distances (and

thus empty voids) between any pair of particles. L-J potentials are highly oscillatory and

extremely expensive and unstable to compute numerically [21]. Calcualtions that involve

L-J potentials, or even truncated versions of L-J potentials must be extensively checked to

be sure that results do not depend on irrelevant parameters.

3. METHODS

To avoid large errors in approximation caused by the delta function δ(r− 0) in (4), the

potential function can be decomposed as [17, 48, 49]

φ(r) =




φ(r) + φ∗(r) + φL(r) in Ωi
φ(r) in Ωsh ∪ Ωs

, (7)
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where φ∗(r) = qi/(4πǫi |r− 0|) and φ(r) is found by solving

�
l2c∇2 − 1

�
∇ · ǫs∇φ(r) = ρ(r) in Ωsh ∪ Ωs (8)

−∇ · ǫi∇φ(r) = 0 in Ωi (9)

without the singular source term ρi(r) = qiδ(r− 0) and with the interface conditions




�
φ(r)

�
= 0

�
ǫ(r)∇φ(r) · n

�
= ǫi∇

�
φ∗(r) + φL(r))

�
· n

for all r ∈ ∂Ωi, (10)

where n is an outward normal unit vector at r ∈ ∂Ωi and the jump function [u(r)] =

limrsh→r u(rsh)− limri→r
u(ri) with rsh ∈ Ωsh and ri ∈ Ωi [17]. The potential function φL(r)

is the solution of the Laplace equation

∇2φL(r) = 0 in Ωi (11)

with the boundary condition

φL(r) = φ∗(r) on ∂Ωi. (12)

The evaluation of the Green’s function φ∗(r) on ∂Ωi always yields finite numbers and thus

avoids the singularity in the solution process. The desired solvation energy ∆Gi in Eq. (1)

(and thus the individual ionic activity coefficient γi) is then evaluated by [17, 49]

∆Gi = kBT ln γi =
1

2
qi
�
φ(0) + φL(0)

�
. (13)

Since the interface ∂Ωi is a sphere centered at the origin, the Laplace potential φL(r) =

qi/(4πǫiR
Born
i ) is a constant in Ωi, i.e., Eq. (11) has been exactly solved.

The Poisson-Fermi equation (8) is a nonlinear fourth-order partial differential equation

(PDE) in Ωs. Newton’s iterative method is usually used for solving nonlinear problems. We

seek a sequence of approximate solutions
�
φm(r)

�M
m=1

by iteratively solving the linearized

PF equation

�
l2c∇2 − 1

�
∇ · ǫ∇φm − ρ′s(φm−1) φm = ρs(φm−1)− ρ′s(φm−1) φm−1 in Ωs, (14)

until a tolerable potential function φM is reached, where φ0(r) is a given initial guess poten-

tial function, ρs(φm−1) =
�K

k=1 qkC
m−1
k (r), Cm−1k (r) = CB

k exp


−βkφm−1(r) + vk

v0
Strc
m−1(r)

�
,

Strc
m−1(r) = ln



Γ0(r)
ΓB

�
, Γm−1(r) = 1−

�K+1
k=1 vkC

m−1
k (r), ρ′s(φm−1) =

�K
k=1 (−βkqk)Cm−1k (r),



8

and ρ′s(φ) = d

dφρs(
φ). Note that the differentiation in ρ′s(φ) is performed only with respect

to φ whereas Strc is treated as another independent variable although Strc depends on φ as

well. Therefore, ρ′s(φ) is not exact implying that this is an inexact Newton’s method [50].

The fourth-order problem can be resolved by transforming Eq. (14) into two second-order

PDEs [17]

ǫs
�
l2c∇2 − 1

�
Ψ(r) = ρ(φm−1) in Ωsh ∪ Ωs (15)

−ǫs∇2φm(r)− ρ′(φm−1) φm(r) = −ǫsΨ(r)− ρ′(φm−1) φm−1 in Ωsh ∪ Ωs (16)

by introducing a density like variable Ψ = ∇2 φ for which the boundary condition is [17]

Ψ(r) = 0 on ∂Ωs. (17)

Eqs. (9), (15), and (16) are coupled together in the entire domain Ω with the jump conditions

in (10). Note that linear PDEs (14), (15), and (16) converge to the nonlinear PDE (8) if

φM converges to the exact solution φ of Eq. (8) as M →∞, i.e., the approximate potential

φM(r) is sufficiently close to the exact potential φ(r) for all r ∈ Ωsh ∪ Ωs if the iteration

number M is sufficiently large (M ≈ 5 to 37 for this work with error tolerance 10−3).

The standard 7-point finite difference (FD) method is used to discretize all PDEs (9),

(15), and (16), where the jump conditions in (10) are handled by the simplified matched

interface and boundary (SMIB) method proposed in [17]. For simplicity, the SMIB method

is illustrated by the following 1D linear Poisson equation (in x-axis)

− d

dx

�
ǫ(x)

d

dx
φ(x)

�
= f(x) in Ω (18)

with the jump condition
�
ǫφ′
�
= −ǫi

d

dx
φ∗(x) at x = ξ = ∂Ωi ∩ ∂Ωs, (19)

where Ω = Ωi∪Ωs, Ωi = (0, ξ), Ωs = (ξ, L), f(x) = 0 in Ωi, f(x) �= 0 in Ωs, and φ
′

= d
dx
φ(x).

The corresponding cases to Eqs. (9), (15), and (16) in y- and z-axis follow in a similar way.

Let two FD grids points xl and xl+1 across the interface point ξ be such that xl < ξ < xl+1

and ξ = (xl + xl+1)/2 with ∆x = xl+1 − xl = 1 Å, a uniform mesh, for example, as used in

this work. The FD equations of the SMIB method at xl and xl+1 are

ǫi
−φl−1 + (2− c1)φl − c2φl+1

∆x2
= fl +

c0
∆x2

(20)

ǫs
−d1φl + (2− d2)φl+1 − φl+2

∆x2
= fl+1 +

d0
∆x2

, (21)
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where

c1 =
ǫi − ǫs
ǫi + ǫs

, c2 =
2ǫs

ǫi + ǫs
, c0 =

−ǫi∆x
�
ǫφ′
�

ǫi + ǫs
,

d1 =
2ǫi

ǫi + ǫs
, d2 =

ǫs − ǫi
ǫi + ǫs

, d0 =
−ǫs∆x

�
ǫφ′
�

ǫi + ǫs
,

φl is an approximation of φ(xl), and fl = f(xl). Note that the jump value
�
ǫφ′
�
at ξ is

calculated exactly since the derivative of φ∗ is given analytically.

Since the steric potential takes particle volumes and voids into account, the shell volume

Vsh of the shell domain Ωsh can be determined by Eqs. (5) and (6) as

Strc
sh =

v0
vw
ln

�
Ow
i

VshCB
K+1

	
= ln

�
Vsh − vwOw

i

VshΓB

	
, (22)

where the occupancy (coordination) number Ow
i is given by experimental data [43, 44]. The

shell radius Rshi of Ωsh is thus determined. Note that the shell volume depends not only on

Ow
i but also on the bulk void fraction ΓB, namely, on all salt and water concentrations

(CB
k ).

As discussed in [25], the solvation free energy of an ion i should vary with salt con-

centrations and can be expressed by a dielectric constant ǫ(CB
i ) that depends on the bulk

concentration CB
i of the ion. Therefore, the Born energy

∆GBorn
i =

�
1

ǫw
− 1
	

q2i
8πǫ0R0i

(23)

with the Born radius R0i in pure water should be modified with the concentration-dependent

dielectric constant ǫ(CB
i ). Equivalently, the Born radius in electrolyte solutions can be

modified from R0i by a simple formula

RBorni (CB
i ) = θ(CB

i )R
0
i , θ(CB

i ) = αi1 + α
i
2



C

B
i

�1/2
+ αi3



C

B
i

�3/2
, (24)

where C
B
i = CB

i /M is a dimensionless bulk concentration of type i ions, M is the molar

concentration unit, and αi1, α
i
2, and α

i
3 are adjustable parameters for modifying the experi-

mental Born radius R0i to fit experimental activity coefficients γi that change with the bulk

concentration conditions CB
i of the ion. The Born radii R0i in Table 1 are cited from [25],

which are computed from the experimental hydration Helmholtz free energies of these ions

given in [6]. Numerical values in Tables 1 and 2 are all experimental data for which their

values are kept fixed throughout calculations once chosen.
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The three parameters in Eq. (24) have physical or mathematical meanings unlike many

parameters in the Pitzer model [41]. Any model or numerical method incurs errors to

approximate a real system, i.e., it is impossible to obtain real Born radius RBorni (CB
i ) exactly.

The first parameter αi1 is an adjustment of the experimental Born radius R0i when C
B
i = 0

for all i. The second parameter αi2 is an adjustment of RBorni (CB
i ) that accounts for the real

thickness of the ionic atmosphere (Debye length), which is proportional to the square root of

the ionic strength
√
I in the Debye-Hückel theory [5]. The third parameter αi3 is simply an

adjustment in the next order approximation beyond the DH treatment of ionic atmosphere.

We summarize the mathematical solution process for determining the activity of ionic

solutions in the following algorithm.

1. Solve Eqs. (9), (10), and (16) for φ with ρ′ = Ψ = 0 (in pure water), RBorni = R0i ,

and φL = qi/(4πǫiR
0
i ) to obtain ∆G0i by Eq. (13) and then set φ0 = φ.

2. Solve Eqs. (15) and (17) for Ψ with RBorni in (24).

3. Solve Eqs. (9), (10), and (16) for φm with φL = qi/(4πǫiR
Born
i ) and then set φm−1 = φm.

Go to 2 until convergence.

4. Obtain the activity coefficient γi by Eq. (13).

Table 1. Values of Model Notations

Symbol Meaning Value Unit

kB Boltzmann constant 1.38× 10−23 J/K

T temperature Table 2 K

e proton charge 1.602× 10−19 C

ǫ0 permittivity of vacuum 8.85× 10−14 F/cm

ǫion, ǫw dielectric constants 1, Table 2

lc = 2aj correlation length j = Cl− etc. Å

Ow
i in Eq. (22) 18 [43, 44]

aLi+, aNa+, aK+ radii 0.6, 0.95, 1.33 Å

aMg2+, aCa2+, aBa2+ radii 0.65, 0.99, 1.35 Å

aF−,aCl−, aBr−, aH2O radii 1.36, 1.81, 1.95, 1.4 Å

R0Li+, R
0
Na+, R

0
K+ Born radii in Eq. (24) 1.3, 1.618, 1.95 Å

R0Mg2+, R
0
Ca2+, R

0
Ba2+ Born radii 1.424, 1.708, 2.03 Å

R0Cl−, R
0
Cl− , R

0
Cl−, Born radii 1.6, 2.266, 2.47 Å



11

-0.6

-0.3

0

0.3

0.6

Pos
+
 by PF

Neg
-
 by PF

Pos
+
 by Exp

Neg
-
 by Exp

ln
 γ

i

(A)

Li
+

Cl
-

(B)

Li
+

Br
-

-0.6

-0.4

-0.2

0
(C)

Na
+

F
-

ln
 γ

i

(D)

Na
+

Cl
-

(E)

Na
+

Br
-

0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0
(F)

K
+

F
-

ln
 γ

i

([PosNeg]/M)
1/2

0 0.5 1 1.5

(G)

K
+

Cl
-

([PosNeg]/M)
1/2

0 0.5 1 1.5

(H)

Br
-

K
+

([PosNeg]/M)
1/2

FIG. 2: Indivivual activity coefficients of 1:1 electrolytes. Comparison of PF results with experi-

mental data [26] on i = Pos+ (cation) and Neg− (anion) activity coefficients γi in various [PosNeg]

from 0 to 1.6 M.

Table 2. Values of ǫw at various T [51].

T/K 298.15 373.15 423.15 473.15 523.15 573.15

ǫw 78.41 55.51 44.04 38.23 32.23 25.07

4. RESULTS

The PF results of ionic activity coefficients for eight 1:1 electrolytes, six 2:1 electrolytes,

one mixed electrolyte, one 1:1 electrolyte at various temperatures, and one 2:1 electrolyte

at various temperatures agree with the experimental data [26—35] as shown in Figs. 2, 3, 4,

5, and 6, respectively. The empirical parameters used to fit the experimental data are αi1,

αi2, and α
i
3 in Eq. (24), whose values are given in Table 3 from which we observe that the

PF model requires only one to three parameters to fit those data.

The mean activity coefficient γPosNeg of a salt PospNegq is calculated via the formula

ln γPosNeg =
p
p+q

ln γPos +
q
p+q

ln γNeg [5], where γPos and γNeg are individual activity coeffi-

cients obtained by Eq. (13) for each i = Pos and Neg. For the mean activity coefficients

of either ternary (Fig. 4) or binary (Figs. 5 and 6) systems, we only need to adjust 3
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FIG. 3: Indivivual activity coefficients of 2:1 electrolytes. Comparison of PF results with ex-

perimental data [26] on i = Pos2+ (cation) and Neg− (anion) activity coefficients γi in various

[PosNeg2] from 0 to 1.5 M.

parameters of one cation (not all ions) as shown in Table 3.

The activity coefficients by the PF model are quite successful over a large range of tem-

peratures and concentrations as shown in Figs. 4-6. We used the code of the density model

developed by Mao and Duan [52] to convert the concentration unit from molality (mol.

kg−1) to molarity (M) by the standard formula as given in [52], where the density model

has been compared with thousands of measurements at high accuracy. The pressure values

needed in the code at the corresponding temperatures were set to P = (A) 1.01 (B) 1.01 (C)

15.48 (D) 39.59 (E) 80.50 bar for Fig. 4 and (A) 1.01 (B) 1.01 (C) 4.73 (D) 39.50 bar for

Fig. 5. In Fig. 6, the ionic strength I =
�

iC
B
i z

2
i and the ionic strength fraction yMgCl2 =

3mMgCl2/(3mMgCl2 +mNaCl) with mMgCl2 and mNaCl being the molalities of MgCl2 and NaCl

in the mixture, respectively, where zi is the valence of type i ions.

We observe from Table 3 that the approximate RBorni (CB
i ) (with salts) deviates from R0i

(without salts) only in the second to fourth decimal place, i.e., numerical values of γi are

very sensitive to the decimal order of αi1, α
i
2, and α

i
3 because the Born radius RBorni (CB

i ) is

very close to the origin 0 at which the singular charge in ρi(r) = qiδ(r− 0) is infinite. The
approximation of the shell radius RShi (or the coordination number Ow

i in Eq. (22)), on the
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FIG. 4: Mean activity coefficients of mixed electrolytes. Comparison of PF results (curve) with

experimental data (symbols) compiled in [13] (A) from [33] on mean activity coefficients γ of NaCl

as a function of the ionic strength (I) fraction yMgCl2of MgCl2 in NaCl + MgCl2 mixtures at I = 6

mol. kg−1 and T = 298.15 K; (B) from [34] (circles) and [35] (squares) on γ of NaCl as a function

of the MgCl2 molality in NaCl + MgCl2 mixtures at [NaCl] = 6 mol. kg−1 and T = 298.15 K.

other hand, is much less significant than that of RBorni because the electric potential φPF(r)

diminishes exponentially in the hydration shell region Ωsh as shown by the profile of φPF(r)

in Fig. 7. The values of αi1, α
i
2, and α

i
3 for each activity-concentration curve were obtained

by first tuning three values of θ(CB
i ) in Eq. (24) to match three data points (

�
CB
ij , ln γij)

with three different concentrations CB
ij, j = 1, 2, 3, and then solving the three unknowns

αi1, α
i
2, and α

i
3 using three known θ(CB

ij) values. For example, for the i = Li+ curve in Fig.

2A, the selected experimental data points are (
�
CB
ij , ln γij) = (0.315, -0.192), (1, -0.007),

(1.577, 0.57) and the corresponding tuned θ(CB
ij) are 0.9996, 1.0013, 1.0043.

The PF model can provide more physical details near the solvated ion (Ca2+, for example)

in a strong electrolyte ([CaCl2] = 2 M) such as (1) the dielectric functionǫ(r) with its varying
permittivity, (2) variable water density CH2O(r), (3) concentration of counterion CCl−(r), (4)

electric potential φPF(r), and (5) the steric potential Strc(r) all shown in Fig. 7. The steric

potential is small because the configuration of particles (voids between particles) does not

vary too much from the solvated region to the bulk region. Nevertheless, it has significant
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FIG. 5: Mean activity coefficients of 1:1 electrolyte at various temperatures. Comparison of PF

results (curves) with experimental data (symbols) compiled in [13] from [27—29] on mean activity

coefficients γ of NaCl in [NaCl] from 0 to 6 mol. kg−1 at T = (A) 298.15 (B) 373.15 (C) 473.15

(D) 523.15 (E) 573.15 K.

effect on the variation of mean-field water densities CH2O(r) and hence on the dielectric

function ǫ(r) in the hydration region. Note that ǫ(r) is an output, not an input of the

model.

The strong electric potential φPF(r) in the Born cavity Ωi (with RBorni (CB
i ) = 1.7130 Å)

and the water density CH2O(r) in the hydration shell Ωsh (with RshCa2+ = 5.0769 Å) are the

most important factors allowing the PF results to match the experimental data. The ion and

shell domains are the crucial region to study ion activities. For example, Fraenkel’s theory is

entirely based on this region – the so-called smaller-ion shell region [41]. The steric energy

of water molecules modified by the factor vK+1/v0 in Eq. (5) leads to significant changes of

CH2O(r) and ǫ(r) profiles in Fig. 7 as compared with those in Fig. 5 in our previous paper

[19].

[1] We need to emphasize calcium more.
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Table 3. Values of αi1, α
i
2, α

i
3 in Eq. (24)

Fig.# i αi1 αi2 αi3 Fig.# i αi1 αi2 αi3

2A Li+ 0.99913 0.00069 0.00009 3C Ca2+ 0.99886 0.00046 0.00011

2A Cl− 0.99893 −0.00008 3C Cl− 0.99877 −0.00060 0.00012
2B Li+ 0.99958 −0.00019 0.00015 3D Ca2+ 0.99886 0.00099 0.00017

2B Br− 0.99822 0.00107 3D Br− 0.99920 −0.00198 0.00016
2C Na+ 0.99910 3E Ba2+ 0.99844 0.00011 0.00010

2C F− 0.99933 −0.00029 3E Cl− 0.99887 −0.00058 0.00001
2D Na+ 0.99927 0.00026 0.00004 3F Ba2+ 0.99851 0.00054 0.00008

2D Cl− 0.99840 3F Br− 0.99926 −0.00145 0.00018
2E Na+ 0.99962 −0.00038 0.00010 4A Na+ 1.00581 −0.00013
2E Br− 0.99870 −0.00017 0.00004 4B Na+ 1.00527 0.00042 0.00019

2F K+ 0.99934 −0.00120 0.00007 5A Na+ 0.9981 0.0001

2F F− 0.99904 0.00013 0.00004 5B Na+ 0.9971 0.0003 0.0001

2G K+ 0.99929 −0.00122 0.00004 5C Na+ 0.9945 −0.0007 0.0001

2G Cl− 0.99897 −0.00012 0.00003 5D Na+ 0.9925 −0.0028 0.0001

2H K+ 0.99931 0.00013 5E Na+ 0.9870 −0.0042 0.0010

2H Br− 0.99945 −0.00175 −0.00006 6A Mg2+ 0.9988 0.0002 0.0002

3A Mg2+ 0.99918 0.00044 0.00011 6B Mg2+ 0.9989 −0.0004 0.0003

3A Cl− 0.99893 −0.00051 0.00010 6C Mg2+ 0.9983 −0.0014 0.0005

3B Mg2+ 0.99910 0.00063 0.00015 6D Mg2+ 0.9961 −0.0020 0.0003

3B Br− 0.99888 −0.00065 0.00018

Default values: αi1 = 1, α
i
2 = 0, α

i
3 = 0.

5. CONCLUSION

A Poisson-Fermi model for calculating activity coefficients of aqueous single or mixed

electrolyte solutions in a large range of concentrations and temperatures has been presented

and tested by a set of experimental data. The model was shown to well fit experimental

data with only three adjustable parameters at most for each activity-concentration curve.

The adjustable parameters correspond to different orders of approximation of the unknown

Born radius of solvation energy that depends on salt concentrations in a highly complex
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FIG. 7: Dielectric function ǫ(r) (denoted by ε in the figure), water density CH2O(r) (CH2O), Cl
−

concentration CCl−(r) ([Cl−]), electric potential φPF(r) (φ), and steric potential Strc(r) (Strc)

profiles near the solvated ion Ca2+ at [CaCl2] = 2 M, where r is the distance from the center of

Ca2+ in Angstrom.

and nonlinear way. Nevertheless, the values of these parameters have been shown to deviate

slightly in decimal digits from that of the experimental Born radius in pure water. These

parameters are physically explained and can be easily verified in future studies for the same

or different solutions of the present work. The model requires very few parameters because

it is based on an advanced continuum theory that accounts for steric and correlation effects

of ions and water with interstitial voids between nonuniform hard spheres. It also deals with

short- and long-range interactions by partitioning the model domain into the ion, hydration

shell, and the remaining solvent sub-domains. Numerical methods were also given to show

how to solve different equations on different sub-domains that describe different physical

properties of an ion in electrolyte solutions.
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