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Abstract
Experiments measuring currents through single protein channels show unstable
currents. Channels switch between ‘open’ or ‘closed’ states in a spontaneous
stochastic process called gating. Currents are either (nearly) zero or at a definite
level, characteristic of each type of protein, independent of time, once the
channel is open. The steady state Poisson–Nernst–Planck equations with steric
effects (PNP-steric equations) describe steady current through the open channel
quite well, in a wide variety of conditions. Here we study the existence of
multiple solutions of steady state PNP-steric equations to see if they themselves,
without modification or augmentation, can describe two levels of current. We
prove that there are two steady state solutions of PNP-steric equations for
(a) three types of ion species (two types of cations and one type of anion)
with a positive constant permanent charge, and (b) four types of ion species
(two types of cations and their counter-ions) with a constant permanent charge
but no sign condition. The excess currents (due to steric effects) associated
with these two steady state solutions are derived and expressed as two distinct
formulas. Our results indicate that PNP-steric equations may become a useful
model to study spontaneous gating of ion channels. Spontaneous gating is
thought to involve small structural changes in the channel protein that perhaps
produce large changes in the profiles of free energy that determine ion flow.
Gating is known to be modulated by external structures. Both can be included
in future extensions of our present analysis.
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1. Introduction

The Poisson–Nernst–Planck (PNP) equations, a well-known model of ion transport, play a
crucial role in the study of many physical and biological phenomena (see [3,5,7,8,11,13,15,
16, 25, 33, 34, 35, 38]). Such an important model can be represented by



∂ci

∂t
+ ∇ · J PNP

i = 0, i = 1, · · · , N ,

−J PNP
i = Di

(
∇ci + zie

kBT
ci∇φ

)
,

−∇ · (ε∇φ) = ρ0 +
N∑

i=1
zieci

(1.1)

where N is the number of ion species, ci is the distribution function, J PNP
i is the flux density, Di

is the diffusion constant, and zi is the valence of the ith ion species, respectively. Besides, φ

is the electrostatic potential, ε is the dielectric constant, ρ0 is the permanent (fixed) charge
density of the system, kB is the Boltzmann constant, T is the absolute temperature and
e is the elementary charge. Due to ionic sizes, steric repulsion may appear in crowded
ions of several biological systems like DNAs, ribosomes and ion channels. When ions are
crowded in a narrow channel, the PNP equations become unreliable because the ion-size
effect becomes important, but the PNP equations represent ions as point particles without size
(see [1, 6, 18, 19, 22, 26, 30, 36]).

To include ion size effects, Eisenberg and Liu modified PNP equations into a complicated
system of differential-integral equations with singular integrals that simulate successfully the
selectivity of important types of calcium and sodium ion channels (see [24]). The model is
denoted as follows:

∂tcj = ∇ ·
(

Dj

kBT
cj∇ δEtot

δcj

)
for j = 1, · · · , N, (1.2)

where the total energy Etot is given by

Etot = EPNP + EHS ,

EPNP =
∫

Rd

kBT

N∑
j=1

cj ln cj +
1

2


ρ0 +

N∑
j=1

zj ecj


φ ,

EHS =
N∑

i,j=1

∫ ∫
Rd×Rd

�ij (x − y) ci (x) cj (y) dx dy,

and �ij (x − y) = εij (ai + aj )
12 |x − y|−12 for ith and j th ions located at x and y with the

radii ai , aj , respectively. Here εij is an appropriately chosen energy constant, which comes
from the repulsive part of Lennard-Jones potential to describe the hard sphere repulsion of
ions (see [24]). However, because �ij ’s are extremely singular, EHS becomes difficult to
analyze theoretically and compute numerically when forced to deal with such singularities
(see [17, 24]).

To simplify model (1.2), we truncate the (spatial) frequency range of �ij and get the
approximate potential �ij,σ denoted as (see [31])

�ij,σ (z) = (
�ijχσ

)

 ϕσ (z) for z ∈ R

d , (1.3)

where the asterisk is the standard convolution, χσ is the characteristic function of the exterior
ball {z ∈ R

d : |z| > σ }, and ϕσ is the spatially band-limited function defined by

ϕσ (x) = (1 − χσ−γ (ξ))v, (1.4)
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for x, ξ ∈ R
d , where v denotes the inverse Fourier transform. Note that the truncation may

lose the effect of high frequencies |ξ | > σ−γ (0 < γ < 1), but still involve a large part of the
steric effects because it keeps the effect of frequencies like |ξ | ∼ σ−α for 0 < α < γ tending
to infinity as σ goes to zero. Then energy EHS can be approximated by EHS,σ as follows:

EHS ∼
N∑

i,j=1

∫ ∫
Rd×Rd

�ij,σ (x − y) ci (x) cj (y) dxdy ≡ EHS,σ ,

∼
N∑

i,j=1

εij

(
ai + aj

)12
Sσ

∫
Rd

ci (x) cj (x) dx ≡ ẼHS,σ ,

as σ > 0 approaches zero, where Sσ ∼ σd−12. Note that one may use the mean-field
approximation to get the energy with the same form as ẼHS,σ which describes hard sphere
repulsion of ions (see [10]), and the excess chemical potential µex

i in (1.8) (see [4]). Here we
give another argument to derive ẼHS,σ which is the leading order term of the expansion of the
approximated energy EHS,σ . To derive a simplified model of (1.2), we may fix σ > 0 as a
constant and replace EHS by ẼHS,σ in (1.2) to get the Poisson–Nernst–Planck equations with
steric effects called PNP-steric equations denoted as (see [31])

∂ci

∂t
+ ∇ · Ji = 0, i = 1, · · · , N , (1.5)

− ∇ · (ε∇φ) = ρ0 +
N∑

i=1

zieci, (1.6)

where flux Ji is

Ji = −Di∇ci − Dici

kBT
zie∇φ − Dici

kBT

N∑
j=1

gij∇cj , (1.7)

and gij = gji ∼ εij (ai + aj )
12 is a nonnegative constant depending on ion radii ai , aj and the

energy coupling constant εij of the i-th and j -th species ions, respectively. Note that equations
(1.5)–(1.7) can be regarded as a system of reaction-diffusion equations with nonlinear cross-
diffusion terms being similar to [9]. Amazingly, these equations are an effective model to
simulate the selectivity of ion channels (see [21]).

Comparing (1.7) with J PNP
i in (1.1), the excess flux J ex

i = Ji − J PNP
i due to steric effects

of ion species i is

− J ex
i = 1

kBT
Dici∇µex

i and µex
i =

N∑
j=1

gij cj (1.8)

where µex
i =

N∑
j=1

gij cj is the excess chemical potential of ion species i due to steric effects.

Consequently, the excess current I ex =
N∑

i=1
zieJ

ex
i due to steric effects becomes

I ex = −
N∑

i,j=1

zi e

kBT
Di gij ci∇cj . (1.9)

We shall use the formula (1.9) to calculate the excess currents for multiple solutions of the
1D steady-state PNP-steric equations. We are motivated by the hope–but cannot dare expect–
that one solution will correspond to a closed state and the other to an open state, as found in
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experiments [14] and in simulations [27]. Of course, the current measured through the open
state corresponds to the total current, not just the excess currents.

The existence of multiple steady (equilibrium) states is important to study transitions
between such states which may be related to the gating (switching between open and closed
states) and selectivity of ion channels. Multiple steady states can be investigated by finding
multiple solutions of the 1D steady-state PNP equations for two types of ion species with three
regions of piecewise constant permanent charge under the assumption that the Debye number
is large [15]. More general theorems related to multiple solutions of the 1D steady-state
PNP equations involving multiple types of ions with multiple regions of piecewise constant
permanent charge are discussed in [32]. With only a constant permanent charge, there is only
a unique solution of the 1D steady-state PNP equations for multiple types of ions [34, 37].
Instead of the 1D steady-state PNP equations, here we study multiple solutions of the 1D
steady-state PNP-steric equations with spatially constant permanent charges. Our use here of
equilibrium states is for a particular issue showing how multiple solutions with the flavor of
gating phenomena might appear in the equilibrium case. No claims are made of generality
in our discussion, especially to describe permeation in ion channels which should use the full
PNP equations with Dirichlet boundary conditions.

For simplicity, we consider domain as a 1D interval (−1, 1) for (1.5)–(1.7) and set Ji = 0,
i = 1, · · · , N to get the steady-state PNP-steric equations. Then by (1.7),

d

dx


ln ci +

zie

kBT
φ +

1

kBT

N∑
j=1

gij cj


 = 0 for x ∈ (−1, 1) , i = 1, · · · , N,

which can be satisfied if

ln ci +
zie

kBT
φ +

1

kBT

N∑
j=1

gij cj = 0 for i = 1, · · · , N , (1.10)

holds true. Let φ̃ = e
kBT

φ and g̃ij = 1
kBT

gij for i, j = 1, · · · , N . Then (1.6) and (1.10) can be
transformed into

ln ci + ziφ̃ +
N∑

j=1

g̃ij cj = 0 for i = 1, · · · , N, (1.11)

and

− ε̃φ̃xx = ρ̃0 +
N∑

i=1

zici for x ∈ (−1, 1), (1.12)

where ε̃ = kBT

e2 ε and ρ̃0 = 1
e
ρ0. For notational convenience, we may remove tilde (∼) and

denote (1.11) and (1.12) as

ln ci + ziφ +
N∑

j=1

gij cj = 0 for i = 1, · · · , N, (1.13)

and

− εφxx = ρ0 +
N∑

i=1

zici for x ∈ (−1, 1). (1.14)

Equations like (1.13) have been used to interpret bioelectric phenomena in many papers since
they were adopted by Hodgkin, Huxley, and Cole (see [12,23]). Here we consider the following
boundary condition given by

φ(1) + ηεφ
′(1) = φ0(1) and φ(−1) − ηεφ

′(−1) = φ0(−1), (1.15)

2056



Nonlinearity 28 (2015) 2053 T-C Lin and B Eisenberg

where φ0(1), φ0(−1) are constants and ηε is a non-negative constant. Here φ0(±1) and
φ(±1) are the extrachannel and intrachannel electrostatic potentials at the channel boundaries,
respectively. The coefficient ηε ∼ ε0

εm
is governed by the ratio of ε0 the dielectric constant of the

electrolyte solution and εm the dielectric constant of the membrane (see [39]). Note that (1.15)
is of the Robin boundary condition if ηε > 0; and of the Dirichlet boundary condition if ηε = 0.
The Robin boundary condition includes polarization (e.g. dielectric) charges in the bath and/or
electrodes which the Dirichlet boundary condition does not. Such charges, induced by and
dependent on the electric field play a prominent role in the art of real experiments, because
they are important determinants of the background noise and stability of high speed recordings.
The theoretical reasons for these practical realities have not been investigated to the best of
our knowledge.

As N = 2, the existence, uniqueness and the solution’s asymptotic behavior of (1.13)–
(1.15) are investigated under non-symmetry breaking condition 0 � g12 = g21 � √

g11g22

which implies that solution (c1, c2) of (1.13) is uniquely determined by φ (see [28]). Moreover,
(1.13) and (1.14) can be reduced to a single differential equation of φ, which is of Poisson–
Boltzmann (PB) type equations (see [29]). However, as the symmetry breaking condition
g12 = g21 >

√
g11g22 holds true and g12 is sufficiently large, solution (c1, c2) of (1.13)

may form two branch curves of φ so (1.13) and (1.14) can be decomposed into two different
equations (3.6) and (3.7) but not only one PB type equation. Hence we cannot regard steady
state PNP-steric equations (1.13) and (1.14) as a single PB type equation as g12 is sufficiently
large. In section 2, we introduce new variables ξ, � and transform (1.13) into a quadratic
polynomial which can be solved precisely to get explicit formulas and represent two branches
of solution curves. Using these explicit formulas, we can then define biological conductance
(for that condition) as the biologists do and perform the comparison using formulas like (1.16)–
(1.19). Note that the symbol g is used for conductance (units siemens) in biology and this is
not equivalent to our gij . In this paper, we want to study multiple solutions of (1.13)–(1.15)
for the cases of N = 3, 4, and g12 = g21, g34 = g43 sufficiently large such that symmetry
breaking condition g12 = g21 >

√
g11g22, g34 = g43 >

√
g33g44 holds true.

1.1. Main Results

System (1.13) can be regarded as a coupled system of algebraic equations. Because gij = 0 for
i, j = 1, · · · , N , a solution of system (1.13) can be expressed as ci = e−ziφ for i = 1, · · · , N .
However, it seems impossible to solve system (1.13) explicitly for the general case of gij > 0
for i, j = 1, · · · , N . To overcome such difficulty, we may set N = 2, z2 = −z1 = q � 1,
g11 = g22 = g > 0, and introduce new variables ξ = c1c2 and � = c1 + c2. Then (1.13)
can be transformed into a quadratic polynomial that can be solved explicitly (see section 2).
For g12 = g21 = z large (see theorem 2.4 in section 2), system (1.13) has two branches of
solutions (c1, c2) = (c1(�A1(φ)), c2(�A1(φ))) and (c1, c2) = (c1(�B1(φ)), c2(�B1(φ))) such
that (c1 − c2) ◦ �A1 : [−φA,c, ∞) → R and (c1 − c2) ◦ �B1 : (−∞, φA,c] → R are monotone
increasing functions to φ, where φA,c > 0 is a constant, �A1 and �B1 are two functions
satisfying

(c1 − c2) ◦ �A1(−φA,c) = (c1 − c2)(�c) > 0 ,

(c1 − c2) ◦ �B1(φA,c) = −(c1 − c2)(�c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ �A1(φ) = ∞ and lim
φ→−∞

(c1 − c2) ◦ �B1(φ) = −∞.

Here ◦ denotes the function (c1 − c2) acting on the function �A1(φ), i.e. the function
composition and gc is the positive constant defined in proposition 2.2. Besides, φA,c satisfies
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φA,c → +∞ and (c1 − c2)(�c) → 0 as z → +∞ and g > 0 is fixed. Hence (1.13) and (1.14)
can be decomposed into two differential equations like (3.6) and (3.7) but they can not have
uniformly bounded solutions to ε > 0 (see lemma 4.5). This fact motivates us to add one extra
species c3 and assume that N = 3, g12 = g21 = z is sufficiently large, g11 = g22 = g > 0,
z2 = −z1 = q � 1, z3 > 0, gi3 = g3i = 0, i = 1, 2, 3 (which implies c3 = e−z3φ). Then
(1.13) and (1.14) may be reduced to two differential equations (3.6) and (3.7) having uniformly
bounded solutions, respectively. This may provide multiple solutions of (1.13)–(1.15).

Natural biological solutions always contain at least three species (sodium, potassium, and
chloride, and usually calcium). Experiments are often done, however, with just two species (say
sodium chloride) along with traces of hydrogen ion, and perhaps other contaminants. Gating
occurs in simplified unnatural situations and so we hope to study mathematical solutions in
corresponding situations in a separate paper.

Now we state the main result of this paper as follows:

Theorem 1.1. Let N = 3, z2 = −z1 = q � 1, z3 > 0 and ρ0 > 0 be a constant. Assume that
g11 = g22 = g > 0 is fixed and gi3 = g3i = 0 for i = 1, 2, 3. Then as g12 = g21 = z > 0
is sufficiently large, the system of equations (1.13)–(1.15) has two uniformly bounded (to ε)
solutions φA

ε and φB
ε such that φA

ε (x) → φA1,0 and φB
ε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0.

Here φA1,0 and φB1,0 are two distinct constants satisfying fA(φA1,0) = fB(φB1,0) = 0, where

fA(φ) = q(c1 − c2)
(
�A1(φ)

) − z3e−z3φ − ρ0,

and

fB(φ) = q(c1 − c2)
(
�B1(φ)

) − z3e−z3φ − ρ0.

Remark 1.2. For the case of N = 2, solutions φA
ε and φB

ε may be unbounded as ε approaches
zero (see lemma 4.5). To get the uniform boundedness of solutions φA

ε and φB
ε , we need to

consider the case of N = 3. Without condition gi3 = g3i = 0 for i = 1, 2, 3 in theorem 1.1,
equation (1.13) becomes very complicated and it seems impossible to get the multiplicity

and monotonicity of
3∑

i=1
zici + ρ0 (to φ) which is important to prove the multiple solutions of

(1.13)–(1.15). There is no general theorem for the multiplicity and monotonicity of
3∑

i=1
zici +ρ0

(to φ), especially for all gij ’s are nonzero. Here we use such a condition (gi3 = g3i = 0 for
i = 1, 2, 3) to reduce the problem to the N = 2 case so we may apply results of section 2 to get
two branches of solutions (c1, c2) = (c1(�A1(φ)), c2(�A1(φ))) and (c1, c2) = (c1(�B1(φ)),
c2(�B1(φ))), and the monotonicity of fA and fB to φ, provided that g11 = g22 = g > 0 is
fixed and g12 = g21 = z > 0 is sufficiently large. Moreover, gi3 = g3i = 0 implies c3 = e−z3φ

and the profile of fA and fB may touch zero at φA1,0 and φB1,0 (see figure 4 in page 15), which
is important to prove the uniform boundedness of solutions φA

ε and φB
ε using lemma 4.1.

In most of the ‘cation’ (e.g. sodium, potassium, and calcium) channels, ρ0 is a negative
number. There are regions (‘rings’) of negative charge and some channels (sodium channel
DEKA) have a ring of positive charge as well. Here we assume the positive sign of ρ0 which
may produce the values φA1,0 and φB1,0 (see figure 4 in section 3.1), and the proof of theorem 1.1
is given in section 3.1.

To remove the sign condition on ρ0, we may consider four ion species composed of two
cations and counterions (like the mixture of Na+, Ca+2, Cl− and CO−2

3 ) and study multiple
solutions of (1.13)–(1.15) with N = 4, z2 = −z1 = q1 � 1, z4 = −z3 = q2 � 1,
g11 = g22 = g > 0, and g33 = g44 = g̃ > 0. Using the assumption gij = gji = 0 for
i = 1, 2 and j = 3, 4, we may decompose system (1.13) with N = 4 into two independent
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systems having the same form as (1.13) with N = 2. Hence theorem 2.4 (in section 2) implies
that as g12 = g21 = z and g34 = g43 = z̃ > 0 sufficiently large, system (1.13) has four
branches of solutions

(c1, c2) = (
c1
(
�A1 (φ)

)
, c2

(
�A1 (φ)

))
, (c1, c2) = (

c1
(
�B1 (φ)

)
, c2

(
�B1 (φ)

))
,

(c3, c4) = (
c3
(
�M1 (φ)

)
, c4

(
�M1 (φ)

))
, (c3, c4) = (

c3
(
�N1 (φ)

)
, c4

(
�N1 (φ)

))
,

such that (c1 − c2) ◦ �A1 : [−φA,c, ∞) → R, (c1 − c2) ◦ �B1 : (−∞, φA,c] → R,
(c3 − c4) ◦ �N1 : [−φM,c, ∞) → R and (c3 − c4) ◦ �M1 : (−∞, φM,c] → R, are monotone
increasing functions of φ, where φA,c, φM,c > 0 are constants, �A1 , �B1 , �M1 and �N1 are
functions satisfying

(c1 − c2) ◦ �A1(−φA,c) , (c3 − c4) ◦ �N1(−φM,c) > 0 ,

(c1 − c2) ◦ �B1(φA,c) , (c3 − c4) ◦ �M1(φM,c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ �A1(φ) = lim
φ→∞

(c3 − c4) ◦ �N1(φ) = ∞ ,

lim
φ→−∞

(c1 − c2) ◦ �B1(φ) = lim
φ→−∞

(c3 − c4) ◦ �M1(φ) = −∞.

Here ◦ denotes function composition. Moreover, φA,c, φM,c → +∞ and (c1 − c2) ◦
�A1(−φA,c), (c1 − c2) ◦ �B1(φA,c), (c3 − c4) ◦ �M1(φM,c) and (c3 − c4) ◦ �N1(−φM,c) tend
to zero as z, z̃ → +∞ and g, g̃ > 0 are fixed.

Without loss of generality, we may assume φM,c < φA,c. Then the graphs of functions
(c1 − c2)◦�A1 and (c4 − c3)◦�M1 may intersect at φ = φA1,0 as z and z̃ sufficiently large (see
figure 5 in section 3.2). Similarly, the graphs of functions (c1 − c2) ◦ �B1 and (c4 − c3) ◦ �N1

may intersect at φ = φB1,0 as z and z̃ sufficiently large. Hence (1.13) and (1.14) may be
reduced to two differential equations with the same forms as (3.6) and (3.7) having uniformly
bounded solutions, respectively. This may provide the following result for multiple solutions
of (1.13)–(1.15).

Theorem 1.3. Let N = 4, z2 = −z1 = q1 � 1, z4 = −z3 = q2 � 1 and ρ0 
= 0 be a constant.
Assume that g11 = g22 = g > 0, g33 = g44 = g̃ > 0 are fixed and gij = gji = 0 for i = 1, 2
and j = 3, 4. Then as g12 = g21 = z > 0 and g34 = g43 = z̃ > 0 are sufficiently large, the
system of equations (1.13)–(1.15) has two uniformly bounded (to ε) solutions φA

ε and φB
ε such

that φA
ε (x) → φA1,0 and φB

ε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0. Here φA1,0 and φB1,0 are
two distinct constants satisfying fA(φA1,0) = fB(φB1,0) = 0, where

fA (φ) = q1(c1 − c2)
(
�A1(φ)

)
+ q2(c3 − c4)

(
�M1(φ)

) − ρ0 ,

and

fB (φ) = q1(c1 − c2)
(
�B1(φ)

)
+ q2(c3 − c4)

(
�N1(φ)

) − ρ0.

The proof of theorem 1.3 is given in section 3.2.

Remark 1.4. As for remark 1.2, we use condition gij = gji = 0 for i = 1, 2 and j = 3, 4 to
reduce (1.13) with N = 4 into two independent systems of (c1, c2) and (c3, c4) with the same
form as (1.13) with N = 2 (studied in section 2) which give two branches of solutions

(c1, c2, c3, c4) = (
c1
(
�A1 (φ)

)
, c2

(
�A1 (φ)

)
, c3

(
�M1 (φ)

)
, c4

(
�M1 (φ)

))
,

and

(c1, c2, c3, c4) = (
c1
(
�B1 (φ)

)
, c2

(
�B1 (φ)

)
, c3

(
�N1 (φ)

)
, c4

(
�N1 (φ)

))
,

and the monotonicity of fA and fB to φ, provided that g11 = g22 = g > 0, g33 = g44 = g̃ > 0
are fixed and g12 = g21 = z > 0, g34 = g43 = z̃ > 0 are sufficiently large. As for theorem 1.1,
we may use lemma 4.1 to prove the uniform boundedness of solutions φA

ε and φB
ε .
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For solutions φA
ε and φB

ε , the corresponding excess currents defined in (1.9) may be denoted
as I ex

A and I ex
B , respectively. Under the same hypotheses of theorem 1.1 for three ion species,

we may use the new variable � to derive the following formulas (see section 5.1):∫ x2

x1

I ex
A dx = q e

∫ �A
2

�A
1

D2 − D1

2

{
(1 − q) − q

[
g� +

(
g2 − z2

)
e−(g+z)�

]}
d�

−q e

∫ �A
2

�A
1

D1 + D2

2
√

�2 − 4e−(g+z)�

{
(1− q)�− q g�2 + (g + z) [2 − q (g − z) �] e−(g+z)�

}
d�,

(1.16)

and∫ x2

x1

I ex
B dx = q e

∫ �B
2

�B
1

D2 − D1

2

{
(1 − q) − q

[
g� +

(
g2 − z2

)
e−(g+z)�

]}
d�

+q e

∫ �B
2

�B
1

D1 + D2

2
√

�2 − 4e−(g+z)�

{
(1 − q)� − q g�2 + (g + z) [2 − q (g − z) �] e−(g+z)�

}
d�,

(1.17)

for −1 < x1 < x2 < 1, where �A
j = �A1

(
φA

ε (xj )
)

and �B
j = �B1

(
φB

ε (xj )
)

for j = 1, 2.
From (1.16) and (1.17), it is clear that the difference between I ex

A and I ex
B which may give

various ion flows related to currents observed in channels as they switch (i.e. gate) from one
level of current to another.

The method of section 5.1 can be generalized to four ion species with the same hypotheses
of theorem 1.3. As for (1.16) and (1.17), we may derive (see section 5.2)∫ x2

x1

I ex
A,Mdx

=
∫ x2

x1

I ex
A + I ex

M dx = q1e

∫ �A
2

�A
1

D2 − D1

2

{
(1 − q1) − q1

[
g� +

(
g2 − z2

)
e−(g+z)�

]}
d�

−q1e

∫ �A
2

�A
1

D1 + D2

2
√

�2 − 4e−(g+z)�

{
(1− q1)� − q1 g�2 + (g+z) [2−q1 (g−z) �] e−(g+z)�

}
d�

+q2e

∫ �M
2

�M
1

D4 − D3

2

{
(1 − q2) − q2

[
g̃� +

(
g̃2 − z̃2

)
e−(g̃+z̃)�

]}
d�

−q2e

∫ �M
2

�M
1

D3 + D4

2
√

�2 − 4e−(g̃+z̃)�

{
(1−q2) �−q2 g̃�2 + (g̃+ z̃)

[
2−q2 (g̃−z̃) �

]
e−(g̃+z̃)�

}
d�,

(1.18)

and∫ x2

x1

I ex
B,Ndx

= intx2
x1

I ex
B + I ex

N dx = q1e

∫ �B
2

�B
1

D2 − D1

2

{
(1 − q1) − q1

[
g� +

(
g2 − z2

)
e−(g+z)�

]}
d�

+q1e

∫ �B
2

�B
1

D1 + D2

2
√

�2 − 4e−(g+z)�

{
(1−q1)�− q1 g�2 + (g+ z) [2 − q1 (g− z) �] e−(g+z)�

}
d�

+q2e

∫ �N
2

�N
1

D4 − D3

2

{
(1 − q2) − q2

[
g̃� +

(
g̃2 − z̃2

)
e−(g̃+z̃)�

]}
d�
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+q2e

∫ �N
2

�N
1

D3 + D4

2
√

�2 − 4e−(g̃+z̃)�

{
(1−q2)�−q2 g̃�2 + (g̃ + z̃)

[
2−q2 (g̃−z̃) �

]
e−(g̃+z̃)�

}
d�,

(1.19)

where �A
j = �A1(φ

A
ε (xj )), �M

j = �M1(φ
A
ε (xj )), �B

j = �B1(φ
B
ε (xj )), and �N

j =
�N1(φ

B
ε (xj )) for j = 1, 2. The difference between I ex

A,M and I ex
B,N may also give various

ion flows related to currents observed in channels as they switch (i.e. gate) from one level
of current to another. Formulas (1.16)–(1.19) show how multiple solutions with the flavor of
gating phenomena might appear in the equilibrium case.

The rest of this paper is organized as follows: We may solve system (1.13) of algebraic
equations with N = 2, z2 = −z1 = q � 1 and g11 = g22 > 0 in section 2. Theorem 1.1
and 1.3 are proven in section 3. The proofs of lemma 4.1 and 4.5 are given in section 4, and
formulas (1.16)–(1.19) are derived in section 5.

2. Solutions of (1.13) with N = 2, z2 = −z1 = q � 1 and g11 = g22

In this section, we study equation (1.13) with N = 2, z2 = −z1 = q � 1 and g11 = g22 = g

which can be denoted as follows:

(ln c1 − q φ) + (g c1 + z c2) = 0 , (2.1)

(ln c2 + q φ) + (g c2 + z c1) = 0 , (2.2)

where z = g12 and g = g11 = g22 are positive constants. Physically, gij ∼ εij (ai + aj )
12,

where ai is the ion radius of i-th ion species with concentration ci , and εij > 0 is the energy
coupling constant between i-th and j -th ion species for i = 1, 2. Note that (2.1) and (2.2)
are formulated as a system of algebraic equations. We want to solve these equations and get
solutions for (c1, c2) as a function of φ. Adding (2.1) and (2.2), we get

ln (c1c2) + (g + z) (c1 + c2) = 0. (2.3)

Now we introduce new variables as follows:

ξ = c1c2 and � = c1 + c2.

Multiplying � by c1 , we get a quadratic polynomial of c1 as follows:

�c1 = c2
1 + ξ

which gives c1 = �±
√

�2−4ξ

2 and hence by c1c2 = ξ , (c1, c2) can be expressed as

(c1, c2) =
(

�+
√

�2−4ξ

2 ,
�−

√
�2−4ξ

2

)
,

or

(c1, c2) =
(

�−
√

�2−4ξ

2 ,
�+

√
�2−4ξ

2

)
,

(2.4)

for � � 2
√

ξ > 0. Moreover, (2.3) can be transformed into ln ξ = −(g + z)� i.e.

ξ = e−(g+z)�. (2.5)

Hence the solution (c1, c2) of (2.1) and (2.2) may be described by two curves A and B

parameterized by the total concentration � and denoted as

A =
{

(c1, c2) =
(

� +
√

�2 − 4e−(g+z)�

2
,
� − √

�2 − 4e−(g+z)�

2

)
: � � �z > 0

}
,

(2.6)
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and

B =
{

(c1, c2) =
(

� − √
�2 − 4e−(g+z)�

2
,
� +

√
�2 − 4e−(g+z)�

2

)
: � � �z > 0

}
.

(2.7)

Here �z > 0 a critical total concentration is the unique positive solution of �2 = 4e−(g+z)�

such that concentrations c1 and c2 are equal to 1
2�z as the total concentration � = �z. Then

c1 − c2 =
{ √

�2 − 4e−(g+z)� on A,

−√
�2 − 4e−(g+z)� on B.

(2.8)

Take (2.6) and (2.7) into (2.1), and let φA = φ on curve A, and φB = φ on curve B,
respectively. Then


q φA(�) = ln
[

1
2

(
� +

√
�2 − 4e−(g+z)�

)]
+ g+z

2 � + g−z

2

√
�2 − 4e−(g+z)� ,

q φB(�) = ln
[

1
2

(
� − √

�2 − 4e−(g+z)�

)]
+ g+z

2 � + z−g

2

√
�2 − 4e−(g+z)� ,

(2.9)

for � � �z. Consequently,

φA + φB = 0, (2.10)

q
dφA

d�
= (1 + g�)e(g+z)� + g2 − z2

e(g+z)�
√

�2 − 4e−(g+z)�
, (2.11)

and

q
dφB

d�
= − (1 + g�)e(g+z)� + g2 − z2

e(g+z)�
√

�2 − 4e−(g+z)�
, (2.12)

when the total concentration � is larger than �z. Note that curve A and B are joined only
at a single point (c1, c2) = ( 1

2�z, 1
2�z) which is located only at � = �z. Moreover,

φA(�z) = φB(�z) = 0 and (c1 − c2)(�z) = 0.
Suppose 0 < z � g. Then φA and φB can be regarded as one variable φ and c1 − c2 may

become a strictly monotone increasing function of φ. The result is stated as follows:

Proposition 2.1. Suppose 0 < z � g. Then � = �(φ) can be a single-valued function of φ

with domain being the entire space R and range [�z, ∞) such that �(0) = �z,


φA(�(φ)) = φ ifφ � 0 ,

φB(�(φ)) = φ ifφ � 0 ,

(2.13)

and c1 − c2 = (c1 − c2)(�(φ)) is a strictly monotone increasing function of φ from −∞ to
∞.

Proof. Suppose 0 < z � g. Then by (2.11) and (2.12), we have
d

d�
φA (�) > 0 and

d

d�
φB (�) < 0 for � � �z. (2.14)

Here we have used 0 < z � g. Thus φA(�) > 0 and φB(�) < 0 for � > �z. Besides, the
range of φA is [0, ∞) and the range of φB is (−∞, 0]. Note that φA(�z) = φB(�z) = 0. We
may combine φA and φB as one variable φ (see figure 1) defined as follows:


φ = φA(�) � 0 onA ,

φ = φB(�) � 0 onB.
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Figure 1. θ = (�z, 0) in (�, φ) coordinates.

Figure 2. θ = (�z, 0) in (�, φ) coordinates.

Hence by (2.14) and inverse function theorem, � can be denoted as � = �(φ) and become
a single-valued function of φ with domain being the entire space R and range

[
�z, ∞) such

that �(0) = �z and (2.13) hold true. The derivative of � with respect to φ is

d�

dφ
= 1

dφ

d�

=




q e(g+z)�
√

�2−4e−(g+z)�

(1+g�)e(g+z)�+g2−z2 if φ � 0 ,

−q e(g+z)�
√

�2−4e−(g+z)�

(1+g�)e(g+z)�+g2−z2 if φ � 0.

(2.15)

Moreover, c1 − c2 = (c1 − c2)(�(φ)) is also a function of φ. Note that �(0) = �z, �′(0) = 0
and (c1 − c2) (� (0)) = (c1 − c2) (�z) = 0. Then (2.8) and (2.15) imply

d

dφ
(c1 − c2) = d

d�
(c1 − c2)

d�

dφ
= q

�e(g+z)� + 2 (g + z)

(1 + g�) e(g+z)� + g2 − z2
> 0 for φ ∈ R.

Therefore, c1 − c2 is strictly monotone increasing to φ and we complete the proof. �

When z = g12 is increased, for example when the ion is divalent like calcium, the profiles
of φA and φB may lose monotonicity and become oscillatory. It is well known in experiments
that calcium has profound and complex effects on the current voltage relations of channels
(see [2, 20]). Suppose z >

√
1 + g2 > 0. Then z2 − g2 > 1 and there exists a unique �c > 0

(because (1 + g�) e(g+z)� is strictly monotone increasing to � > 0) depending on �z such
that

(1 + g�c)e
(g+z)�c + g2 − z2 = 0.

Note that dφA

d�
(�c) = dφB

d�
(�c) = 0 if �c > �z > 0. We shall prove that �c may be located in

the domain of φA and φB i.e. �c > �z > 0 if z is sufficiently large (see proposition 2.2). By
(2.11) and (2.12), dφA

d�
< 0 on (�z, �c),

dφA

d�
> 0 on (�c, ∞), dφB

d�
> 0 on (�z, �c),

dφB

d�
< 0

on (�c, ∞). Then �c is a unique (global) minimal point of φA and a unique (global) maximal
point of φB , respectively (see figure 2).
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Figure 3. θ ′ = (0, �z).

Moreover, by (2.10),

φA,c ≡ −φA (�c) = − min
�>�z

φA (�) = max
�>�z

φB (�) = φB (�c) > 0. (2.16)

By figure 2, the inverse image of function φA consists of two functions �A1 :
(−φA,c, ∞

) →
(�c, ∞) and �A2 :

[−φA,c, 0
] → [

�z, �c

]
such that

d�A1
dφ

> 0 on
(−φA,c, ∞

)
and

d�A2
dφ

< 0

on
(−φA,c, 0

)
(see figure 3).

Moreover, by (2.11),

d�A1

dφ
= q

e(g+z)�A1

√
�2

A1
− 4e−(g+z)�A1

(1 + g�A1)e
(g+z)�A1 + g2 − z2

> 0 for φ > −φA,c , (2.17)

and

d�A2

dφ
= q

e(g+z)�A2

√
�2

A2
− 4e−(g+z)�A2

(1 + g�A2)e
(g+z)�A2 + g2 − z2

< 0 for − φA,c < φ < 0.

Similarly, the inverse image of function φB consists of another two functions �B1 :(−∞, φA,c

) → (�c, ∞) and �B2 :
[
0, φA,c

] → [
�z, �c

]
such that

d�B1
dφ

< 0 on
(−∞, φA,c

)
and

d�B2
dφ

> 0 on
(
0, φA,c

)
. Moreover, by (2.12),

d�B1

dφ
= −q

e(g+z)�B1

√
�2

B1
− 4e−(g+z)�B1

(1 + g�B1)e
(g+z)�B1 + g2 − z2

< 0 for φ < φA,c, (2.18)

and

d�B2

dφ
= −q

e(g+z)�B2

√
�2

B2
− 4e−(g+z)�B2

(1 + g�B2)e
(g+z)�B2 + g2 − z2

> 0 for 0 < φ < φA,c.

Thus by (2.8), we may consider two functions of (c1 −c2)◦�A1 and (c1 −c2)◦�B1 as follows:

(c1 − c2)(�A1(φ)) =
√

�2
A1

− 4e−(g+z)�A1 for φ � −φA,c , (2.19)

and

(c1 − c2)(�B1(φ)) = −
√

�2
B1

− 4e−(g+z)�B1 for φ � φA,c. (2.20)

Note that (c1 − c2)(�A1(·)) and (c1 − c2)(�B1(·)) are continuous functions on [−φA,c, φA,c].
Moreover, by (2.17)–(2.20), we have

d

dφ
(c1 − c2)(�A1(φ)) = q

e(g+z)�A1 [�A1 + 2(g + z)e−(g+z)�A1 ]

(1 + g�A1)e
(g+z)�A1 + g2 − z2

> 0 for φ > −φA,c,

(2.21)
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and

d

dφ
(c1 − c2)(�B1(φ)) = q

e(g+z)�B1 [�B1 + 2(g + z)e−(g+z)�B1 ]

(1 + g�B1)e
(g+z)�B1 + g2 − z2

> 0 for φ < φA,c.

(2.22)

Here we have used (2.38) and (2.39). Consequently, (c1 − c2)(�A1(·)) and (c1 − c2)(�B1(·))
are smooth functions on (−φA,c, φA,c). Since (c1 − c2)(�A1(·)) and (c1 − c2)(�B1(·)) are
strictly monotone increasing to φ (see (2.21) and (2.22)), then we may use (2.8) to get

(c1 − c2)(�A1(φ)) � (c1 − c2)(�A1(−φA,c)) =
√

�2
c − 4e−(g+z)�c > 0, (2.23)

(c1 − c2)(�B1(φ)) � (c1 − c2)(�B1(φA,c)) = −
√

�2
c − 4e−(g+z)�c < 0, (2.24)

for φ ∈ (−φA,c, φA,c).
Now we claim that if z is sufficiently large, then �c > �z > 0 i.e. �c is located in the

domain of φA and φB as follows:

Proposition 2.2. Let

gc = inf
{
z >

√
1 + g2 : there exists �c,z > �z > 0 such that (1 + g�c,z)e

(g+z)�c,z

+g2 − z2 = 0
}
, (2.25)

where �z > 0 is the unique solution of � = 2e− 1
2 (g+z)� for z > 0. Then for z > gc, there exists

a unique �c = �c,z > �z depending on z such that (1+g�c)e(g+z)�c +g2−z2 = 0. Conversely,
for 0 < z < gc, no such �c exists and (1 + g�)e(g+z)� + g2 − z2 > 0 for � � �z > 0.

Proof. Firstly, we claim that gc is well-defined. For any z > 0, we may define a function
fz = fz(�) by

fz(�) = (1 + g�)e(g+z)� + g2 − z2 for � > 0. (2.26)

Then it is obvious that fz(+∞) = ∞,

f ′
z(�) = [g + (1 + g�)(g + z)]e(g+z)� > 0 for �, z > 0, (2.27)

and fz(0) = 1 + g2 − z2 < 0 if z >
√

1 + g2. Hence there exists a unique �c,z > 0 such that
fz(�c,z) = 0. Let �///z > 0 be the unique solution of

�z = 2e− 1
2 (g+z)�z for z > 0. (2.28)

Now we prove �c,z > �z as z sufficiently large. By (2.28), �z is decreasing to z

(differentiate (2.28) to z) and z = −
(
g + 2 ln �z−ln 4

�z

)
. Thus �z → 0 as z → ∞ and

fz(�z) = (1 + g�z)e
(g+z)�z + g2 − z2

= [4(1 + g�z) + (g2 − z2)�2
z ]/�2

z by (2.28)

= [4(1 + g�z) − 2g�z(2 ln �z − ln 4) − (2 ln �z − ln 4)2]/�2
z → −∞ as z → ∞,

and then fz(�z) < 0 as z sufficiently large. Since fz(�c,z) = 0 and fz(�z) < 0 as z sufficiently
large, then by (2.27), we have �c,z > �z as z sufficiently large. Consequently, the set

Z = {z >
√

1 + g2 : ∃�c,z > �z > 0 such that fz(�c,z) = 0} (2.29)

= {z >
√

1 + g2 : fz(�z) < 0}
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is nonempty and the value gc = inf
z∈Z

z (defined in (2.25)) is well-defined. Note that the existence

of �c,z with fz(�c,z) = 0 is guaranteed due to z >
√

1 + g2, so (2.27) implies �c,z > �z if
fz(�z) < 0 holds true.

To complete the proof of proposition 2.2, we need the following result:

Claim 1. Suppose fz0(�z0) = 0 and �z0 > 0 for some z0 >
√

1 + g2. Then there exist
zl, zr >

√
1 + g2 and zl < z0 < zr such that fz(�z) > 0 for z ∈ (zl, z0) and fz(�z) < 0 for

z ∈ (z0, zr ).

Proof. By (2.26) and (2.28),

f (�z) = 4 (1 + g�z)

�2
z

+ g2 − z2. (2.30)

Then fz0(�z0) = 0 gives

4
1 + g�z0

�2
z0

= z2
0 − g2,

and �z0 satisfies (z2
0−g2)�2

z0
−4g�z0 −4 = 0 having solutions as �z0 = 2

z0−g
and �z0 = − 2

z0+g
.

Hence due to �z0 > 0,

�z0 = 2

z0 − g
. (2.31)

Note that z0 >
√

1 + g2 > ±g. Differentiating (2.28) and (2.30) to z, we have
d

dz
fz(�z) = − 4

2 + g�z

�3
z

d�z

dz
− 2z,

d�z

dz
= −�2

z

(g + z)�z + 2
.

Thus by (2.31), we obtain
d

dz
fz(�z)|z=z0 = −z0 − g < 0. (2.32)

Therefore, by (2.32), we may complete the proof of claim 1. �
It is obvious that

fz(�) > 0 for � > 0 and 0 < z �
√

1 + g2. (2.33)

Now we want to prove that

Z = (gc, ∞), (2.34)

where gc = inf
z∈Z

z. Due to the continuity of fz, (2.29) implies that the set Z is open. Suppose

the set Z has two components. Then without loss of generality, we may assume that there
exists za > gc such that Z = (gc, za) ∪ (za, ∞). Hence fza

(�za
) = 0 and fz(�z) < 0 for

z ∈ (gc, za) ∪ (za, ∞). However, claim 1 implies that fz(�z) > 0 for z ∈ (zl, za) which
contradicts to fz(�z) < 0 for z ∈ (gc, za). Thus the proof of (2.34) is done. On the other
hand, claim 1 also implies that

fz(�z) > 0 for 0 < z < gc. (2.35)

Otherwise, by (2.33), there exists zb ∈ (
√

1 + g2, gc) such that fzb
(�zb

) = 0. Then as
for (2.32), we have d

dz
fz(�z)|z=zb

= −zb − g < 0 and hence there exists zc ∈ (zb, gc) such
that fzc

(�zc
) < 0 which contradicts to (2.34). Therefore, by (2.27) and (2.35), we complete

the proof of proposition 2.2. �
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Remark 2.3.

(i) The proof of proposition 2.2 shows that fz(�z) > 0 for 0 < z < gc and fz(�z) < 0 for
z > gc (see (2.34) and (2.35)). Hence by the continuity of fz, fgc

(�gc
) = 0.

(ii) By (2.27) and (2.35), we have

fz(�) = (1 + g�)e(g+z)� + g2 − z2 > 0 for � � �z and 0 < z < gc. (2.36)

(iii) By (2.26), fz (�z) > 0 as z =
√

1 + g2 but fgc
(�gc

) = 0. Hence remark 2.3 (i) implies
gc >

√
1 + g2.

Suppose 0 < z < gc. Then (2.36) gives fz(�) > 0 for � � �z. Hence by (2.11) and
(2.12), dφA

d�
> 0 and dφB

d�
< 0 for � � �z which gives φA(�) > φA(�z) = 0 = φB(�z) >

φB(�) for � > �z. Thus as for proposition 2.1, � = �(φ) can be a single-valued function of φ

with domain as the entire space R and range
[
�z, ∞) such that �(0) = �z and c1−c2 is strictly

monotone increasing to φ. Moreover, � → ∞ as φ → ±∞ and (c1 − c2)(�(φ)) → ±∞ as
φ → ±∞.

Suppose z > gc > 0. Then proposition 2.2 gives that there exists a unique �c ∈ (�z, ∞)

such that

(1 + g�c)e
(g+z)�c + g2 − z2 = 0 , (2.37)

which implies

(1 + g�)e(g+z)� + g2 − z2 > 0, for � > �c , (2.38)

and

(1 + g�)e(g+z)� + g2 − z2 < 0, for �z � � < �c , (2.39)

By (2.9) and (2.11), we have dφA

d�
> 0 for � > �c; dφA

d�
< 0 for �z < � < �c,

and φA tends to +∞ as � goes to +∞. Hence �c is the unique minimum point of φA.
Since �2

z = 4e−(g+z)�z , then φA(�z) = 0 which implies −φA,c = φA(�c) < 0. Since

�c satisfies (1 + g�c)e(g+z)�c = z2 − g2 i.e. �c + ln(1+g�c)

g+z
= ln(z2−g2)

g+z
, then �c must

tend to zero as z goes to infinity. Note that g > 0 is a fixed constant. Consequently,

− ln
[

1
2

(
�c +

√
�2

c − 4e−(g+z)�c

)]
→ +∞ as z → +∞, and then

q φA,c = q φA(�c)

= − ln

[
1

2

(
�c +

√
�2

c − 4e−(g+z)�c

)]
+

g + z

2
�c +

g − z

2

√
�2

c − 4e−(g+z)�c

= − ln

[
1

2

(
�c +

√
�2

c − 4e−(g+z)�c

)]
+

g

2

(
�c +

√
�2

c − 4e−(g+z)�c

)

+
z

2

(
�c −

√
�2

c − 4e−(g+z)�c

)

� − ln

[
1

2

(
�c +

√
�2

c − 4e−(g+z)�c

)]
→ +∞

as z → +∞. Thus φA,c → +∞ as z → +∞ and g > 0 is fixed. Besides, since
e−(g+z)�c = (1 + g�c)/(z

2 − g2) and �c → 0 as z → ∞, then by (2.8), we have
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(c1 − c2)(�c) → 0 as z → +∞ and g > 0 is fixed. Therefore, we may summarize the
above results as follows:

Theorem 2.4.

(i) Suppose 0 < z < gc. Then (c1 − c2) ◦ � is a monotone increasing function to φ ∈ R

satisfying (c1 − c2)(�(φ)) → ±∞ as φ → ±∞, respectively.
(ii) Suppose z > gc. Then there are two functions �A1 and �B1 such that (c1 − c2) ◦ �A1 :

[−φA,c, ∞) → R and (c1 − c2) ◦ �B1 : (−∞, φA,c] → R are monotone increasing
functions of φ, where φA,c satisfies φA,c → +∞ and (c1 − c2)(�c) → 0 as z → +∞ and
g > 0 is fixed. Moreover,

(c1 − c2) ◦ �A1(−φA,c) = (c1 − c2)(�c) > 0 ,

(c1 − c2) ◦ �B1(φA,c) = −(c1 − c2)(�c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ �A1(φ) = ∞ and lim
φ→−∞

(c1 − c2) ◦ �B1(φ) = −∞.

Here ◦ denotes function composition and gc is the positive constant defined in proposition 2.2.

3. Proof of theorem 1.1 and 1.3

3.1. Proof of theorem 1.1

In this section, we study multiple solutions of the system of equations (1.13)–(1.15) with
N = 3 and the following assumptions:

ρ0 > 0, gi3 = g3i = 0 for i = 1, 2, 3. (3.1)

Then we may get solutions of (1.13) by solving

ln ci + ziφ +
2∑

j=1

gij cj = 0 for i = 1, 2 , (3.2)

and let

c3 = e−z3φ. (3.3)

Note that (3.2) is same as (1.13) with N = 2. Assume

z2 = −z1 = q � 1 , g11 = g22 > 0 and g12 > gc > 0 , (3.4)

where gc > 0 is a sufficiently large constant defined in proposition 2.2. We shall use (3.4) and
set ρ0 > 0 in order to apply theorem 2.4 (ii) (in section 2) and lemma 4.1 (in section 4) for the
proof of theorem 1.1 which gives multiple solutions of (1.13)–(1.15) with N = 3 and ρ0 > 0.

By theorem 2.4 (ii), equation (3.2) has multiple solutions

(c1, c2) = (
c1
(
�A1 (φ)

)
, c2

(
�A1 (φ)

))
and (c1, c2) = (

c1
(
�B1 (φ)

)
, c2

(
�B1 (φ)

))
(3.5)

such that fA1(φ) = q(c1 − c2)
(
�A1(φ)

)
and fB1(φ) = q(c1 − c2)

(
�B1(φ)

)
are monotone

increasing to φ but the values of fA1 and fB1 are away from zero (see figure 4). By lemma 4.5,
it is impossible to get uniformly bounded solution by solving either εφ′′(x) = fA1(φ(x)) or
εφ′′(x) = fB1(φ(x)) for x ∈ (−1, 1). This motivates us to develop lemma 4.1 (in section 4),
and use (3.3) to transform (1.14) into the following equations:

εφ′′(x) = fA(φ(x)) for x ∈ (−1, 1), (3.6)
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Figure 4. Figures of fA1 , fB1 and fc3 .

and

εφ′′(x) = fB(φ(x)) for x ∈ (−1, 1), (3.7)

where

fA(φ) = q(c1 − c2)
(
�A1(φ)

) − z3e−z3φ + ρ0 ,

and

fB(φ) = q(c1 − c2)
(
�B1(φ)

) − z3e−z3φ + ρ0.

We may denote fA and fB as follows: fA (φ) = fA1 (φ) − fc3 (φ) and fB (φ) =
fB1 (φ) − fc3 (φ), where fA1(φ) = q(c1 − c2)

(
�A1(φ)

)
, fB1(φ) = q(c1 − c2)

(
�B1(φ)

)
,

and fc3(φ) = z3e−z3φ − ρ0.
Let ρ0 > 0. Then theorem 2.4 (ii) (in section 2) implies that as g12 = z � gρ0 > gc > 0

(gρ0 is a large constant depending on ρ0), both functions fA1 and fB1 intersect with the function
fc3 at φA1,0 and φB1,0, respectively (see figure 4). Note that the assumption ρ0 > 0 is necessary
for the existence of φA1,0 and φB1,0. Moreover, fA = fA1 − fc3 and fB = fB1 − fc3 satisfy

(1) fA : [−φA,c, ∞) → R is smooth and strictly monotone increasing, −φA,c < 0,
fA(−φA,c) < 0, fA(∞) > 0 and fA(φA1,0) = 0 for some φA1,0 > −φA,c.

(2) fB : (−∞, φA,c] → R is smooth and strictly monotone increasing, φA,c > 0,
fB(φA,c) > 0, fB(−∞) < 0 and fB(φB1,0) = 0 for some φB1,0 < φA,c.

Hence by lemma 4.1, we may get uniformly bounded solutions φA
ε and φB

ε of (3.6) and (3.7),
respectively. Moreover, φA

ε (x) → φA1,0 and φB
ε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0.

Therefore, we complete the proof of theorem 1.1.

3.2. Proof of theorem 1.3

Let N = 4, z2 = −z1 = q1 � 1 and z4 = −z3 = q2 � 1. Assume g11 = g22 = g > 0,
g33 = g44 = g̃ > 0 and gij = gji = 0 for i = 1, 2 and j = 3, 4. Then (1.13) may be
represented as

ln ci + ziφ +
2∑

j=1

gij cj = 0 for i = 1, 2, (3.8)

and

ln ci + ziφ +
4∑

j=3

gij cj = 0 for i = 3, 4. (3.9)
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Figure 5. Figures of fA1 , fB1 , fM1 and fN1 .

Note that both (3.8) and (3.9) have the same form as (3.2) with (3.4) which can be solved
explicitly. As for theorem 2.4 in section 2, both (3.8) and (3.9) have two branches of solutions,
respectively. We may denote these solutions as follows:

(c1, c2) = (
c1
(
�A1 (φ)

)
, c2

(
�A1 (φ)

))
,

(c1, c2) = (
c1
(
�B1 (φ)

)
, c2

(
�B1 (φ)

))
,

(c3, c4) = (
c3
(
�M1 (φ)

)
, c4

(
�M1 (φ)

))
,

(c3, c4) = (
c3
(
�N1 (φ)

)
, c4

(
�N1 (φ)

))
,

such that (c1 − c2) ◦ �A1 : [−φA,c, ∞) → R, (c1 − c2) ◦ �B1 : (−∞, φA,c] → R,
(c3 − c4) ◦ �N1 : [−φM,c, ∞) → R and (c3 − c4) ◦ �M1 : (−∞, φM,c] → R, are monotone
increasing functions of φ, where φA,c, φM,c > 0 are constants, �A1 , �B1 , �M1 and �N1 are
functions satisfying

(c1 − c2) ◦ �A1(−φA,c) , (c3 − c4) ◦ �N1(−φM,c) > 0 ,

(c1 − c2) ◦ �B1(φA,c) , (c3 − c4) ◦ �M1(φM,c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ �A1(φ) = lim
φ→∞

(c3 − c4) ◦ �N1(φ) = ∞ ,

lim
φ→−∞

(c1 − c2) ◦ �B1(φ) = lim
φ→−∞

(c3 − c4) ◦ �M1(φ) = −∞.

Here ◦ denotes function composition. Moreover, theorem 2.4 gives φA,c, φM,c → +∞ and
(c1 −c2)◦�A1(−φA,c), (c1 −c2)◦�B1(φA,c), (c3 −c4)◦�M1(φM,c) and (c3 −c4)◦�N1(−φM,c)

tend to zero as z, z̃ → +∞ and g, g̃ > 0 are fixed.
Without loss of generality, we may assume φM,c < φA,c. Fix ρ0 ∈ R arbitrarily. Then

as for (3.2), we may solve (3.8) and get functions fA1(φ) = q1(c1 − c2)
(
�A1(φ)

) − ρ0 and
fB1(φ) = q1(c1−c2)

(
�B1(φ)

)−ρ0 which are sketched in figure 5 (up to a shift by ρ0), provided
that g12 = g21 = z > 0 is sufficiently large. Similarly, we may solve (3.9) and get functions
fM1(φ) = q2(c4 − c3)

(
�M1(φ)

)
and fN1(φ) = q2(c4 − c3)

(
�N1(φ)

)
as g34 = g43 = z̃ > 0

sufficiently large (see figure 5).
Because function q2(c3 − c4)◦�M1 is negative and increasing to φ, function q2(c4 − c3)◦�M1

becomes positive and decreasing to φ. On the other hand, function q1(c1 − c2) ◦ �A1 − ρ0

is positive and increasing to φ. This implies that as z and z̃ sufficiently large, functions
q1(c1 − c2) ◦ �A1 − ρ0 and q2(c3 − c4) ◦ �M1 may intersect at φ = φA1,0. Similarly, functions
q1(c1 − c2) ◦ �B1 − ρ0 and q2(c4 − c3) ◦ �N1 may intersect at φ = φB1,0 as z and z̃ sufficiently
large. Generically, values φA1,0 and φB1,0 can be different by choosing z and z̃ suitably e.g. z

and z̃ sufficiently large.
Let fA = fA1 − fM1 and fB = fB1 − fN1 . Then

fA (φ) = q1(c1 − c2)
(
�A1(φ)

)
+ q2(c3 − c4)

(
�M1(φ)

) − ρ0 ,

and

fB (φ) = q1(c1 − c2)
(
�B1(φ)

)
+ q2(c3 − c4)

(
�N1(φ)

) − ρ0 ,

2070



Nonlinearity 28 (2015) 2053 T-C Lin and B Eisenberg

satisfy

(1) fA : [−φA,c, φM,c] → R is smooth and strictly monotone increasing, −φA,c <

0, fA(−φA,c) < 0, fA(φM,c) > 0 and fA(φA1,0) = 0 for some φA1,0 > −φA,c.
(2) fB : [−φM,c, φA,c] → R is smooth and strictly monotone increasing, φA,c >

0, fB(φA,c) > 0, fB(−φM,c) < 0 and fB(φB1,0) = 0 for some φB1,0 < φA,c.

Moreover, equation (1.14) can be expressed as εφxx = fA (φ) and εφxx = fB (φ) for
x ∈ (−1, 1) which have the same forms as equations (3.6) and (3.7), respectively. Therefore
by lemma 4.1, we may complete the proof of theorem 1.3.

4. Uniformly bounded solutions

In this section, we consider the equation

εφ′′(x) = f (φ(x)) for x ∈ (−1, 1), (4.1)

with the Robin boundary condition

φ(1) + ηεφ
′(1) = φ0(1) and φ(−1) − ηεφ

′(−1) = φ0(−1), (4.2)

where φ0(1), φ0(−1) are constants and ηε is a non-negative constant. Note that the solution φε

of (4.1)–(4.2) may depend on the parameter ε. For notational convenience, we omit ε and
denote φ as the solution of (4.1)–(4.2). To get uniform boundedness of φ, we assume the
function f satisfies one of the following conditions:

(F1) f : [A, M] → R is smooth and strictly monotone increasing, A < 0, f (A) < 0, 0 <

M � ∞, f (M) > 0 and f (φA) = 0 for some A < φA < M .
(F2) f : [−M, B] → R is is smooth and strictly monotone increasing, B > 0, f (B) > 0, 0 <

M � ∞, f (−M) < 0 and f (φB) = 0 for some −M < φB < B.

Then we have

Lemma 4.1. Assume the function f satisfies either (F1) or (F2), and the constants A �
φ0(−1), φ0(1) � M as (F1) holds, and −M � φ0(−1), φ0(1) � B as (F2) holds. Let c = φA

if (F1) holds, and c = φB if (F2) holds. Let φ be a nonconstant solution of (4.1) with the Robin
boundary condition (4.2). Then

(i) If φ0(1), φ0(−1) > c, then there exists x1 ∈ (−1, 1) such that φ′(x1) = 0, φ(x1) > c,
and φ is strictly monotone decreasing in (−1, x1) and increasing in (x1, 1).

(ii) If φ0(1), φ0(−1) < c, then there exists x2 ∈ (−1, 1) such that φ′(x2) = 0, φ(x2) < c,
and φ is strictly monotone increasing in (−1, x2) and decreasing in (x2, 1).

(iii) If φ0(1) � c � φ0(−1), then φ is monotone increasing in (−1, 1).
(iv) If φ0(1) � c � φ0(−1), then φ is monotone decreasing in (−1, 1).
(v) min{φ0(−1), φ0(1), 0} � φ(x) � max{φ0(−1), φ0(1), 0} for x ∈ (−1, 1).

(vi) φ(x) → c as ε → 0+, where c = φA if (F1) holds, and c = φB if (F2) holds.

Proof. Without loss of generality, we may assume the function f satisfying (F1). Replacing φ

by φ + c, we may assume c = 0 and f (0) = 0 in the whole proof for notational convenience.
Since the domain of the function f is only [A, M], then we firstly extend it smoothly to the
entire real line R in order to use the standard direct method to get the existence of solution φ.
Hence we may temporarily assume the function f as a smooth and strictly monotone increasing
function on R. Actually, such an assumption can be ignored because of (4.5).
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To prove lemma 4.1, we need the following proposition:

Proposition 4.2.

(a) If xa ∈ (−1, 1) is a local minimum point of φ, then φ(xa) > 0, φ is monotone decreasing
in (−1, xa) and increasing in (xa, 1).

(b) If xb ∈ (−1, 1) is a local maximum point of φ, then φ(xb) < 0, φ is monotone increasing
in (−1, xb) and decreasing in (xb, 1).

The proof of proposition 4.2 (b) is quite similar to that of proposition 4.2 (a) so we only
state the proof of proposition 4.2 (a) as follows: Suppose xa ∈ (−1, 1) is a local minimum
point of φ. Then φ′(xa) = 0 and φ′′(xa) � 0. If φ′′(xa) = 0, then the equation εφ′′ = f (φ)

gives f (φ(xa)) = εφ′′(xa) = 0 which implies φ(xa) = 0 and then by the uniqueness of
ordinary differential equations and φ(xa) = φ′(xa) = 0, we have φ ≡ 0 which contradicts
to φ is nonconstant. Hence φ′′(xa) > 0 and f (φ(xa)) = εφ′′(xa) > 0 i.e. φ(xa) > 0.
Now we prove that φ is decreasing in (−1, xa) and increasing in (xa, 1). Suppose not. Then
there exists xc ∈ (−1, 1) and xc 
= xa such that xc is a local maximum point of φ i.e.
φ′(xc) = 0, φ′′(xc) � 0 and φ(xc) > φ(x1) > 0 but εφ′′(xc) = f (φ(xc)) > 0 which
contradicts to φ′′(xc) � 0. Therefore, we may complete the proof of proposition 4.2.

For the proof lemma 4.1 (i), we need

Claim 1. Assume φ0(1), φ0(−1) > 0. Then φ(−1), φ(1) > 0, φ′(−1) < 0 and φ′(1) > 0.
We may prove claim 1 by contradiction. Suppose one of the following cases holds:

Case I. φ(−1) > 0 and φ′(−1) � 0.

Case II. φ(−1) � 0.
For the Case I, we may use φ(−1) > 0 and the continuity of φ to obtain that as

x ∈ (−1, 1) sufficiently close to −1, φ(x) > 0 and εφ′′(x) = f (φ(x)) > 0 which implies
lim

x→−1+
εφ′′(x) = f (φ(−1)) > 0. Since φ′(−1) � 0 and lim

x→−1+
φ′′(x) > 0, then φ is monotone

increasing in (−1, −1 + δ0), where δ0 > 0 is a constant. Now we may show that φ is
monotone increasing in (−1, 1) by contradiction. Suppose φ has a local maximum point at
x0 ∈ (−1, 1) such that φ′(x0) = 0, φ′′(x0) � 0 and φ is monotone increasing in (−1, x0).
However, εφ′′(x0) = f (φ(x0)) � f (φ(−1)) > 0 contradicts to φ′′(x0) � 0. Hence φ

is monotone increasing in (−1, 1) which provides φ′′(x) = 1
ε
f (φ(x)) � 1

ε
f (φ(−1)) i.e.

φ′′(x) � 1
ε
f (φ(−1)) for x ∈ (−1, 1). Integrating the inequality from −1 to x, we have

φ′(x)−φ′(−1) � 1
ε
f (φ(−1))(x +1) i.e. φ′(x) � φ′(−1)+ 1

ε
f (φ(−1))(x +1) for x ∈ (−1, 1)

which implies

φ(1) − φ(−1) =
∫ 1

−1
φ′(x) dx �

∫ 1

−1

[
φ′(−1) +

1

ε
f (φ(−1))(x + 1)

]
dx

= 2

[
φ′(−1) +

1

ε
f (φ(−1))

]
,

i.e. φ(1) � φ(−1) + 2
[
φ′(−1) + 1

ε
f (φ(−1))

]
� 2

ε
f (φ(−1)). On the other hand,

the Robin boundary condition (4.2) gives φ0(1) = φ(1) + ηεφ
′(1) � φ(1) and φ(−1) =

φ0(−1) + ηεφ
′(−1) � φ0(−1) > 0 since φ is monotone increasing in (−1, 1). Thus

φ0(1) � φ(1) � 2

ε
f (φ(−1)) � 2

ε
f (φ0(−1)),

which contradicts to the hypothesis that φ0(1), φ0(−1) are independent to ε.

2072



Nonlinearity 28 (2015) 2053 T-C Lin and B Eisenberg

For the Case II, we first use the Robin boundary condition (4.2) to get ηεφ
′(−1) =

φ(−1)−φ0(−1) � −φ0(−1) < 0 which implies ηε > 0 and φ′(−1) < 0. Then φ(x) < 0 for
x ∈ (−1, −1 + δ1) and φ is monotone decreasing in (−1, −1 + δ1), where δ1 > 0 is a constant.
Hence φ is negative and monotone decreasing in (−1, 1). Otherwise, there exists x3 ∈ (−1, 1)

a local minimum point of φ such that φ(x3) < 0 and φ′′(x3) � 0 but φ′′(x3) = 1
ε
f (φ(x3)) < 0

which contradicts to φ′′(x3) � 0. Such a contradiction shows that φ is negative and monotone
decreasing in (−1, 1). However, 0 > φ(1) = φ0(1) − ηεφ

′(1) � φ0(1) contradicts to
φ0(1) > 0. Notice that both Case I and II produce contradiction. Similarly, the condition
φ(1) > 0 and φ′(1) � 0 and the other condition φ(1) � 0 also result in contradiction,
respectively. Therefore, we may complete the proof of claim I.

By claim I, there exists x1 ∈ (−1, 1) a local minimum point of φ, and then by
proposition 4.2 (a), we may complete the proof of lemma 4.1 (i). On the other hand,
we may also use the similar argument of claim I to prove that there exists x2 ∈ (−1, 1)

a local maximum point of φ. Hence by proposition 4.2 (b), we complete the proof of
lemma 4.1 (ii).

Now we prove lemma 4.1 (iii) by contradiction. Suppose φ is not monotone increasing.
By proposition 4.2, it is sufficient to consider two cases as follows: φ(−1) < 0 and φ(−1) > 0.
If φ(−1) < 0, then proposition 4.2 implies that there exists x2 ∈ (−1, 1) a maximum point
of φ such that φ(x2) < 0, φ is monotone increasing in (−1, x2) and decreasing in (x2, 1) so
φ′(1) � 0. However, the boundary condition φ(1) + ηεφ

′(1) = φ0(1) and φ′(1) � 0 give
φ0(1) � φ0(1) − ηεφ

′(1) = φ(1) � φ(x2) < 0 which contradicts to φ0(1) � c = 0. On
the other hand, if φ(−1) > 0, then proposition 4.2 implies that there exists x1 ∈ (−1, 1) a
minimum point of φ such that φ(x1) > 0, φ is monotone decreasing in (−1, x1) and increasing
in (x1, 1) so φ′(−1) � 0. However, the boundary condition φ(−1) − ηεφ

′(−1) = φ0(−1)

and φ′(−1) � 0 give φ0(−1) = φ(−1) − ηεφ
′(−1) � φ(−1) > 0 which contradicts to

φ0(−1) � c = 0. Therefore, we complete the proof of lemma 4.1 (iii). Similar argument of
lemma 4.1 (iii) can be applied to prove lemma 4.1 (iv) and we omit the detail here.

Using lemma 4.1 (i)–(iv), we may prove min{φ0(−1), φ0(1), 0} � φ(x) �
max{φ0(−1), φ0(1), 0} for x ∈ (−1, 1). The proof is stated as follows: By lemma 4.1 (i)
and the boundary condition (4.2), we have φ(−1) = φ0(−1) + ηεφ

′(−1) � φ0(−1),
φ(1) = φ0(1) − ηεφ

′(1) � φ0(1) and c = 0 < φ(x1) � φ(x) � max{φ(1), φ(−1)} �
max{φ0(1), φ0(−1)} for x ∈ (−1, 1). Similarly, lemma 4.1 (ii) and the boundary
condition (4.2) imply φ(−1) = φ0(−1) + ηεφ

′(−1) � φ0(−1), φ(1) = φ0(1) − ηεφ
′(1) �

φ0(1) and c = 0 > φ(x2) � φ(x) � min{φ(1), φ(−1)} � min{φ0(1), φ0(−1)} for
x ∈ (−1, 1). On the other hand, we may apply lemma 4.1 (iii) and the boundary condition (4.2)
to get φ(−1) = φ0(−1)+ηεφ

′(−1) � φ0(−1), φ(1) = φ0(1)−ηεφ
′(1) � φ0(1) and φ0(−1) �

φ(−1) � φ(x) � φ(1) � φ0(1) for x ∈ (−1, 1). Similarly, lemma 4.1 (iv) and the boundary
condition (4.2) give φ(−1) = φ0(−1)+ηεφ

′(−1) � φ0(−1), φ(1) = φ0(1)−ηεφ
′(1) � φ0(1)

and φ0(−1) � φ(−1) � φ(x) � φ(1) � φ0(1) for x ∈ (−1, 1). Hence we complete the
proof of lemma 4.1 (v) i.e.

min{φ0(−1), φ0(1), 0} � φ(x) � max{φ0(−1), φ0(1), 0} for x ∈ (−1, 1). (4.3)

Let A0 = min{φ0(−1), φ0(1), 0} and A1 = max{φ0(−1), φ0(1), 0}. Then (4.3) implies

‖φ‖L∞ � A2 = max{−A0, A1}. (4.4)

Since A � φ0(−1), φ0(1) � M and A < 0, then (4.3) gives

φ(x) ∈ [A0, A1] ⊂ [A, M] for x ∈ (−1, 1), (4.5)
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i.e. each value of φ(x) must be contained in the original domain of the function f . Thus
we may neglect the extension of the function f and regard φ as a well-defined solution of
equation (4.1) with boundary condition (4.2).

Now we claim that φ(x) → 0 as ε → 0+ for x ∈ (−1, 1). To prove this, we remark
that
ε

2
(φ2)′′(x) = ε(φφ′′ + (φ′)2)(x) � εφφ′′(x) = φ(x) f (φ(x))

= φ(x)

∫ φ(x)

0
f ′(s) ds � α0φ

2(x),

for x ∈ (−1, 1), where α0 = minz∈[A0,A1] f
′(z) > 0 is a constant coming from the strictly

monotone increasing of f . Note that if φ(x) < 0, then

φ(x)

∫ φ(x)

0
f ′(s) ds = (−φ(x))

∫ 0

φ(x)

f ′(s) ds � (−φ(x))

∫ 0

φ(x)

α0 ds = α0φ
2(x).

Since ε
2 (φ2)′′(x) � α0φ

2(x) for x ∈ (−1, 1), then by (4.4) and the standard comparison

theorem, we have φ2(x) � A2
2

(
e−(1+x)

√
2α0/ε + e−(1−x)

√
2α0/ε

)
for x ∈ (−1, 1). Therefore,

φ(x) → 0 as ε → 0+ for x ∈ (−1, 1), and we may complete the proof of lemma 4.1 (vi) and
completed the proof of lemma 4.1. �

Remark 4.3. The equation (4.1) with the boundary condition (4.2) has a unique solution.

The uniqueness comes from the strictly monotone increasing of the function f . The
proof is sketched as follows: Suppose φ1 and φ2 are solutions of (4.1) and (4.2). We
may subtract the equation of φ1 by that of φ2, and multiply the resulting equation by
u = φ1 − φ2 and integrate it over (−1, 1). Then using integration by part, we have
u′(1)u(1) − u′(−1)u(−1) − ∫ 1

−1 (u′(x))2 dx = ∫ 1
−1 c(x)u2 dx, where c(x) = f (φ1(x))−f (φ2(x))

φ1(x)−φ2(x)

is positive since the function f is strictly monotone increasing. On the other hand,
the Robin boundary condition (4.2) gives u(−1) = ηεu

′(−1), u(1) = −ηεu
′(1) and

u′(1)u(1) − u′(−1)u(−1) = −ηε

[
(u′(−1))2 + (u′(1))2

]
. Hence

0 �
∫ 1

−1
c(x)u2 dx = −ηε

[
(u′(−1))2 + (u′(1))2

] −
∫ 1

−1
(u′(x))2 dx � 0

which implies u ≡ 0 i.e. φ1 ≡ φ2 and the uniqueness proof of φ is complete.

Remark 4.4. The solution φ of the equation (4.1) with the boundary condition (4.2) has linear
stability.

To get the linear stability of the solution φ of the equation (4.1) with the boundary
condition (4.2), we study the eigenvalue problem Lv = λv of the corresponding linearized
operator Lv = −εv′′ + f ′(φ)v with the boundary condition v(±1) ± ηεv(±1) = 0. Using
integration by part, it is obvious that

λ

∫ 1

−1
v2 dx =

∫ 1

−1
v Lv dx =

∫ 1

−1
εv′′v dx +

∫ 1

−1
f ′(φ) v2 dx

= ηε

[
(v′(−1))2 + (v′(1))2

]
+
∫ 1

−1

[
ε(v′)2 + f ′(φ)v2

]
dx � µ0

∫ 1

−1
v2 dx, (4.6)

and hence λ � µ0 > 0, where µ0 = mins∈[min φ,max φ] f
′(s) is a positive constant arising from

the strictly monotone increasing of the function f .
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In lemma 4.1, the existence of zero point φA (or φB) of f is essential. If the function f has
not any zero point like φA (or φB) i.e. the value of f is away from zero, then the equation (4.1)
may not have uniformly bounded solutions {φ}ε>0. Such a result is stated as follows:

Lemma 4.5. Assume f is a function satisfying one of the following conditions:

(a) f : [A, ∞) → R is monotone increasing, A < 0 and f (A) > 0.
(b) f : (−∞, B] → R is monotone increasing, B > 0 and f (B) < 0.

For each ε > 0, let φ be a solution of the equation (4.1). Then sup
ε>0

‖φ‖L∞ = ∞.

Proof. Without loss of generality, we may assume the function f satisfies the condition (a).
Now we prove lemma 4.5 by contradiction. Suppose {φ}ε>0 is uniformly bounded i.e.
sup
ε>0

‖φ‖L∞ < ∞. We divide three cases to complete the proof as follows:

Case I. The solution φ = φ(x) is monotone decreasing to x i.e. φ′(x) � 0 for x ∈ (−1, 1).
Using the equation εφ′′ = f (φ) and the condition (a), we have

− φ′(x) � φ′(1) − φ′(x) =
∫ 1

x

φ′′(τ ) dτ

= ε−1
∫ 1

x

f (φ(τ)) dτ

� ε−1
∫ 1

x

f (A) dτ = ε−1 f (A)(1 − x) , ∀x ∈ (−1, 1) ,

and hence

−2‖φ‖L∞ � φ(1) − φ(−1) =
∫ 1

−1
φ′(x) dx � −ε−1f (A)

∫ 1

−1
(1 − x) dx = −2ε−1f (A),

i.e. ‖φ‖L∞ � ε−1f (A) → ∞ as ε → 0+ which contradicts to the hypothesis sup
ε>0

‖φ‖L∞ < ∞.

Case II. The solution φ = φ(x) is monotone increasing to x i.e. φ′(x) � 0 for x ∈ (−1, 1).
As for the argument of Case I, we obtain

φ′(x) � φ′(x) − φ′(−1) =
∫ x

−1
φ′′(τ ) dτ

= ε−1
∫ x

−1
f (φ(τ)) dτ

� ε−1
∫ x

−1
f (A) dτ = ε−1 f (A)(1 + x) , ∀x ∈ (−1, 1),

and hence

2‖φ‖L∞ � φ(1) − φ(−1) =
∫ 1

−1
φ′(x) dx � ε−1f (A)

∫ 1

−1
(1 + x) dx = 2ε−1f (A),

i.e. ‖φ‖L∞ � ε−1f (A) → ∞ as ε → 0+ which contradicts to the hypothesis sup
ε>0

‖φ‖L∞ < ∞.

Case III. The solution φ = φ(x) has a local minimum point at x0 ∈ (−1, 1) such
that φ′(x0) = 0 and φ′′(x0) > 0.
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Note that since εφ′′ = f (φ) � f (A) > 0, it is impossible to have any local maximum
point in (−1, 1). By the equation εφ′′ = f (φ) and the condition (a), we have

− φ′(x) = φ′(x0) − φ′(x) =
∫ x0

x

φ′′(τ ) dτ

= ε−1
∫ x0

x

f (φ(τ)) dτ

� ε−1
∫ x0

x

f (A) dτ = ε−1 f (A)(x0 − x) , ∀x ∈ (−1, x0),

and hence

−2‖φ‖L∞ � φ(x0) − φ(−1) =
∫ x0

−1
φ′(x) dx � −ε−1f (A)

∫ x0

−1
(x0 − x) dx

= −1

2
ε−1f (A)(x0 + 1)2,

i.e.

|x0 + 1| � 2ε1/2
√

‖φ‖L∞/f (A). (4.7)

On the other hand,

φ′(x) = φ′(x) − φ′(x0) =
∫ x

x0

φ′′(τ ) dτ

= ε−1
∫ x

x0

f (φ(τ)) dτ

� ε−1
∫ x

x0

f (A) dτ = ε−1 f (A)(x − x0) , ∀x ∈ (x0, 1),

and hence

2‖φ‖L∞ � φ(1)− φ(x0) =
∫ 1

x0

φ′(x) dx � ε−1f (A)

∫ 1

x0

(x − x0) dx = 1

2
ε−1f (A)(x0 − 1)2,

i.e.

|x0 − 1| � 2ε1/2
√

‖φ‖L∞/f (A). (4.8)

Therefore, as ε > 0 sufficiently small, (4.7) and (4.8) provide a contradiction and we may
complete the proof of lemma 4.5. �

5. Excess currents due to steric effects

Here we want to use solutions φA
ε and φB

ε of (1.13)–(1.15) (see theorem 1.1 and 1.3) to calculate
excess currents (due to steric effects) represented by formula (1.9). By (1.10),

N∑
j=1

gij cj = −kBT ln ci − zieφ ,

and then formula (1.9) becomes

I ex =
N∑

i=1

zieDi

(
∇ci + zici∇φ̃

)
, (5.1)

where φ̃ = e
kBT

φ.
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5.1. Under the same hypotheses of theorem 1.1

Here we set N = 3, z2 = −z1 = q � 1, z3 > 0, ρ0 > 0, and assume that g11 = g22 = g > 0
is fixed, g12 = g21 = z > 0 is sufficiently large, and gi3 = g3i = 0 for i = 1, 2, 3. By (3.3),
we have c3 = e−z3φ̃ which implies ∇c3 + z3c3∇φ̃ = 0. Hence (5.1) becomes

I ex =
2∑

i=1

zieDi

(
dci

dx
+ zici

dφ̃

dx

)

= − q eD1

(
dc1

dx
− q c1

dφ̃

dx

)
+ q eD2

(
dc2

dx
+ q c2

dφ̃

dx

)

= q e

[
d

dx
(−D1c1 + D2c2) + q (D1c1 + D2c2)

dφ̃

dx

]

i.e.

I ex = q e

[
d

dx
(−D1c1 + D2c2) + q (D1c1 + D2c2)

dφ̃

dx

]
(5.2)

Using c1 = c1−c2
2 + c1+c2

2 and c2 = c1+c2
2 − c1−c2

2 , formula (5.2) can be expressed as

1
q e

I ex = d
dx

[
D2−D1

2 (c1 + c2) − D1+D2
2 (c1 − c2)

]

+q
[

D1+D2
2 (c1 + c2) − D2−D1

2 (c1 − c2)
] dφ̃

dx

(5.3)

Note that c1 + c2 = � and c1 − c2 =
{ √

�2 − 4e−(g+z)� on A,

−√
�2 − 4e−(g+z)� on B.

(see (2.8) in

section 2). As for (3.5)–(3.7), we may set
(
�, φ̃

)
=

(
�A1

(
φ̃
)

, φA
ε (x)

)
and

(
�, φ̃

)
=(

�B1

(
φ̃
)

, φB
ε (x)

)
, respectively. Then along c1 + c2 = � = �A1 and c1 − c2 =√

�2
A1

− 4e−(g+z)�A1 , we may use (2.17), (2.21) and Chain Rule to get

d
dx

(c1 + c2) = d
dx

�A1

(
φA

ε (x)
)

= d�A1
dφ

(
φA

ε (x)
) dφA

ε

dx
(x)

=
√

�2
A1

(φA
ε (x))−4e−(g+z)�A1(φA

ε (x))

1+g�A1(φ
A
ε (x))+(g2−z2)e−(g+z)�A1(φA

ε (x))
dφA

ε

dx
(x) ,

and
d

dx
(c1 − c2) = d

dx
(c1 − c2)

(
�A1

(
φA

ε (x)
))

= d
dφ

(c1 − c2)
(
�A1

(
φA

ε (x)
)) dφA

ε

dx
(x)

= �A1(φ
A
ε (x))+2(g+z)e−(g+z)�A1(φA

ε (x))

1+g�A1(φ
A
ε (x))+(g2−z2)e−(g+z)�A1(φA

ε (x))
dφA

ε

dx
(x) .

For simplicity, we may set �̂A1 = �A1

(
φA

ε (x)
)

and denote d
dx

(c1 ± c2) as follows:

d

dx
(c1 + c2) =

√
�̂2

A1
− 4e−(g+z)�̂A1

1 + g�̂A1 +
(
g2 − z2

)
e−(g+z)�̂A1

dφA
ε

dx
(x) ,

2077



Nonlinearity 28 (2015) 2053 T-C Lin and B Eisenberg

and

d

dx
(c1 − c2) = �̂A1 + 2(g + z)e−(g+z)�̂A1

1 + g�̂A1 + (g2 − z2)e−(g+z)�̂A1

dφA
ε

dx
(x) .

Consequently, by setting I ex
A = I ex along A1 and I ex

B = I ex along B1, (5.3) becomes

I ex
A = q e iA

(
�̂A1

) dφA
ε

dx
(x) , (5.4)

and

I ex
B = q e iB

(
�̂B1

) dφB
ε

dx
(x) , (5.5)

where

iA (�) =
D2−D1

2

√
�2 − 4e−(g+z)� − D1+D2

2

[
� + 2 (g + z) e−(g+z)�

]
1 + g� +

(
g2 − z2

)
e−(g+z)�

,

+q

[
D1 + D2

2
� − D2 − D1

2

√
�2 − 4e−(g+z)�

]
(5.6)

and

iB (�) =
D1−D2

2

√
�2 − 4e−(g+z)� − D1+D2

2

[
� + 2 (g + z) e−(g+z)�

]
1 + g� +

(
g2 − z2

)
e−(g+z)�

.

+q

[
D1 + D2

2
� − D1 − D2

2

√
�2 − 4e−(g+z)�

]
(5.7)

Without loss of generality, φA
ε can be assumed as a monotone increasing function. Such an

assumption can be fulfilled by setting φ0(−1) < φ0(1) and using lemma 4.1 (iii). Integrating
I ex
A from x1 to x2, we have∫ x2

x1

I ex
A dx = e

∫ x2

x1

iA
(
�A1

(
φA

ε (x)
))dφA

ε

dx
dx = e

∫ φA
2

φA
1

iA
(
�A1 (φ)

)
dφ, (5.8)

for −1 < x1 < x2 < 1, where φ1 � φ2 and φA
j = φA

ε

(
xj

)
, j = 1, 2. Setting � = �A1 and

using change of variables, Inverse Function Theorem and (2.17), we have

dφ = dφ

d�
d� = 1

d�
dφ

d� = 1 + g� +
(
g2 − z2

)
e−(g+z)�

√
�2 − 4e−(g+z)�

d�.

Therefore, by (5.4)–(5.8), we may complete the proof of (1.16) and (1.17).

5.2. Under the same hypotheses of theorem 1.3

Here we set N = 4, z2 = −z1 = q1 � 1, z4 = −z3 = q2 � 1, ρ0 
= 0, and assume that
g11 = g22 = g > 0, g33 = g44 = g̃ > 0 are fixed, g12 = g21 = z > 0, g34 = g43 = z̃ > 0
are sufficiently large, and gij = gji = 0 for i = 1, 2 and j = 3, 4. As for section 3.2,
these hypotheses imply that (1.13) can be decomposed into two independent equations (3.8)
and (3.9) which have the same form as (3.2) with (3.4). Solving equations (3.8) and (3.9),
we may get (c1, c2) (with branches A1, B1) and (c3, c4) (with branches M1, N1) as functions
of φ, respectively. By (5.1), the excess currents of (c1, c2) and (c3, c4) can be represented

as
2∑

i=1
zieDi

(
dci

dx
+ zici

dφ̃

dx

)
and

4∑
i=3

zieDi

(
dci

dx
+ zici

dφ̃

dx

)
which can be calculated by the same

method as section 5.1. We may denote the total excess current as I ex
A,M = I ex

A + I ex
M , where I ex

A
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and I ex
M are the excess currents along branches A1 for (c1, c2) and M1 for (c3, c4), respectively.

Similarly, another total excess current can be denoted as I ex
B,N = I ex

B + I ex
N , where I ex

B and
I ex
N are the excess currents along branches B1 for (c1, c2) and N1 for (c3, c4), respectively.

Therefore, as for (5.4)–(5.8), we may complete the proof of (1.18) and (1.19).
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