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We present a nonlocal electrostatic formulation of nonuniform ions and water molecules

with interstitial voids that uses a Fermi-like distribution to account for steric and correlation

effects in electrolyte solutions. The formulation is based on the volume exclusion of hard

spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type

interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model

fails to describe steric and correlation effects important in a variety of chemical and biological

systems, especially in high field or large concentration conditions found in and near binding

sites, ion channels, and electrodes. Steric effects and correlations are apparent when we

compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double

layer and to experimental measurements on the selectivity of potassium channels for K+ over

Na+. The present theory links atomic scale descriptions of the crystallized KcsA channel

with macroscopic bulk conditions. Atomic structures and macroscopic conditions determine

complex functions of great importance in biology, nanotechnology, and electrochemistry.

Continuum electrostatic theory is a fundamental tool for studying physical and chem-
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ical properties of electrolyte solutions in a wide range of applications in electrochemistry,

biophysics, colloid science, and nanofluidics [1–6]. For over a century, a great deal of effort

has been devoted to improving the Poisson-Boltzmann (PB) theory of continuum mod-

els for a proper description of steric (or finite size) and correlation (or nonlocal screening,

polarization) effects in electrolytes [7, 8]. We present a continuum model with Fermi-like

distributions and global electrostatic screening of nonuniform ions and water molecules to

describe the steric and correlation effects, respectively, in aqueous electrolyte solutions.

For an electrolytic system with K species of ions, the entropy model proposed in [9] treats

all ions and water of any diameter as nonuniform hard spheres and regards the water as the

(K + 1)th species. It then includes the voids between these hard spheres as the (K + 2)th

species so that the total volume V of the system can be calculated exactly by the identity

V =

K+1∑

i=1

viNi + VK+2, (1)

where VK+2 denotes the total volume of all the voids, vi = 4πa3i /3 that gives the volume

of each sphere with radius ai, and Ni is the total number of the ith species particles. In

the bulk solution, we have the bulk concentrations CB
i = Ni

V
and the bulk volume fraction

of voids ΓB = VK+2

V
. Dividing the volume identity (1) by V , ΓB = 1 −

∑K+1

i=1 viC
B
i is

expressed in terms of nonuniform vi and CB
i for all particle species. If the system is spatially

inhomogeneous with variable electric or steric fields, as in most biological and technological

systems, the bulk concentrations then change to concentration functions Ci(r) that vary

with positions, and differ from their constant values CB
i at location r in the solvent domain

Ωs. Consequently, the void volume fraction becomes a function Γ(r) = 1−
∑K+1

i=1 viCi(r) as

well.

For an electrolyte in contact with electrodes or containing a charged protein, an electric

field E(r) in the solvent domain Ωs is generated by the electrodes, ionic (free) charges with

a displacement field D(r), and bound charges of polar water with a polarization field P(r).

In Maxwell’s theory, these fields form a constitutive relation

D(r) = ǫ0E(r) +P(r) (2)

that yields the Maxwell’s equation ∇ ·D(r) = ρ(r) =
∑K

i=1 qiCi(r), ∀r ∈ Ωs, where ǫ0 is the

vacuum permittivity and qi is the charge on each i species ion [10]. The electric field E(r)

is thus screened by water (in what might be called Bjerrum screening) and ions (in Debye
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screening) in a correlated manner that is usually characterized by a correlation (screening)

length λ [4, 6, 11]. The screened force between two charges in ionic solutions (at r and r′

in Ωs) has been studied extensively in classical field theory and is often described by the

screening kernel G(r − r′) = e−|r−r
′|/λ

4π|r−r
′|

[1], which is called Yukawa-type kernel in [4, 12], and

satisfies the partial differential equation (PDE) [12]

−∆G(r− r′) +
1

λ2
G(r− r′) = δ(r− r′), r, r′ ∈ R3 (3)

in the whole space R3, where ∆ = ∇ · ∇ is the Laplace operator with respect to r and

δ(r− r′) is the Dirac delta function at r′. The potential φ̃(r) defined in D(r) = −ǫsǫ0∇φ̃(r)

thus describes a local potential of free ions according to the Poisson equation

− ǫsǫ0∇ · ∇φ̃(r) = ρ(r), ∀r ∈ Ωs, (4)

where ǫs is a dielectric constant in the solvent domain. We introduce a global electric

potential φ(r) of the screened electric field E(r) as a convolution of the local potential φ̃(r′)

with the global screening kernel G(r− r′) in the expression

φ(r) =

∫

R3

1

λ2
G(r− r′)φ̃(r′)dr′. (5)

However, it would be too expensive to calculate φ(r) using this equation. Multiplying Eq.

(3) by φ̃(r′) and then integrating over R3 with respect to r′ [12], we obtain

− λ2∆φ(r) + φ(r) = φ̃(r), r ∈ Ωs, (6)

a PDE that approximates Eq. (5) in a sufficiently large domain Ωs with boundary conditions

φ(r) = φ̃(r) = 0 on ∂Ωs and describes the relation between global φ(r) and local φ̃(r) electric

potentials. From Eqs. (4) and (6), we obtain the fourth-order PDE

ǫsǫ0λ
2∆(∆φ(r))− ǫsǫ0∆φ(r) = ρ(r), r ∈ Ωs, (7)

that accounts for electrostatic, correlation, polarization, nonlocal, and excluded volume

effects in electrolytes with only one parameter λ. Thus, when we set E(r) = −∇φ(r), we

can use Eq. (2) to find the polarization field P(r) = ǫsǫ0λ
2∇(∆φ(r)) − (ǫs − 1)ǫ0∇φ(r).

If λ = 0, we recover the standard Poisson equation (4) and the classical field relation

P = ǫ0(ǫs − 1)E with the electric susceptibility ǫs − 1 (and thus the dielectric constant ǫs)

if water is treated as an isotropic and linear dielectric medium [10].
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We introduce a Gibbs free energy functional for the system as

F (C, φ) = Fel(C, φ) + Fen(C), (8)

Fel(C, φ) =
1

2

∫

Ωs

ρφdr =
1

2

∫

Ωs

ρL−1ρdr,

Fen(C) = kBT

∫

Ωs

{
K+1∑

i=1

Ci(r)

(
ln

Ci(r)

CB
i

− 1

)
+

Γ(r)

v0

(
ln

Γ(r)

ΓB
− 1

)}
dr,

where Fel(C, φ) is an electrostatic functional, Fen(C) is an entropy functional, C =

(C1(r), C2(r), · · · , CK+1(r)), v0 =
(∑K+1

i=1 vi

)
/(K + 1) an average volume, and L−1 is the

inverse of the self-adjoint positive linear operator L = ǫsλ
2∆∆− ǫs∆ [12]. Taking the vari-

ations of F (C, φ) at φ gives Eq. (7). Taking the variations of F (C, φ) at Ci(r) [12] yields

Fermi-like distributions

Ci(r) = CB
i exp

(
−βiφ(r) +

vi
v0
Strc(r)

)
, Strc(r) = ln

(
Γ(r)

ΓB

)
, (9)

for all i = 1, · · · , K + 1 (ions and water), where βi = qi/kBT with qK+1 = 0, kB is the

Boltzmann constant, and T is an absolute temperature. The distribution is of Fermi type

since it saturates. All concentration functions Ci(r) <
1
vi

[9], i.e., Ci(r) cannot exceed the

maximum value 1/vi for any arbitrary (or even infinite) potential φ(r) in the domain Ωs.

In these Fermi distributions, it is impossible for a particle volume vi to be completely filled

with particles, i.e., it is impossible to have viCi(r) = 1 (and thus Γ(r) = 0) since that would

yield Strc(r) = −∞ and hence viCi(r) = 0, a contradiction. For this reason, we must include

the void as a separate species if water and ions are all treated as hard spheres [9]. Here we

do represent water and ions as spheres. Our approach allows other shapes to be used as

well.

The nonlocal Poisson-Fermi (PF) Eqs. (7) and (9) have new features, of some importance.

(i) The Fermi-like distribution of uniform spherical ions with voids in ionic liquids was

first derived by Bazant et al. [6, 7] using Bikerman’s lattice model [13]. The entropy

functional in [6] involves a reciprocal of a minimum volume v with a volume fraction Φ that

is an empirical fitting parameter and may have to be unrealistically large to fit experimental

data in some applications [7]. It is shown in [9] that the entropy functional in [6] does not

directly yield classical Boltzmann distributions Ci(r) = CB
i exp (−βiφ(r)) as v → 0. It can

be easily seen from (9) that the entropy functional Fen(C) in Eq. (8) consistently yields

Boltzmann distributions as vi → 0 for all i. Our derivation of Fen(C) does not employ any
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lattice models but simply uses the volume equation (1). The functional Fen(C) is a new

modification of that in [9], where the classical Gibbs entropy is now generalized to include

all species (ions, water, and voids) in electrolytes with the same entropy form. In fact, our

Γ(r) is an analytical extension of the void fraction 1 − Φ in Bikerman’s excess chemical

potential [7], where all volume parameters vi (including the bulk fraction ΓB) are physical

not empirical. The adjustable parameter in our model is the correlation length λ ≈ 2ai

depending on the ionic species i of interest [9, 14]. The PF model was first proposed in [7]

without derivation and has been shown to produce the results that are not only comparable

to molecular dynamics (MD) simulation or experimental data but also provide insight into

nonlinear properties of concentrated electrolytes and ionic liquids [15]. Here, we formally

derive the PF model for general electrolytes using a hard-sphere instead of lattice model

with the steric potential Strc(r) first introduced in [14]. As compared with lattice models in

[7] and demonstrated, for example, in [9, 16], hard-sphere models significantly improve the

agreement between simulation and experiment.

(ii) The fourth-order PDE (7) is similar to those in [6, 11] used in previous papers [9, 14].

However, the physical origin of the PDE is different. In [11], the global convolution is

performed only on the charge density of point-like counter ions in contrast to the potential

φ̃(r) by Eq. (4) that is generated by all spherical ions. In [6], a more general derivation

for electrolytes or ionic liquids with steric effects is given from a free energy function of a

gradient expansion of nonlocal electrostatic energy in terms of ∆φ̃. Eq. (7) corresponds

to the first term in the expansion. Here, the fourth-order PDE is derived directly from

Maxwell’s equation with the Yukawa screening kernel. Our result does not depend on the

convergence properties of an expansion of nonlocal electrostatic energy.

(iii) Eq. (7) defines an dielectric operator ǫ̂ = ǫsǫ0 (1− λ2∆) that in turn implicitly yields

a dielectric function ǫ̃(r) as an output of solving Eq. (7) [6, 9]. A physical interpretation of

the operator was first introduced in [6] to describe the nonlocal permittivity in a correlated

ionic liquid. The exact value of ǫ̃(r) at any r ∈ Ωs cannot be obtained from Eq. (7) but

can be approximated by the simple formula ǫ̃(r) ≈ ǫ0+ CH2O(r)(ǫs− 1)ǫ0/C
B
H2O

since the

water density function CH2O(r) = CK+1(r) is an output of Eq. (9). This formula is only for

visualizing (approximately) the profile of ǫ̂ or ǫ̃. It is not an input of calculation. The input

is the operator ǫ̂ = ǫsǫ0 (1− λ2∆) (or the correlation length λ).

(iv) The factor vi/v0 multiplying Strc(r) in Eq. (9) is a modification of the unity used
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in our previous work [9]. The steric energy − vi
v0
Strc(r)kBT [9] of a type i particle depends

not only on the emptiness (Γ(r) = 1 −
∑K+1

i=1 viCi(r)) (or equivalently crowding) at r but

also on the volume vi of each type of particle. If all vi are equal (and thus vi = v0), then all

particle species at any location r ∈ Ωs have the same steric energy and the uniform particles

are indistinguishable in steric energy. The steric potential is a mean-field approximation

of Lennard-Jones (L-J) potentials that describe local variations of L-J distances (and thus

empty voids) between every pair of particles. L-J potentials are highly oscillatory and

extremely expensive and unstable to compute numerically.

(v) The global convolution in Eq. (5) may seem similar to those in [4, 12] but it is not.

The Poisson equation (4) takes the place of the Fourier-Lorentzian (FL) equation — an

integro-differential equation — in the previous work [4, 12] in which the local potential φ̃(r′)

in Eq. (5) is replaced by a global electric potential Φ(r′). Moreover, the factor 1/λ2 in Eq.

(5) is replaced by (ǫs− ǫ∞)/λ2, where ǫ∞ and λ are both adjustable parameters. The choice

of three parameters ǫs, ǫ∞, and λ in the FL model is reduced to only one λ here.

The nonlocal PF model is first compared with the modified PB model (mPB) of Borukhov

et al. [17] in which ions are treated as cubes without considering void and correlation effects.

The classical PB model (with λ = vi = 0 for all i, i.e., no size, void, and correlation effects)

produces unphysically high concentrations of anions near the charged wall at x = 0 as shown

by the dashed curve in Fig. 1. The surface charge density is 1e/(50Å2) in contact with a

0.1 M C4A aqueous electrolyte, where the radius of both cations and anions is a = 4.65

Å in contrast to an edge length of 7.5 Å of cubical ions in [17], e is the proton charge,

and ǫs = 80. The multivalent ions A4− represent large polyanions adsorbed onto a charged

Langmuir monolayer in experiments [17]. The dotted curve in Fig. 1 is similar to that of

mPB in [17] and was obtained by the PF model with the size effect but without voids and

correlations, i.e., λ = 0, VK+2 = 0 (no voids), and vK+1 = vH2O = 0 (water is volumeless and

hence ΓB = 1 −
∑K

i=1 viC
B
i is the bulk water volume fraction). The voids (VK+2 6= 0) and

water molecules (vH2O 6= 0) have slight effects on A4− concentration (because of saturation)

and electric potential (because water and voids have no charges) profiles as shown by the thin

solid curves in Figs. 1 and 2, respectively, when compared with the dotted curves. However,

correlations (with λ = 2a [6]) of ions have significant effects on ion distributions as shown

by the thick solid and dash-dotted curves in Fig. 1, where the Stern layer is on the order of

ionic radius a [18] and the overscreening layer [6] (CA4−(x) ≈ 0) of excess coions (CC+(x) >
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FIG. 1: Concentration profiles of anions CA4−(x) and cations CC+(x) obtained by various models

in a C4A electrolyte solution with a positively charged surface at x = 0.

CB
C+ = 0.4 M) is about 18 Å in thickness. The Stern layer is an output (not a prescribed

condition) of our model. The electric potentials φ(0) = 5.6 at x = 0 and φ(11.5) = -1.97

kBT/e in Fig. 2 obtained by PF with voids and correlations deviate dramatically from those

by previous models for nearly 100% at x = 0 (in the Stern layer) and 70% at x = 11.5 Å

(in the screening layer) when compared with the maximum potential φ(0) = 2.82 kBT/e of

previous models.

We next show the size effect of different ions with voids using the crystal structure of the

potassium channel KcsA (PDB [20] ID 3F5W [21]) as shown in Fig. 3, where the spheres

denote five specific cation binding sites (S0 to S4) [22]. The crystal structure with a total

of N = 31268 charged atoms is embedded in the protein domain Ωp while the binding sites

are in the solvent domain Ωs. The exquisite selectivity of K+ (with aK+ = 1.33 Å) over

other cations such as Na+ (aNa+ = 0.95 Å) by potassium channels is an intriguing quest in

channology. It can be quantified by the free energy (G) difference of K+ and Na+ in the

pore and in the bulk solution [22, 23]. Experimental measurements [23] showed that the

relative free energy [22]

∆∆G(K+ → Na+) =
[
Gpore(Na

+)−Gbulk(Na
+)
]
−
[
Gpore(K

+)−Gbulk(K
+)
]

(11)
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FIG. 2: Electric potential profiles φ(x).

is greater than zero in the order of 5-6 kcal/mol unfavorable for Na+. The electric and steric

potentials at the binding site S2 (as considered in [22]) can be calculated on the atomic scale

using the following algebraic formulas

φS2 =
1

4πǫ0

(
1

6

6∑

k=1

N∑

j=1

qj
ǫp(r)|cj −Ak|

+
qS2
ǫbaS2

)
, Strc

S2 = ln
1− vS2

VS2

ΓB
, (12)

where S2 = Na+ or K+ (the site is occupied by a Na+ or a K+), qj is the charge on the

atom j in the protein given by PDB2PQR [24], ǫp(r) = 1 + 77r/(27.7 + r) [25], r = |cj−

cS2|, cj is the center of atom j, Ak is one of six symmetric surface points on the spherical

S2, ǫb = 3.6, and VS2 = 1.5vK+ is a volume containing the ion at S2. The crucial parameter

in (12) is the ionic radius aS2 = 0.95 or 1.33 Å (also in |cj − Ak|) that affects φS2 very

strongly but Strc
S2 weakly. We obtained ∆∆G = 5.26 kcal/mol in accord with the MD

result in [22], where Gpore(Na
+) = 4.4, Gbulk(Na

+) = −0.26 [26], Gpore(K
+) = −0.87,

Gbulk(K
+) = −0.27 kcal/mol [26], Gpore(S2) = qS2φS2 −

vS2
v0
Strc
S2 kBT , T = 298.15, φNa+ = 7.5

kBT/e,
v
Na+

v0
Strc
Na+

= 0.23, φK+ = −1.93 kBT/e,
v
K+

v0
Strc
K+ = −0.59, and CB

Na+
= CB

K+ = 0.4 M.

In summary, a nonlocal Poisson-Fermi model is proposed to describe global electrostatic

and steric effects that play a significant role of ionic activities in electrolyte solutions espe-

cially in high field or large concentration conditions. The model is based on Maxwell’s field

theory and nonuniform hard spheres of all ions and water molecules with interstitial voids.
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FIG. 3: The crystal structure of the K+ channel KcsA (PDB ID 3F5W) [21] with five cation

binding sites S0, S1, S2, S3, and S4 [22] marked by spheres.

The Fermi-like distribution formula can describe the distribution of nonuniform spherical

ions and water molecules with interstitial voids. The steric potential is a mean-field de-

scription of Lennard-Jones potentials between particles. Poisson’s equation is self-consistent

with Fermi distributions and global electrostatics. The present theory can be used to de-

scribe complex functions of biological or chemical structures on both atomic and macroscopic

scales with far field bulk and boundary conditions. Comparisons with experimental data are

promising but incomplete.
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