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ABSTRACT  
 

Electricity plays a special role in our lives and life. The dynamics of electrons allow light 

to flow through a vacuum. The equations of electron dynamics are nearly exact and apply 

from nuclear particles to stars. These Maxwell equations include a special term, the 

displacement current (of a vacuum). The displacement current allows electrical signals to 

propagate through space. Displacement current guarantees that current is exactly conserved 

from inside atoms to between stars, as long as current is defined as the entire source of the 

curl of the magnetic field, as Maxwell did. We show that the Bohm formulation of quantum 

mechanics allows the easy definition of current without the mysteries of the theory of 

quantum measurements. We show how conservation of current can be derived without 

mention of the polarization or dielectric properties of matter. We point that displacement 

current is handled correctly in electrical engineering by ‘stray capacitances’, although it is 

rarely discussed explicitly.  

Matter does not behave as physicists of the 1800's thought it did. They could only 

measure on a time scale of seconds and tried to explain dielectric properties and 

polarization with a single dielectric constant, a real positive number independent of 

everything. Matter and thus charge moves in enormously complicated ways that cannot be 

described in that way, when studied on time scales important today for electronic 

technology and molecular biology. When classical theories could not explain complex 

charge movements, constants in equations were allowed to vary in solutions of those 

equations, in a way not justified by mathematics, with predictable consequences.  

Life occurs in ionic solutions where charge is moved by forces not mentioned or 

described in the Maxwell equations, like convection and diffusion. These movements and 

forces produce crucial currents that cannot be described as classical conduction or classical 

polarization. Derivations of conservation of current involve oversimplified treatments of 

dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave 

in that simple way—not even approximately—classical derivations of conservation of 

current are often distrusted or even ignored. We show that current is conserved inside 

atoms. We show that current is conserved exactly in any material no matter how complex 

are the properties of dielectric, polarization, or conduction currents. 

Electricity has a special role because conservation of current is a universal law. Most 

models of chemical reactions do not conserve current and need to be changed to do so. On 

the macroscopic scale of life, conservation of current necessarily links far spread 

boundaries to each other, correlating inputs and outputs, and thereby creating devices. We 

suspect that correlations created by displacement current link all scales and allow atoms to 

control the machines and organisms of life. Conservation of current has a special role in 

our lives and life, as well as in physics. 

We believe models, simulations, and computations should conserve current on all 

scales, as accurately as possible, because physics conserves current that way. We believe 

models will be much more successful if they conserve current at every level of resolution, 

the way physics does. We surely need successful models as we try to control macroscopic 

functions by atomic interventions, in technology, life, and medicine.  

Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms 

control life.  
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1. INTRODUCTION 

 

 The dynamics of electrons allow us to hold a computer in our hand that detects 

signals of microvolts, from a 500 watt satellite source some 22,200 miles away. The 

computer in our hand makes logical decisions nearly a billion times a second, using some 

1012 components, with hardly any errors.  

 The fundamental laws that govern these phenomena are Maxwell’s equations. 

These laws are so general that they are often thought to have limited practical applicability: 

their application is often thought to depend on precise knowledge of the detailed properties 

of matter, knowledge that is often unknown, always hard to acquire. This paper is about a 

notable exception: conservation of current. Conservation of current is true universally, on 

all scales, independent of the detailed properties of matter.  

 Kirchhoff’s current law illustrates the importance of conservation of current. 

Kirchoff’s laws use a set of currents and voltages to predict the performance of systems 

operating with currents ranging from femtoamps to kiloamps, with potentials from 

microvolts to hundreds of volts, in resistors ranging from tenths of an ohm to sometimes 

tens of gigohms. Kirchoff’s laws are simple, compact and easy to use. They are also exact 

in branched one dimensional systems, when current is defined to include displacement 

current. Electrical systems follow Kirchoff’s current law exactly because conservation of 

current is universal.  

 Electricity is Different because few physical systems follow simple and compact 

laws with such precision. 

 Electricity is familiar as well as different because it is used so widely in our 

technology and life. Our society of information (with its internet of everything) is a 

practical application of the dynamics of electrons. Our technology would be impossible if 

Kirchoff’s laws were not accurate and easy to apply. Electricity is so widely used because 

it follows universal laws that can be easily applied. 

Compact and simple laws, like Kirchhoff’s laws, allow the use of mathematics to 

design devices with a wide range of properties (Gray, Hurst et al. 2001, Cressler 2005, 

Horowitz and Hill 2015) with reasonable realism. For example, the microchip in your 

laptop computer requires manufacturing precision to sub-nanometer accuracy across 300 

millimeters of the semiconductor wafer in which the computer chip is formed. This 

accuracy is an incredible feat of today’s technology.  

Sciences that depend on less accurate, simple and compact laws are often forced to 

use models that are not ‘transferrable’ (as the word is used by chemists). We mean by 

‘transferable’ that the same law—with the same numerical value of parameters—can be 

used in a multitude of conditions and systems and is not constrained to a single system and 

set of conditions. Non-transferrable models use parameters that change with conditions, 

often in ways that are hard to capture or predict. Devices become difficult to use when their 

parameters and properties vary in unpredictable ways. 

 Nearly all systems — particularly liquids and ionic solutions so important in 

chemistry and biology — involve many types of forces and interactions. Interacting 

systems are particularly difficult to capture in simple and compact laws. Interactions make 

it difficult to find transferrable models, with one set of unchanging parameters valid for a 
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large range of conditions. The simple and compact transferable models valid for typical 

electronic technology cannot be automatically applied to biological systems because of 

their complex structure, but the electrical properties of individual nerve and muscle fibers 

can be expressed in terms of Kirchoff’s laws and little else, amazingly enough. (Hodgkin 

and Huxley 1952c, Hodgkin 1958, Hodgkin 1964, Hodgkin 1992, Weiss 1996, Huxley 

2000, Huxley 2002, Prosser, Curtis et al. 2009, Gabbiani and Cox 2010). Even electrical 

syncytia like the heart, epithelia, lens of the eye, liver, and so on can be described quite 

well with modest generalizations of Kirchoff’s laws.(Tung 1978, Eisenberg, Barcilon et al. 

1979, Mathias, Rae et al. 1979, Eisenberg and Mathias 1980, Mathias, Rae et al. 1981, 

Geselowitz and Miller 1983, Levis, Mathias et al. 1983) 

 Nerve and muscle fibers live in salt solutions derived from seawater, as does nearly 

all of life. Many chemical systems and a great deal of our chemical technology involve 

these salt solutions. Interactions abound in salt solutions, and they occur between the 

different types of ions, and ions with the water. Seawater flows in pressure and temperature 

gradients, so many types of forces are involved. Electric fields are particularly important 

in these systems and they pose particular problems because electric fields are very strong 

and extend a very long way, coupling atomic and macroscopic length scales with one set 

of physical laws. 

 Viewed physically, most biological systems of interest are macroscopic systems 

containing a huge number of fundamental particles with a fantastic number of interactions 

between pairs of particles. The number of interactions is orders of magnitude larger than 

Avogadro’s number or 1023  for the number of particles per mole. Even small systems 

contain millions of molecules, and larger systems contain 1017 molecules, pairwise 

interactions can dominate properties. The attempts to describe the system by computing 

the dynamics of each particle becomes, in general, computationally impossible when these 

number of interactions are involved.  

 Some general properties about the behavior of biological systems are controlled by 

a handful of atoms, as molecular biology has so well shown us, and the role of those atoms 

must be understood at such an atomic level.(Alberts, Bray et al. 1994) But that 

understanding does not require computation of all atoms or all interactions. In some tissues, 

like nerve and muscle cells, and some syncytia, already described, electrical properties of 

cells and tissues on the macroscopic scale are understood nearly completely from atomic 

properties and structures. The link between atoms and cells is known and turns out to be a 

slight generalization of the same Kirchoff’s laws that are so important in the design of our 

technology. 

 In this paper, we show that electrical current satisfies a current conservation law 

exactly and universally when it includes an additional component beyond the flux of 

charge: the displacement current (Zapolsky 1987, Arthur 2008, Selvan 2009, Arthur 2013). 

The displacement current plays a crucial role in the practical application of Kirchoff’s laws. 

 The fact that the modeling of systems with charged particles has to include both 

particle current and displacement current, rather than only particle current, is a main 

message of this paper.  

 At first sight, the message may seem trivial. It is clearly explained in most 

elementary textbooks. However, there is a surprisingly large amount of relevant work 

presently being published in biology, electronics, chemistry, etc., where the dynamics of 
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charged systems are described but the displacement current generated by the movement of 

charge is ignored. Indeed, it was a surprise to find important work which ignores current 

flow altogether.(Eisenberg 2014a,b) It seems to us that emphasizing the importance of 

displacement current is still necessary in the scientific community. And we hope that 

including displacement current will make models more useful, transferable, and realistic. 

 

1.1 The strength of the electric field in life 

 

Electric forces are much stronger than other forces we deal with in ordinary life (e.g., in 

mechanical systems, diffusion in liquids, and heat flow). One per cent changes in 

concentration, or mass density or temperature have little effects in ordinary life. One per 

cent errors in the computation of heat flow, convection, or diffusion are not very good, but 

are not a disaster either. But a one percent change in the source of the electric field has 

dramatic effects: as Feynman says in the third paragraph of his textbook on 

electrodynamics (Feynman, Leighton et al. 1963), one per cent of the charge in a person 

(at a distance of 1 meter) creates a force large enough to lift the earth. Indeed, such forces 

are large enough to ionize the atoms around and in us, ionizing them into a gaseous plasma, 

destroying us and our laboratories in a significant explosion. In normal life, most people 

have seen sparks at electrical outlets and have seen and heard lightning. It takes only an 

easy calculation to learn that there is a tremendous amount of energy being dissipated from 

the clouds during the storm. Life and biological experiments are compatible with only tiny 

changes in charge density, closer to 10-15 than a 10-2 fraction of all charges present. For 

example, a modern microcomputer in your cell phone involves transistors that switch with 

only about a thousand electrons (~10-16 Coulombs), a vanishing fraction of the total number 

of electrons in the transistor. 

 Electric forces are so strong that they change the shape of things, much as the 

gravitational force of the moon distorts the shape of the earth by moving our oceans and 

creating tides. Similarly, electric forces change the distribution of charge, in a way called 

polarization. Indeed, early workers in electricity (Faraday and Maxwell) and JJ Thomson, 

(before he discovered the electron, see (Thomson 1893)) were aware of polarization and 

only dimly aware of charge. A search of Thomson (Thomson 1893) does not find the word 

charge anywhere in the book. Evidently, Thomson did not know of permanent charge 

independent of the electric field (Buchwald 1985) until he discovered the electron 

(Thomson 1898, Thomson 1906). 

 

1.2 The current conservation law in electrical circuits 

 

Computers as we know them are possible because the laws of electricity are robust subsets 

of the universal laws of electrodynamics that accurately describe the properties of circuits. 

Our computers are built almost entirely of circuits in which current flows in one dimension 

in wires and devices (like resistors, capacitors and field effect transistors). Circuits are 

almost always branched networks of one-dimensional components. Currents at branch 

points (‘nodes’) add and subtract so total current is conserved exactly, always, at all times. 

Everything coming into a node goes out of the node, as described by Kirchoff’s current 

law. In Table 1, we have defined the four types of current discussed in this paper. The 
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magnitude  𝐉𝑚𝑎𝑠𝑠  refers to the flux of mass. Equivalently, 𝐉Q is the flux of charge. In Table 

1, we also add the new displacement current: 

 𝐉𝐷 = 𝜀0 𝜕𝐄 𝜕𝑡⁄  , (1) 

where 𝐄 is the electric field, ε0 is a constant, the permittivity of a vacuum, that never 

changes with anything, and t is time. Finally, the total current 𝐉𝑡𝑜𝑡𝑎𝑙  is defined as the sum 

of the charge and displacement current: 

                      𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉𝐷 + 𝐉𝑄.                                                                (1.b) 

The total current 𝐉𝑡𝑜𝑡𝑎𝑙  that enters a node, leaves it. Total current1 𝐉𝑡𝑜𝑡𝑎𝑙  is exactly equal 

everywhere at every time in every device in a series circuit, even though the charge 

transport (the flux) JQ, can be very different in each device, as different as charge transport 

in a wire is from that in seawater, or from the displacement current in a ‘vacuum’ 

capacitor 𝐶
𝜕𝑉

𝜕𝑡
 (coulombs per sec, SI official name Cs-1) where 𝑉 is potential in volts (SI 

official name V), 𝑡 is time. The capacitance 𝐶 is in farads.2 

 

 Consider a circuit with a battery connected in series, through a wire, to a resistor 

and a capacitor. Although the physics of charge movement is entirely different in a battery, 

wire, resistor, or vacuum capacitor, the total current is exactly equal at all times in all 

positions of the series circuit and under all conditions. 

                                                 
1 We assume that the cross-sectional area is constant in this paragraph so that we do not have to distinguish 

between current I and current density 𝐉 (or current per unit area). 
2 Note that if the potential is a sinusoid, say 𝑉(𝑡)  =  sin ω𝑡, as it is in the enormous classical literature 

measuring polarization currents and dielectric ‘constants’, the current through the capacitor is 𝐶
𝜕 sin𝜔𝑡

𝜕𝑡
=

𝐶 sin(𝜔𝑡 − 90°). The current through a perfect capacitor is ‘ahead’ of voltage by a phase angle of 90°.  

 

Table 1: Flux  

 

Name Nickname Symbol units  

SI 

    

Flux of Mass Flux           𝐉𝑚𝑎𝑠𝑠    kg s-1 m-2 

Flux of Charge Current of charge 
or (sadly) 

Current 

          𝐉Q 

C s-1 m-2 

Displacement Current          ε0 ∂E ∂t⁄            𝐉𝐷 C s-1 m-2 

Total Current Total Current           𝐉total C s-1 m-2 

    



 

 
6 September 1, 2017 https://arxiv.org/abs/1708.07400 

 The total current is 𝐉total and it is hard to accept that this will be exactly conserved 

when so many mechanisms are involved over such a range of times and forces. Yet it is. 

How is it possible for current 𝐉 total to be exactly conserved in a series circuit, independent 

of the mechanisms of charge transport 𝐉Q, from say 10-16 sec to 102 sec, and from 10-6 volts 

to 102 volts (and very much larger)? This conservation is just a consequence of Maxwell’s 

equations as will be demonstrated in section 2.2. It can also be understood as a consequence 

of a particle conservation law for particles if the particles have charge and therefore satisfy 

Gauss’ law. Without electricity and Gauss’ law, particle flux  𝐉𝑚𝑎𝑠𝑠  would be conserved 

in a series hydraulic circuit of (say) water pipes. With electricity and Gauss’ law, particle 

flux  𝐉Q is NOT conserved in a series circuit of say resistors. Current  𝐉total is conserved but 

not particle flux 𝐉Q. Currents are exactly equal in a series circuit because total current 𝐉total 

has another component beyond the flux of charge 𝐉Q (coulombs per second) associated with 

the flux of mass  𝐉𝑚𝑎𝑠𝑠  (units kilograms per second per m2). The other component of the 

conserved total current 𝐉total is Maxwell’s displacement current 𝐉𝐷 = 𝜀0 𝜕𝐄 𝜕𝑡⁄  mentioned 

in (1). The displacement current 𝐉D depends only on V/t. It does not depend on the 

properties of matter or its dielectric coefficient εr (dimensionless) because we use ε0 in the 

definition of displacement current. The displacement current we define does not depend on 

properties of matter. 𝐉D is different from 𝐉total and from  𝐉𝑚𝑎𝑠𝑠 . Displacement current is 

determined only by the rate of change of the electric field and not by any property of matter 

whatsoever. 𝐉D is not produced by the mechanisms that determine 𝐉Q and  𝐉𝑚𝑎𝑠𝑠 . Indeed, it 

must be clearly understood that the flux of charge or mass inside a capacitor is zero. 

Inside a capacitor 

𝐉𝑄 = 0;   𝐉𝑚𝑎𝑠𝑠 = 0;      𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉𝑫
⏞                       

(Zapolsky 1987, Arthur 2008, Selvan 2009, Arthur 2013) have particularly useful 

discussions of displacement current 𝐉D, and we will discuss it in great detail below.  

 We see then that the electric field changes to ensure perfect equality of 

total current everywhere in everything at every time in a series circuit, as a 

solution of Maxwell’s equations of electrodynamics. Biological systems are usually 

modelled in a three dimensional physical space. The one dimensional model is applicable 

to the nerve and muscle cells already discussed and easily generalized to syncytia like the 

heart. In any case, we will see in section 2 that the conclusions mentioned above about the 

importance of the total current (with particle and displacement components) can be directly 

extrapolated to three dimensional systems in general.  

 The charge density carried by mass density can be a complex function reflecting 

the multifaceted distribution of charge in matter on all scales and so is described by many 

parameters and variables, all of which can interact with each other. A model and theory of 

matter and its charge is needed to relate mass and charge density. The theory must include 

dynamics to derive the movement of charge 𝐉Q from the movement of mass  𝐉𝑚𝑎𝑠𝑠 . Many 

components may be involved, of different chemical species, concentration, and 

molecular/atomic charge per chemical species (i.e., ‘valence’ of atomic or molecular ion). 

The dynamics of each component may depend on many types of forces and fields, electrical 

and convection to be sure, but also diffusional, thermal, and gravitational for example. 

Most importantly, the dynamics of one component is usually coupled to the dynamics of 

another. If the components are charged, they are coupled by the electric field. If the 
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components have finite size, they are coupled by steric forces because a certain number of 

finite size components fill space. Components interact so they cannot overfill space. 

Interactions are not local; indeed, electrical interactions always involve spatial boundary 

conditions because they are described by partial differential equations, field theories that 

in general extend to infinity sometimes with unexpected results (Mertens and Weeks 2016). 

Steric forces are not local, although they need not reach infinity or extend to far boundaries. 

In general ‘everything interacts with everything else’ in many ways and by many 

interactions specific to each system of interest.  

 In spite of the fact that the four Maxwell’s equations, together with the dynamical 

laws of movement, can be compactly written in a small piece of paper, it is obviously 

impossible to solve them all to have a general model and theory of matter and its charge. 

We shall see however that the fundamental principles of conservation of total current 𝐉total 

and charge Q can be applied to all matter, no matter what the relation of the movement of 

charge 𝐉Q and the movement of mass  𝐉𝑚𝑎𝑠𝑠 . Application of these principles leads to 

practical results important in the understanding and design of engineering and biological 

systems. 

 

1.3 Polarization Charge and Current 

 

The charge density Q  carried by mass density3 𝜌 can be a complex function reflecting the 

multifaceted distribution of charge in matter on all scales (from nuclear to atomic to 

molecular to macroscopic, including interface conditions and boundary conditions) and so 

is described by many parameters and variables, all of which can interact with each other. 

A model and theory of matter and its charge is needed to derive Q from . The theory must 

include dynamics to derive the movement of charge 𝐉Q from the movement of mass  𝐉𝑚𝑎𝑠𝑠 . 
Many components may be involved, of different chemical species, concentration, and 

molecular/atomic charge per chemical species (i.e., the charge number of atomic or 

molecular ion nicknamed ‘valence’ in classical chemistry). And the dynamics of each 

component may depend on many types of forces and fields, electrical and convection to be 

sure, but also diffusional, thermal, and gravitational for example. Most importantly, the 

dynamics of one component is usually coupled to the dynamics of another. If the 

components are charged they are coupled by the electric field. If the components have finite 

size, they are coupled by steric forces because a certain number of finite size components 

fill space.  

 Of course, some of that movement of mass and its charge in a resistor is much more 

complicated. In an atom, for example (or for a molecule), the bound electrons can move 

differently from the nucleus. The electrons carry negative charge while the nuclei carry 

positive charge. This can result in a displacement between the positive and negative charge, 

either permanently or in response to the electric field. The displacement will be very 

different at different times and locations. This kind of movement is conventionally called 

polarization or more exactly polarization current. Polarization current can be called 

                                                 
3 It is unfortunate that the same symbol is normally used for two different quantities—mass density and 

charge density, but we shall try to be specific at the various points where confusion may arise. They must 

both appear as it is possible that some of the mass is, in fact, charge neutral and will not appear in the 

equations for charge. 



 

 
8 September 1, 2017 https://arxiv.org/abs/1708.07400 

dielectric displacement current if it behaves ‘well’ and follows the physical law 

(𝜀𝑟 − 1)𝜀0 𝜕𝐄 𝜕𝑡⁄  with 𝜀𝑟 being a real positive constant called the dielectric constant (> 1), 

independent of time and 𝐄. Such idealized dielectric constants and polarization currents 

exist in textbooks and models. They do not exist in matter and assuming that matter behaves 

in this naïve (and unrealistic) way can lead to serious errors and misunderstandings. 

 Polarization currents have a large and striking dependence on time in almost all 

materials, even in the solid phase, and is a main subject of classical work (Debye and 

Falkenhagen 1928, Fuoss 1949, Fröhlich 1958, Van Beek 1967, Nee and Zwanzig 1970, 

Böttcher, van Belle et al. 1978, Barthel, Buchner et al. 1995, Kurnikova, Waldeck et al. 

1996, Buchner and Barthel 2001, Heinz, van Gunsteren et al. 2001, Kremer and Schönhals 

2003, Rotenberg, Dufre Che et al. 2005, Kuehn, Marohn et al. 2006, Angulo-Sherman and 

Mercado-Uribe 2011). The practical importance of the time dependence is well known to 

the engineers who design solid state devices that work. Ch. 6 of (Hall and Heck 2011) gives 

a clear description of polarization in real materials, showing that the classical 

approximation of a dielectric constant (as a single real number) is of little use. Their 

analysis of a harmonic element of a classical harmonic oscillator—a charged mass on a 

spring (Fig 6-5 p. 258) with dashpot—is particularly revealing. No one would approximate 

the location of a mass on a spring as a time independent constant if they could avoid it. 

Obviously, the mass and its charge will move in most situations, creating charge density 

and flux of charge, an electric current that varies with time, or frequency.  

 Most systems cannot be described by a single harmonic oscillator. Combinations 

of harmonic oscillators have more complex properties. First consider a parallel 

combination of oscillators, in which each oscillator is independent of the others and 

depends on fields (and everything else) exactly as a single oscillator does. Combinations 

of independent harmonic elements will have a distribution of time dependent properties 

that is more or less the sum of each element if the forces on one element are independent 

of the location and parameters of the other elements. For example, if one measures the total 

current of elements in parallel, the current will be the sum of the distribution of currents of 

each element. The properties of each element and of the distribution of elements will 

however produce complex time dependent currents not describable by the properties of a 

single harmonic oscillator, or (in the frequency domain) by a single dielectric constant. 

Indeed, if these harmonic oscillators are coupled, as they usually are, they can produce one 

of the most chaotic systems known to mathematics or science. 

 Most systems contain elements that are not independent. Each element (of a mass 

with charge on a spring) will exert force on its neighbors and the properties of the whole 

system will not be the sum of the individual (isolated) elements. These interactions cannot 

be described by a single potential field that is the same for all the independent oscillators. 

A potential field acting on one element will depend on the properties of the other elements 

and so the function describing the potential field will be different for each element. Even 

the potential field produced by a perturbation (say a perturbation applied by electrodes at 

the boundaries as experiments are usually done) will depend on the properties of other 

elements. The perturbing potential will create an applied field that will move each element 

and that change in location will change the force on every other element. The applied field 

acting on one element will not be a function of just the perturbation potential. Combinations 

of interacting masses (with charge) are likely to have properties that differ qualitatively 

from the properties of individual (isolated) elements or a distribution of isolated elements. 
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Hence, this system is now an interacting many-body system, and becomes one of the most 

difficult problems to solve in either classical or quantum physics or chemistry. 

 The harmonic oscillator discussed by Hall and Heck is not an artificial example. 

The classical harmonic oscillator is used throughout theoretical physics from Planck’s 

treatment of quantized light, arising from an ensemble of such oscillators, even in studies 

of the quantum vacuum (Milonni 2013) through quantum mechanics (e.g., (McIntyre, 

Manogue et al. 2013). It is not an exaggeration to say that study of the harmonic oscillator 

is the starting point of most of many body physics (Ch.1 of (Mahan 1993)).  

 Chemical compounds are a hierarchy of partially coupled charged oscillators. Each 

bond oscillates as electric fields change. And bonds are electrical objects (distributions of 

electrons) linking atoms that usually have significant charge. Groups of atoms together 

form units (‘moieties’ is a name commonly used) that move together, more or less—more 

rather than less in many important cases. These compounds form a hierarchy of nested 

oscillators, one building on another, that make a compound pendulum look simple. 

Compound pendulums have remarkably complex motions. Chemical compounds 

consisting of a hierarchy of nested charged oscillators will clearly not be describable by a 

single harmonic oscillator, let alone a single dielectric coefficient, even if they are in solids, 

or in an ideal gas. 

 In liquids, polarization is more complex and hard to describe in a general way 

because liquids are far more deformable than solids. In liquids, matter and charge move in 

ways rarely found in solids. Long distance flows of mass and charge driven by non-uniform 

boundary conditions are characteristic of liquids and not of solids, although of course fields 

of quasi-particles in solids (like holes and electrons of semiconductors) flow much like 

ionic liquids. Movements of charge are often driven by nonelectric forces like diffusion or 

convection. Description of polarization in such systems must include the field equations of 

diffusion or convection and their coupling to the field equations of electricity, along with 

the boundary conditions that are an integral unavoidable part of the definition of such fields 

that can have important practical consequences (Mertens and Weeks 2016). 

 Many experiments have shown the complexity of polarization in liquids. 

Polarization has been studied extensively in the ionic solutions derived from sea water in 

which life occurs and in which much of chemical experimentation is performed. 

Experiments show that polarization currents cannot be approximated by a dielectric 

coefficient that is a real positive constant over any reasonable range of conditions or scales 

(Oncley 1942, Nee and Zwanzig 1970, Macdonald 1992, Barthel, Buchner et al. 1995, 

Barthel, Krienke et al. 1998a, Barthel, Krienke et al. 1998b, Buchner and Barthel 2001, 

Kremer and Schönhals 2003, Oncley 2003, Barsoukov and Macdonald 2005). The 

magnitude of the effective dielectric coefficient (as usually defined in experiments in the 

frequency domain) varies by a factor of 40× and the current and voltage are not even 

approximately in phase: delays abound and the delays depend dramatically on frequency, 

concentration of ion, and types of ions present. (A glance of the extensive data in Barthel 

(Barthel, Buchner et al. 1995) is instructive.) Worse, under such circumstances, 

polarization current must be described by convolution-type integrals4 that do not easily fit 

                                                 
4  Such convolutions occur throughout physics. They commonly arise in systems that are far from 

equilibrium, possess several different “time constants” and so cannot easily be written as a scalar Markov 

process. (Karlin and Taylor 1975,Schuss, 1980, Schuss 2009). 
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into the formalism of Maxwell’s constitutive D field (Abraham and Becker 1932, Purcell 

and Morin 2013) that depends on a constant dielectric coefficient, a single real number.  

 

1.4 Historical Note. Readers may jump over this note without losing the general 

trend of the paper, if they wish.  

 Despite the overwhelming experimental evidence, and theoretical understanding of 

complex polarization, the complexity is not recognized in many areas of science and most 

treatments of electrodynamics and Maxwell’s equations. The implications of complex 

dielectric behavior for transient properties is not apparent in the classical approach focused 

on sinusoids at one frequency. In the present world, we are interested in atomic motions 

which are nearly white noise, with an extraordinarily large numbers of reversal of 

directions in even 10−15 sec  and so the simplifications of sinusoidal analysis at one 

frequency are not of much help. We hope the following discussion makes clear how 

confusion arose and so makes it easier to move towards reality and whatever clarity it 

permits. 

 Textbooks have used a single time independent dielectric coefficient (a real positive 

number) since at least 1893, as described in histories (Holton 1967, Mehra 2001, Arthur 

2013) and by physicist and textbook authors Max Abraham and Richard Becker whose 

early texts (Abraham and Becker 1932, Becker and Sauter 1964; with editions going back 

to Abraham-Föppl, 1905) were the foundation for so many others. Textbook treatments of 

dielectrics tend to be built on each other, rather than on the actually observed properties of 

real materials. 

 The appropriate mathematical generalization for variable dielectric coefficients is 

not found in the references cited. They almost all use a frequency dependent (i.e., variable) 

dielectric coefficient (that is a complex number with real and imaginary parts, not a real 

number or real constant, but rather a complex variable) and concentrate on the frequency 

domain case. Analysis begins with constant dielectric coefficients in the differential 

equations and then turns that constant into a variable in the use of the solution of those 

equations. Whatever help this may be in dealing with sinusoids of one frequency disappears 

when dealing with transient responses even to step functions, let alone to (nearly) white 

noise of atomic motion. At best one must perform inverse Laplace transforms of 

considerable difficulty to extend to the time domain. These nearly always lead to complex 

expressions that do not fit comfortably into the usual D field formulation of Maxwell’s 

equations. Often the inverse Laplace transforms cannot be performed because the system 

is nonlinear or the mathematics is too difficult. In biological systems and condensed phases, 

the system is nearly always driven by forces not included in Maxwell’s equations, so a 

much more general treatment is needed, that benefits from variational methods designed to 

combine different forces consistently.  

 The mathematically obvious needs to be restated because all scientists are human. 

It is only human to try to extend ideas, to see how far we can go, to see what happens if we 

stretch a constant into a variable. In fact, one of the standard methods of solving differential 

equations presumably arose from an attempt to stretch constants into variables. It is called 

‘variation of constants’ or ‘variation of parameters’ for that reason (Tenenbaum and Pollard 

1963, Arnolʹd 2012). This method produces terms, however, that are not present in the 

solution of equations with constant inhomogeneous terms. The variation of parameters 
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produces a different form of the solution of the differential equations. If the constants in 

the solution were turned into variables, these additional terms would not be present and so 

the ‘solution’ involving only the terms of the original differential equation would no longer 

satisfy the differential equation (with variable coefficients).  

 The full treatment ‘variation of constants’ is needed to solve differential equations 

because mathematics does not allow self-contradiction. A constant in part of a derivation 

must remain a constant in the whole derivation, including the result of the derivation. A 

constant cannot become a variable. This statement is obvious, but dielectric constants (real 

positive numbers) have been turned into variables (complex frequency dependent 

variables) as common practice, throughout the literature of dielectric coefficients for more 

than a century. And so this and the following paragraphs are needed, we fear, if we are to 

be absolutely explicit and convincing, so we can change a common practice so deeply 

embedded in our history.  

 If one assumes a constant dielectric coefficient in a differential equation, and solves 

the equation with that assumption, it is incorrect mathematics to extend the solution  into a 

new formula by allowing a parameter to become a variable. Imagine that the variable 

dielectric coefficient were included in a second generalized differential equation. That 

revised equation would have a different solution from the extended formula. A formula 

that is an extension of the solution (using a variable dielectric coefficient) will not satisfy 

the generalized differential equation that includes a variable dielectric coefficient. The 

solution to the differential equations are different formulae.  

 

1.4 Structure of the paper 

 

 In section 2, we provide an atomic scale discussion (at a fundamental level) about 

the intrinsic origins of the particle and displacement currents. We deduce such currents 

from the trajectories of particles. We also show in this section that all developments in 

terms of trajectories are fully compatible with quantum phenomena. In section 3, we 

abandon the atomic level of description and develop macroscopic Maxwell equations when 

a spatial average of the atomic magnitudes is warranted. There, we present the macroscopic 

particle and displacement currents in idealized systems. Section 4 shows that a quite 

different approach is needed to deal with realistic systems, but that approach can provide 

crucial results. Conservation of current is a universal law that can be derived independent 

of the polarization properties of matter, for example. Finally, we provide some concluding 

remarks in section 5. 

 

2. ATOMISTIC PARTICLES AND DISPLACEMENT CURRENTS 

 

Ignoring the structure of the nucleus of atoms (which is far from the scope of the present 

work), we can consider that electrons, atoms (or ions or molecules) are the fundamental 

particles of our system. We will discuss the particle current and the displacement current 

assigning a trajectory to each of these particles. We will also show that such trajectory-

based understanding of the currents is also perfectly compatible for all (non-relativistic) 

quantum phenomena. Hence, no real change in the understanding of the role of the electric 

fields occurs as we move from classical to quantum treatments. 
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2.1 The Particle Current 

 

We consider a general system of 𝑁 particles. Each particle has a mass 𝑚𝑖 and a charge 𝑞𝑖 
(the charge 𝑞𝑖 can be a positive or negative number, or even zero for neutral particles, but 

the mass 𝑚𝑖 is always a positive number). Each particle is defined by a trajectory xi(t) in 

three dimensional space. We will use normal symbols to define scalar values and bold 

symbols for vectors in this section. A set of 𝑁  trajectories {𝒙𝑖[𝑡]}  with 𝑖 = 1, … ,𝑁 

provides a description of our system. The charge density of such system can be defined as:  

 

𝜌𝑄 ≡ 𝜌𝑄(𝒙, 𝑡) = ∑ 𝑞𝑖𝛿(𝒙 − 𝒙𝑖[𝑡])
𝑁
𝑖=1             (2) 

 

where 𝛿(𝒙) is the Dirac delta function that specifies the position at which the particle is 

located. In order to simplify the notation, the dependence on 𝒙 and 𝑡 will not be explicitly 

indicated, unless necessary. Similarly, we will use 𝒙𝑖 ≡ 𝒙𝑖[𝑡] without writing the explicit 

time dependence. The time dependence of such charge density, because of the movements 

of the particles, can be evaluated as:  

 

𝜕𝜌𝑄
𝜕𝑡

=
𝜕

𝜕𝑡
∑𝑞𝑖𝛿(𝒙 − 𝒙𝑖)

𝑁

𝑖=1

=∑𝑞𝑖𝛁𝛿(𝒙 − 𝒙𝑖)

𝑁

𝑖=1

· (−
𝑑𝒙𝑖
𝑑𝑡
) 

= −∑  𝑞𝑖𝒗𝑖 · 𝛁𝛿(𝒙 − 𝒙𝑖)
𝑁
𝑖=1 = −∇ · (∑  𝑞𝑖𝒗𝑖𝛿(𝒙 − 𝒙𝑖)

𝑁
𝑖=1 )              (3) 

 

where ∇ is the divergence operator acting on 𝒙  and 𝒗𝑖 ≡ 𝒗𝑖[𝑡] = 𝑑𝒙𝑖[𝑡]/𝑑𝑡 is the velocity 

of particle i in the three dimensional space. We define now the particle current density of 

the 𝑁 particles as, 

 

𝒋𝑄 = ∑ 𝑞𝑖𝒗𝑖𝛿(𝒙 − 𝒙𝑖)
𝑁
𝑖=1         .                                            (4) 

 

The subindex 𝑄  just indicates that we are dealing with a flux of particles at position 𝒙 and 

time 𝑡 as indicated in table 1. Then, Eq. (3) can be rewritten in the form of the well-known 

local conservation law: 

 

 
𝜕

𝜕𝑡
𝜌𝑄 + ∇ · 𝒋𝑄 = 0     .                                                      (5) 

 

This law is satisfied by all systems that are composed of particles with a real mass, whether 

at a classical or quantum level, and with or without charge. We notice that Eq. (5) forbids, 

for example, any model where a particle disappears (instantaneously, without delay) from 

its original position and reappears (immediately, without delay, at the same time it 

disappeared) at another point far away from its original location. From the definition of the 

particle current density in Eq. (4), we see that a large particle current can imply either many 

particles with small velocity or few particles with large velocity. This variety of dynamics 

is captured in most hydrodynamic models of transport in chemistry and biology. 
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2.2 Displacement Current 

 

When we are considering a system with charged particles, these particles must satisfy the 

requirements imposed by the interactions due to the charge. The charge and the particle 

current densities due to the motion of that charge have to satisfy Maxwell’s laws. The first 

of these we call Gauss’s law: 

 

𝜀0∇ · 𝒆 = 𝜌𝑄                                                           (6.1) 

 

where 𝒆 ≡ 𝒆(𝒙, 𝑡) is the atomic scale electric field generated at the position 𝒙 and time 𝑡 
by the set of particles whose positions are {𝒙𝑖[𝑡]}. We will use capital letters later for the 

macroscopic fields. The term 𝜀0  is the permittivity of free space (also defined as the 

vacuum permittivity, and introduced in the previous section). In addition, the following 

equations also have to be satisfied by our system of charged particles: 

∇ · 𝐛 = 0                                                        (6.2) 

  𝛁×𝐞 +
∂𝐛

𝜕𝑡
= 0                                                          (6.3) 

where 𝒃(𝒙, 𝑡) is the atomic scale magnetic field. Finally, the fourth Maxwell’s equation is 

Ampere’s law with Maxwell’s modification: 

  
𝛁×𝐛

𝜇0
= 𝒋𝑄 + 𝜀0

∂𝐞

𝜕𝑡
                                                       (6.4) 

where 𝜇0  is commonly called the vacuum permeability, permeability of free space or 

magnetic constant. The speed of light in free space 𝑐0 can be defined as 𝑐0 = 1/√𝜇0𝜀0 and 

is remarkably determined by electrical and magnetic properties that can be measured 

entirely independent of light. 

 By introducing Eq. (6.1) into Eq. (5) we get the following result: 

𝜕

𝜕𝑡
(𝜀0∇ · 𝒆) + ∇ · 𝒋𝑄 = ∇ · (𝜀0

𝜕𝒆

𝜕𝑡
+ 𝒋𝑄) = 0                             (7) 

Identical results can be obtained from the divergence of (6.4). The first term on the right 

hand side of Eq. (7) is a new type of current density related to the time-dependence of the 

electric field, and which we have introduced already in eqn. (1). This term is non-zero at 

the position 𝒙 and time 𝑡 even when there is no particle there. The new current term arises 

either from conservation law (5) and the electrostatic equation (6.1) or from the magnetic 

field equation (6.4). Both derivations give the same result.  Eq. (5) establishes a local 

conservation of particles, while Eq. (7) establishes a local conservation of the total current.   

 In order to understand the implications of Eq. (7) in the description of the dynamics 

of a system of charged particles, let us consider a volume Ω limited by a closed surface 𝑆. 

The volume is totally arbitrary and can include all the particles, sone of them, or none at 

all, just by defining the volume itself. Then, by applying the divergence theorem (or 

Gauss’s theorem),(Schey and Schey 2005) we get the result: 

∫ ∇ · (𝜀0
𝜕𝒆

𝜕𝑡
+ 𝒋𝑄)Ω

𝑑3𝑥 = ∫ (𝜀0
𝜕𝒆

𝜕𝑡
+ 𝒋𝑄)S

· 𝑑𝒔 = 0                               (8)  
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with 𝑑3𝑥 a volume differential and 𝑑𝒔 the differential surface which is a vector locally 

perpendicular (pointing outwards) to the 𝑆 surface. From now on, we distinguish between 

current density  and  current itself,   contrary to the simplification in Section 1.2. If we 

assume,    for example,     that the volume  Ω  is a parallelepiped  with a closed surface 𝑆 =
{𝑆1, 𝑆2, … , 𝑆6}, then, we get: 

∑ ∫ (𝜀0
𝜕𝒆

𝜕𝑡
+ 𝒋𝑄) ·S𝑖

𝑑𝒔𝒊
6
𝑖=1 = ∑ 𝐼𝑖(𝑡)

6
𝑖=1 = 0 (9) 

where we use the definition of total current following expressions (1b) in subsection 1.2 

as: 

 𝐼𝑖(𝑡) = 𝐼𝑖,𝑄(𝑡) + 𝐼𝑖,𝑑(𝑡);     (9.1) 

𝐼𝑖,𝐷(𝑡) = ∫ 𝜀0
𝜕𝒆(𝒙,𝑡)

𝜕𝑡
·

S𝑖
𝑑𝒔𝒊                                             (11) 

𝐼𝑖,𝑄(𝑡) = ∫ 𝒋𝑄(𝒙, 𝑡) ·S𝑖
𝑑𝒔𝒊                                          (10) 

 

where we have defined the displacement and particle current in general, and rewritten eq. 

(1) which was written for a constant lateral area. 

 The conservation of the total current in Eq. (7) can be illustrated with the 2D 

example in Fig. 1. Particles move through each of the surfaces 𝑆1 and 𝑆2. Such a transport 

of particles generates an electric field everywhere. The intensity of the electric field is 

larger close to the particles and tends to become negligible at locations far from where the 

particles are located. Therefore, we can assume that in the side surfaces (𝑆3 and 𝑆4 in Fig. 

1), there is no particle or displacement current. Then, the volume Ω behaves as a two 

terminal device (Tuttle 1958, Weinberg 1975). Note the two terminal device can be a 

Fig. 1: A two terminal device with a correct selection of the simulation box 𝛺  that 

allows a correct computation of the flux of particles and the electric flux on S1,  𝐼𝑆1(𝑡),  
so that it coincides with the measured current in the ammeter, i.e. 𝐼𝑆1(𝑡) = 𝐼𝐴(𝑡). 

Battery 
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transmission line (Ghausi and Kelly 1968) described by partial differential equations of the 

telegrapher type. These can be exactly described by two port theory of electrical networks 

and simple analytical expressions involving the usual hyperbolic trigonometric functions. 

The two port theory of transmission lines provides an interesting link between the 

engineering world of electrical networks and the mathematical world of field equations 

which deserves more investigation.5 

 Note that the condition in Eq. (5) can be rewritten here as 𝐼1(𝑡) = −𝐼2(𝑡). The total 

current entering into Ω through 𝑆1 is equal at every instant of time to the current leaving it 

through 𝑆2. This is true even at the particular moment when a particle leaves through  𝑆1 , 
but no other particle enters through 𝑆2. In that moment, continuity of current requires a 

change in the physical nature of current. The miracle of Maxwell’s equations is that they 

apply no matter what the physical nature of current, or to say the same thing a different 

way, they produce the exact displacement current needed to guarantee continuity of current 

at every time no matter what physics governs the flux of charges. 

 Electricity is different from other forces in this respect. Other forces do not have 

an equivalent of vacuum displacement current 𝜀0(𝜕ⅇ(𝒙, 𝑡) 𝜕𝑡⁄ ) to enforce exact continuity 

of (their equivalent of) total current under all conditions, at all times, and in all locations 

of a series circuit.  

 The difference between particle current and total current is the displacement 

current. The equivalence between the two currents moving through the surfaces holds for 

the total current. The particle currents are not equal, nor are the displacement currents, only 

the total currents.  

 If we add another volume 𝛺’ at the left side of the original one (see fig. 1), we may 

then conclude that 𝐼𝑆1(𝑡) = 𝐼𝑆1′(𝑡). In particular, the total current measured in the ammeter 

of fig. 1 is equal to the total current computed on the surface of the original volume 𝛺 , that 

is 𝐼𝑆1(𝑡) = 𝐼𝐴(𝑡). Again, this argument holds only for the total current and not for only the 

particle current by itself, nor for the displacement current by itself. 

 An even more surprising example of the relevance of Eq. (7) appears in a two-

terminal capacitor. In the capacitor, there is transport of total current along all points of the 

capacitor without any passage of particles through the volume of the capacitor. There, the 

external particle current is matched by the internal displacement current. If we consider 

another example where three surfaces have non-negligible total current, as in a transistor, 

then we get a three terminal device with a conservation law for the total current written as 

𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡) = 0. 

 In fact, if one considers a series arrangement of typical laboratory devices 

connected by wires, devices like resistors, capacitors, batteries and diodes (Fig. 2 of 

(Eisenberg 2016c) it is clear that currents in each device arise in very different ways, that 

vary a great deal with time, yet the current in each device is exactly equal at all times, no 

matter what the physical origin of the current. The displacement current arranges itself to 

                                                 
5 Inverse problems of network synthesis have been analyzed with great success, no doubt exploiting the 

theory of complex variables. In particular, ill-posedness produced by structural redundancy—parallel 

resistors—has been separated from other parasitic sensitivity (not enough data). It would be interesting to 

use the two port theory of transmission lines to try to extend this work to the inverse theory of partial 

differential equations in general. 
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satisfy Maxwell’s equations and make this happen—eq. 4 of (Eisenberg 2016b) shows one 

way this can happen—in all devices at all times, no matter how the currents arise from the 

motion of charged particles. 

 

2.3 Particle and Displacement Currents in Quantum Systems 

 

In the previous sections, our discussions about particle and displacement currents may have 

been viewed as applicable only to classical systems (Zapolsky 1987, Arthur 2008, Selvan 

2009, Arthur 2013). This is not true. All of our discussion about the two components of the 

total currents can be directly applied to (non-relativistic) quantum systems. In classical 

systems, the particle motion arises from the Hamiltonian, or total energy. This is still true 

in quantum systems although new quantum potentials/forces supplement the classical 

Hamiltonian (Kennard 1928, Bohm 1951). The trajectory of each quantum particle is 

associated with a quantum (Bohm) trajectory, 𝒙𝒊[𝑡] . Certainly, we could try a more 

orthodox description of particle and displacement currents in quantum systems without 

trajectories, but treatment of current and displacement current becomes more difficult, in 

our view.  

 We believe that the trajectory-based description of quantum mechanics (which we 

will explain here) provides a much simpler treatment of particle and displacement currents, 

even almost trivially so, than the orthodox one. After all the orthodox approach must 

consider the ‘measurement problem’ of orthodox quantum mechanics for both particle 

current and displacement current. And however one thinks of measurement in orthodox 

quantum mechanics, one must admit that it is not simple. The Bohm treatment is simpler 

because the measurement problem does not require explicit discussion beyond the 

definition of the treatment itself (Oriols and Mompart 2012, Dürr, Goldstein et al. 2013, 

Benseny, Albareda et al. 2014) 

 Yet we admit that explanations of quantum phenomena in terms of quantum 

trajectories and waves are not as popular as explanations with waves alone. Hence, we first 

give a brief discussion of the empirical equivalence between different quantum theories as 

they are pertinent here. (Readers may jump over this history, to eq. (12), without losing the 

general trend of the paper, if they wish). 

 The Copenhagen interpretation (Born, Heisenberg et al. 1925, Born and Jordan 

1925, Born 1926), Bohm mechanics (de Broglie 1925, Bohm 1951), consistent histories 

(Griffiths 1984, Omnes 1988, Gell-Mann and Hartle 1990) , and instantaneous collapse 

theories (Ghirardi, Rimini et al. 1986) are just a few of the various interpretations of 

quantum phenomena that give identical empirical results for all experiments, while being 

different ontological theories. To better understand the differences between empirical and 

ontological planes of a theory, we briefly enter into the discussion of what is a physical 

theory. Kant was the first to divide scientific knowledge into three parts: appearance, reality 

and theory (Herbert 1987). Appearance is the content of our sensory experience of natural 

phenomena, i.e. the empirical outcome of an experiment. It might be called the estimator 

of reality if we used the language of statistical inference and estimation theory (Sorenson 

1980, Efron 1982, Stengel 1994, Tarantola 2005), where the difference between estimators 

and reality is a central subject, of great practical importance. Reality is what lies behind all 

natural phenomena. A theory is a human model that tries to mirror both appearance and 
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reality. The particular reality invoked (e.g., predicted) by a theory is referred as the 

ontology of the theory. Empiricists believe only in experimental outcomes (what Kant 

called appearance) and refuse to speculate about what deeper reality the theory implies. On 

the other hand, realists believe that good physical theories explain, or at least provide clues 

about, the reality of our comprehensible world. 

 The Copenhagen interpretation, for example, assumes that the reality of a quantum 

system is somehow undefined until a measurement on the system is done (Heisenberg 

1925). The wave function solution of the Schrödinger equation is not viewed as providing 

a description of the reality of an individual experiment, but only provides a compact 

description of the probabilities associated to all possible experiments/realities (Heisenberg 

1927). According to the Copenhagen interpretation, one particle, for example an electron, 

is sometimes a wave and other times (when a position measurement is done) is a particle. 

The difficulties in properly understanding how a unique quantum entity can be a wave or 

a particle reality, and change between the two when a collapse occurs, just shows the 

difficulty in accepting the (somehow schizophrenic) ontology of the Copenhagen 

interpretation.  

 As we have said, there are other quantum interpretations, which also have total 

agreement with experimental results, while invoking a different understanding (ontology) 

of reality. In particular Bohm mechanics explains, in a trivial way, the dual role of an 

electron as both a wave and as a point-particle (the fact that a light photon was required to 

have this duality was known as early as 1909 (Taylor 1909). The theory uses two objects, 

one wave and one point-particle, to describe just one electron. Then, the wave-particle 

duality is understood with Bohm mechanics as easily as we understand a classical (point-

particle) electron which is being guided by an (wave) electric field. Moreover, this 

interpretation allows us to clearly identify trajectories which are quite similar to those in 

classical physics. As mentioned above, the particles in these trajectories obey Hamiltonian 

mechanics, just as classical particles do, but in addition respond to additional quantum 

potentials (Kennard 1928). 

 The first element in the Bohm theory for a describing the system of 𝑁 particles 

mentioned previously is the wave function Ψ ≡ Ψ(𝒙1, . . . , 𝒙𝑁 , 𝑡) in the multi-dimensional 

configuration space, and which is a solution of the many-particle Schrödinger equation: 

 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= {−∑

ℏ2∇𝑖
2

2𝑚𝑖

𝑁
𝑖=1 + 𝑢}Ψ                                                         (12) 

 

where ∇𝑖
2 is the Laplacian operator acting on 𝒙𝑖. The potential energy 𝑢 ≡ u(𝒙1, … , 𝒙𝑁 , 𝑡) 

reflects the interaction between the 𝑁 particles among themselves as well as any external 

potentials. For example, it can include the Coulomb interaction among particles. We 

emphasize that the wave function is defined in the configuration space, not in the ordinary 

three dimensional real space—the configuration space has three dimensions for each 

particle so that the total dimension is 3N. However, our intuition is developed for the three 

dimensional physical space and this explains why some quantum phenomena like non-local 

correlation between distant particles (what Albert Einstein defines as “spooky action at a 

distance”) becomes counter-intuitive (and, in fact, unnecessary in a realist viewpoint 

(Ferry, 2018)). Our concept of distance between two objects is valid for a three dimensional 

physical space, but it loses its meaning in the 3N dimensional configuration space. We 
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notice that scalar potential energy 𝑢(𝒙1, … , 𝒙𝑁, 𝑡) in (12) is also a non-local potential and 

is also defined in this huge 3N dimensional configuration space. Neglecting relativistic 

effects, one reasonable solution for the potential is: 

 

u(𝒙1, . . , 𝒙𝑁 , 𝑡) = ∑ ∑
1

4𝜋𝜖0

𝑞𝑖𝑞𝑗

|𝒙𝑖−𝒙𝒋|

𝑁
𝑗>𝑖

𝑁
𝑖=1      (13) 

 

In principle, one can also include the magnetic interaction among charged particles in Eq. 

(12) by adding the vector potential in the definition of the momentum operator.  

 We have assumed a closed quantum system in the sense that the set of 𝑁 particles 

are properly described by a pure state, not by a reduced density matrix. Open systems can 

be modelled by a closed one by adding all the rest of the particles of the environment or by 

connecting with appropriate boundary conditions, and other field equations, as appropriate. 

Indeed, much of condensed matter physics, engineering, and biology is devoted to open 

systems and we spend much time on open systems later in this paper. 

 At this point, we notice that Eq. (12) contains a local conservation law for the 

quantum probability density 𝜌𝑞 = |Ψ|
2: 

 
d𝜌𝑞

𝑑𝑡
+ ∑ ∇𝑖 · 𝑗𝑖

𝑁
𝑖=1 = 0   (14) 

 

where 𝑗𝑖 ≡ 𝑗𝑖(𝒙1, … , 𝒙𝑁 , 𝑡) is the (ensemble value of the) quantum current density and ∇𝑖 
the divergence vector on the 𝒙𝑖 position (Landau and Lifshitz 1958). We have used Eq. (3) 

and (4), written with trajectories to deduce a conservation law in (14). The inverse 

reasoning has been used by many scientists to suggest that quantum trajectories are, in fact, 

hidden in Eq. (14) or that a trajectory-based interpretation of quantum phenomena is 

possible within Eq. (12). Many scientists have noticed the analogy with Langevin 

trajectories and Fokker Planck equations describing the density of those trajectories.(Karlin 

and Taylor 1975, Karlin and Taylor 1981, Schuss 2009) 

 The second element of the Bohm theory when describing a 𝑗-experiment is a set of 

well-defined trajectories in the normal three dimensional physical space {𝒙1
𝑗[𝑡], … , 𝒙𝑁

𝑗 [𝑡]}. 

The superindex 𝑗 specifies that the Bohm definition of the quantum state refers only to one 

𝑗 -experiment. The velocity of each particle for 𝑘 = 1, . . , 𝑁  is defined from the wave 

function as: 

 

𝐯𝒌
𝒋 [𝑡] =

𝑑𝐱𝒌
𝒋
[𝑡]

𝑑𝑡
=

𝐽𝑘(𝒙1
𝑗 [𝑡],..,𝒙𝑁

𝑗 [𝑡],𝑡)

|Ψ(𝒙1
𝑗 [𝑡],..,𝒙𝑁

𝑗 [𝑡],𝑡)|
2                                               (15) 

 

By time-integrating Eq. (12), the trajectory of each particle can be computed trivially as: 

 

𝐱𝑘
𝑗 [𝑡] = 𝐱𝑘

𝑗 [0] + ∫ 𝐯𝑘
𝑗[𝑡′]𝑑𝑡′

𝑡

0
                     (16) 

 

To get the exact trajectory, we have to specify the initial position of each particle in the 

experiment. Contrary to classical mechanics (where the measurement of the initial 

positions of a system is considered unproblematic), the initial position of the Bohm 
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particles cannot be measured (unless the many particle initial wave function is close to a 

delta function for each position). In general, in quantum mechanics, only probabilities of 

the different outputs of experiments can be predicted. There is an unavoidable uncertainty 

in quantum phenomena. In the Bohm theory, the quantum uncertainty is implicit in the 

uncertainty of the initial positions. Experiments are modelled many times, j= 1,… . ,𝑀 →
∞ , with the same wave function Ψ(𝒙1, … , 𝒙𝑁 , 𝒚, 𝑡), but with different initial positions for 

each set o 𝑁 trajectories. The probability distribution of the set of trajectories in different 

experiments is given by 

 

|Ψ(𝒙𝟏, … , 𝒙𝑵, 𝑡)|
2 =

1

𝑀
∑ 𝛿(𝒙𝟏 − 𝒙1

𝑗[𝑡])… 𝛿(𝒙𝑵 − 𝒙𝑁
𝑗 [𝑡])𝑀

𝑗=1                           (17) 

 

The construction of the Bohm trajectories through Eqs. (15)-(16) ensures that if a large 

ensemble of experiments 𝑗 = 1,… . ,𝑀 → ∞ with 𝑁 trajectories {𝒙1
𝑗[𝑡], . . , 𝒙𝑁

𝑗 [𝑡]} in each 

experiment are selected in agreement with (17) at a particular time 𝑡 = 0 , then, the 

distribution |Ψ(𝒙𝟏, … , 𝒙𝑵, 𝑡)|
2 will be satisfied by those set of trajectories at any other 

time. The reason why the Bohm and Copenhagen theories are empirically equivalent is due 

to this equivariance condition implicit in (17) (Oriols and Mompart 2012, Dürr, Goldstein 

et al. 2013, Benseny, Albareda et al. 2014). 

 Contrary to the wave function that ‘lives’ in the 3N dimensional configuration 

space, the Bohm trajectories {𝒙1
𝑗[𝑡], … , 𝒙𝑁

𝑗 [𝑡]}  in a single experiment ‘live’ without 

problem in the normal three dimensional physical space. Therefore, in a single experiment, 

the charge density at the point 𝒙  in the physical space due to the other particles 

{𝒙1
𝑗[𝑡], … , 𝒙𝑁

𝑗 [𝑡]} can be trivially defined as: 

 

𝜌𝑄
𝑗
(𝒙, 𝑡) = ∑ 𝑞𝑖𝛿(𝒙 − 𝒙𝑖

𝑗[𝑡])𝑁
𝑖=1                                   (18) 

 

where the superindex 𝑗  means that this charge density corresponds only to the 

𝑗 -experiment. In another experiment, the charge can be different due to the intrinsic 

quantum uncertainty in the selection of the initial positions. From 𝜌𝑄
𝑗
(𝒙, 𝑡) and the Poisson 

equation, we can define the potential v𝑗(𝒙, 𝑡) as the potential created at the point 𝒙  in the 

physical space due to the presence of charges at the fixed positions {𝒙1
𝑗[𝑡], … , 𝒙𝑁

𝑗 [𝑡]} as: 

 

  ∇2v𝑗(𝒙, 𝑡) = −
𝜌𝑄
𝑗
(𝒙,𝑡)

𝜀0
                                                             (19) 

 

The boundary conditions in our particular system, where the number of particles 𝑁 include 

all relevant particles of the closed system, will be 𝑉𝑗(𝒙 → ±∞, 𝑡) = 0,  which are 

compatible with the typical Coulomb law. In fact, the solution of (19) gives a potential 

given by 

 

v𝑗(𝒙, 𝑡) = ∑
1

4𝜋𝜖0

𝑞𝑗

|𝒙−𝒙
𝑖
𝑗
[𝑡]|

𝑁
𝑖=1   (20) 
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Once we get this potential, we can compute the electrical field from 𝒆𝒋(𝒙, 𝑡) = −𝛁v𝑗(𝒙, 𝑡) 

or from Gauss’ law as 𝜀0∇𝒆
𝒋(𝒙, 𝑡) = 𝜌𝑄

𝑗 (𝒙, 𝑡) as mentioned in (6.1). Both expressions give 

the electric field at the position 𝒙 due to the 𝑁 particles as 

 

𝒆𝒋(𝒙, 𝑡) =
1

4𝜋𝜖0
∑

𝑞𝑖

|𝒙−𝒙
𝑖
𝑗[𝑡]|

3 (𝒙 − 𝒙𝑖
𝑗
[𝑡])𝑁

𝑖=1                                        (21) 

 

Once we know the electrical field at any position 𝒙, we can compute the displacement 

current on the points 𝒙 ∈ 𝑆𝑖 as done in eq. (11). On the other hand, the particle current 

density of electrons described by Bohm trajectories at the position 𝒙   can be easily 

formulated from Eq. (10). It can be easily shown that the ensemble values obtained from 

eq. (18) are exactly identical to the ensemble values obtained from the Copenhagen 

interpretation (Albareda, Traversa et al. 2012). The fundamental advantage of the Bohm 

theory is that the total current 𝑰𝒋(𝒕) is well-defined, at any time, with or without 

discussing its measurement. In the present context which is focused on the meaning and 

properties of ‘current’ this is a significant advantage over versions of quantum mechanics 

in which current must involve a whole theory of measurement. The reader is probably 

aware that scientists do not all use the same quantum theory of measurement. 

 Another point that requires a clarification is just how we can extract the information 

𝐼𝑗(𝑡) from such systems. Such information requires a measurement of the system. In the 

Bohm theory, the measurement requires the introduction of a pointer (for example the 

arrow of an analog ammeter) whose position 𝒚 indicates the value of the measurement of 

the displacement current. Therefore, we have to introduce a new degree of freedom 𝒚 in 

Eq. (14) and also consider the interactions between 𝒚  and the rest of particles in the 

Hamiltonian of Eq. (14) so that there is a good correlation between 𝒚 and 𝐼𝑗(𝑡). Since the 

degree of freedom 𝒚  is present in the Schrödinger equation (11), we accept that 𝒚  is 

affected by {𝒙1, … , 𝒙𝑁}, but we also consider that {𝒙1, … , 𝒙𝑁} are affected by 𝒚. In other 

words, the evolution of {𝒙1, … , 𝒙𝑁} with or without the ammeter will be different because 

the solution of (11) will be different. Therefore, the wave function of the quantum systems 

suffers a back-action due to the measurement. Classically, one accepts (at least 

theoretically) that one can get information of the particle system without distorting the 

system. One can imagine an amplifier, for example, with an infinite input impedance that 

draws no current from is surrounds. In a quantum system the measurement-without-

distortion is not possible. It has been demonstrated quite recently by one of the authors that 

measurement of the displacement current in a quantum system can be considered as a type 

of weak measurement (Marian, Zanghi et al. 2016). This implies that a good measuring 

apparatus will provide a value 𝒚𝑗[𝑡] ≈ 𝐼𝑗(𝑡) + 𝜂(𝑡) where 𝜂(𝑡) is a (very) high frequency 

noise with ensemble value equal to zero (when integrated over different experiments) and 

that decays rapidly to zero when time-integrated. In a classical-like language, the physical 

origin of this extra noise due to the measurement can be attributed to plasmons in the 

contacts, associated with the displacement current of the weak measurement.  

 Finally, we emphasize that the quantum reality suggested by each quantum 

interpretation (ontology) is mainly a relevant topic for those devoted to a realistic 

understanding of our comprehensible world. Empiricists bother less with the suggested 

reality as long as the interpretation is empirically correct.  
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 In fact, most scientists are neither realists, nor empiricists; but a mix of both. Many 

people accept the Copenhagen ontology because it provides a useful method to get practical 

predictions. The technical advantages in the computation of empirical outcomes is said to 

compensate somehow the digestive problems implicit in that Copenhagen interpretation of 

the reality.  

 For the discussion of the displacement current in this paper, we argue that the 

Copenhagen interpretation has no technical advantage over the Bohm one, but just the 

opposite. Thus, for those who like the reality suggested by the Bohm theory, the present 

description of the particle and displacement current in quantum systems has been found 

quite simple and intuitive. Those who dislike this Bohm picture of explaining displacement 

and particle currents in terms of well-defined quantum trajectories can just ignore such 

reality and use Bohm mechanics as a useful computational tool that helps evaluate and 

discuss the particle and displacement currents in quantum systems.  

 If we pursue this subject in more detail, we recognize that the full quantum state 

(including the active region, the contacts, the batteries, etc.) is computationally 

inaccessible. A computationally accessible solution deals only with the degrees of freedom 

of a smaller subsystem, referred as the open system (our active device region), while the 

other degrees of freedom (the environment) are not explicitly simulated (Breuer and 

Petruccione 2002). The well-known Lindblad master equation (Lindblad 1976) describes 

the evolution of the reduced density matrix for Markovian systems (when the role of the 

environment is highly predictable and memoryless). In the description of the dynamics of 

quantum systems at the very high frequencies that we are interested in, we can hardly say 

that the system is Markovian. The orthodox extensions of the Lindblad type of solutions 

based on the reduced density matrix beyond Markovian dynamics are still challenging. The 

stochastic Schrödinger equation (SSE) is another technique to deal with non-Markovian 

systems dynamics with states (Diósi, Gisin et al. 1998, Strunz, Diósi et al. 1999). It is based 

on the continuous measurement theory that allows the definition of a wave function of the 

open system conditioned on one monitored value associated with the environment. 

However, it is well-known that the physical interpretation of the monitored value (for 

example the measured total current in our case) cannot be given to the solutions of the SSE 

for non-Markovian systems. It was demonstrated by Wiseman and Gambetta that a SSE-

type solution of an open system with a physical interpretation of the monitored value as 

the output of a continuous measurement has to be based on Bohm mechanics (Gambetta 

and Wiseman 2002, Gambetta and Wiseman 2003). A practical implementation of this type 

of computational approach showing the technical advantage of the Bohm approach in some 

cases is explained in a recent work of one of the authors by using a Bohm conditional wave 

functions (Oriols 2007, Marian, Zanghi et al. 2016, Colomés, Zhan et al. 2017). A general 

discussion of the approach to open quantum systems can be found in (Barker and Ferry 

1980a, Barker and Ferry 1980b). One such open quantum system coupled to a complex 

environment is the open “quantum dot” in which coupling to the “dot” is by normal 

transport, and not by tunnelling. This system illustrates the complexities of the 

system/environment coupling, and has been the subject of several experimental (Bird et 

al., 1997, 2003) and theoretical reviews (Ferry, Burke et al. 2011, Brunner, Ferry et al. 

2012, Ferry, Akis et al. 2015) The Coulomb blockade in ionic channels is closely related 

to this open quantum system.(Grabert and Devoret 1992, Kaufman, McClintock et al. 2015, 

Feng, Liu et al. 2016) 
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3. IDEALIZED MACROSCOPIC DESCRIPTION OF THE CURRENTS 
 

As we have already commented, any attempt to describe all ~1029 fundamental charged 

or uncharged particles with such an atomic scale dynamical description is generally 

computationally unfeasible. Therefore, most macroscopic descriptions give up any atomic 

scale spatial resolution of the discrete particles and deal with a supposedly continuous 

charge and mass density. From a stochastic viewpoint, the continuous functions are 

measures of the underlying stochastic processes of atomic motion (Karlin and Taylor 1975, 

Karlin and Taylor 1981, Schuss 2009), for example, a spatial average. From the scientific 

point of view, the functions are models of some of the properties of the underlying 

stochastic processes of atomic motion.  

 

3.1  Macroscopic Charge Density and Gauss’ Law in Isolated Idealized Systems 

 

 The following discussion is of idealized isolated systems that permit spatial 

averaging. More general open systems are discussed later. We present the idealized 

equilibrium derivation to connect with the widely read textbook literature (Jackson 1999) 

and to provide enough detail so others may learn to extend the derivation to the non-

equilibrium case relevant to devices and other systems with long-range current flow, driven 

by (for example) spatially inhomogeneous boundary conditions, with (for example) 

different potentials at different locations on their boundaries. Temporal averaging is 

another approach, under intensive study by Chun Liu and associates (Ma, Li et al. 2016a, 

Ma, Li et al. 2016b). 

 Here, it will be useful to distinguish between some particles that can be grouped 

together into small stable entities (like molecules) and other particles that move alone. We 

assume that there are 𝑖 = 1,…𝑁𝑒 particles moving alone (for example electrons) each one 

located at 𝒙𝑖[𝑡]. We also consider that there are 𝑛 = 1,… ,𝑁𝑚𝑜𝑙 stable entities (molecules) 

and that each molecule has 𝑖𝑛=1,…,𝑀𝑛   particles inside. Therefore, the position of the 

particles that form the molecule can be written as 𝒙𝑖𝑛[𝑡] = 𝚫𝒙𝑖𝑛[𝑡] + 𝒙𝑛[𝑡] with 𝒙𝑛[𝑡] is 

the position of the center of mass of the molecule. The charge density in (2) can be written 

as 

 

𝜌𝑝(𝒙, 𝑡) = ∑ 𝑞𝑖𝛿(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒
𝑖=1 + ∑ 𝜌𝑛(𝒙, 𝑡)

𝑁𝑚𝑜𝑙
𝑛=1                                          (22) 

 

where 𝜌𝑛(𝒙, 𝑡) = ∑ 𝑞𝑖𝑛𝛿
𝑁𝑛
𝑖𝑛

(𝒙 − Δ𝒙𝑖𝑛[𝑡] − 𝒙𝑛[𝑡])  is the charge density of the 𝑛 -th 

molecule. For simplicity, hereafter, since it will be evident that we are talking about charge 

density, the subindex Q will be avoided. 

 The macroscopic version of the particle and current densities in idealized systems 

will be obtained by spatial averaging (Russakoff 1970, Jackson 1999). This type of spatial 

averaging does not allow the extended effects of finite size particles (Eisenberg 2012, 

Eisenberg 2013a), for example, and worse, it does not allow the infinite range correlations 

that occur when spatially nonuniform boundary conditions drive flow. Indeed, it is not clear 
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how to include long range electrical currents that flow from one boundary to another in a 

spatial distribution function (as they do in the devices of our electronic technology).6  

 It is important to note that any equation for this locally averaged 𝑊(𝒙)  will depend 

on boundary properties, boundary potential, or charge, and may not visibly depend on 

current flow at all. Surely the spatial distribution function 𝑊(𝒙) must vary with current 

flow if such exists. In general, the distribution function and the fields must be analyzed and 

computed self-consistently with the various flows. 

 For an isolated idealized macroscopic system, and any atomic scale magnitude 

𝑎(𝒙, 𝑡), such as the electric or magnetic fields, or the charge or particle current densities, 

we can obtain a continuous magnitude 𝐴(𝒙, 𝑡) = 〈𝑎(𝒙, 𝑡)〉  by spatial averaging the 

atomistic magnitude 𝑎(𝒙, 𝑡) over a localized region, following 

 

𝐴(𝒙, 𝑡) ≡ 〈𝑎(𝒙, 𝑡)〉 = ∫ 𝑑3𝑥′ 𝑊(𝒙′)𝑎(𝒙 − 𝒙′, 𝑡)                                  (23) 

 

where  

 

 𝑊(𝒙) = 𝑁ⅇ
−
𝑟2

𝑅2   (23.1) 

 

with 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2  and 𝑅  specifies the radius of the small spherical volume over 

which the spatial average takes place. The value 𝑁 is a normalization constant. If 𝑅 is 

larger than the atomic scale separation between particles, the magnitude 〈𝑎(𝒙, 𝑡)〉 becomes 

a continuous function.  

 Here we use a spatial distribution function 𝑊(𝒙) that is inspired by equilibrium 

analysis of simple systems, akin to a perfect or ideal gas (Rowlinson 1963, Berry, Rice et 

al. 2000). In systems with extended correlations, any Markovian equation for this locally 

averaged quantity is inadequate (Jacoboni and Lugli 1989, Hess 1991, Ferry 2000, Singer, 

Schuss et al. 2004, Vasileska, Goodnick et al. 2010). For example, it is clear that the 

Gaussian cannot exist adjacent to a hard wall boundary which is impenetrable to the 

particles. Electrical boundary conditions that define the inputs, outputs, and power supplies 

of devices are unlikely to have Gaussian distributions nearby. The properties of inputs and 

outputs are the essential features of devices and so this limitation in the use of Gaussians 

limits applications. 

 With the Gaussian approximation, charge densities in Eq. (2) can be spatially 

averaged from Eq. (23) as 

 

𝜌(𝒙, 𝑡) ≡ 〈𝜌𝑝(𝒙, 𝑡)〉 = ∑ 𝑞𝑖𝑊(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒
𝑖=1 + ∑ 〈𝜌𝑛(𝒙, 𝑡)〉

𝑁𝑚𝑜𝑙
𝑛=1              (24) 

                                                 
6 Electronic devices are defined by their inputs and outputs and their relationship. Inputs and outputs are at 

different locations on boundaries of the system: boundary conditions are spatially nonuniform. Most devices 

also require some locations (usually on boundaries) to be maintained at specified potentials by auxiliary 

devices called power supplies. Spatially nonuniform boundary potentials drive currents throughout the 

system that change the properties of the system in useful ways. That is why power supplies are used. The 

currents driven by the spatially nonuniform boundary potentials satisfy conservation laws and so produce 

correlations reaching to boundaries. Averaging treatments that do not depend on current cannot easily 

describe devices that have spatially distinct inputs, outputs, and power supplies. 
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with the charge of each molecule 𝜌𝑛(𝒙, 𝑡) defined just below (22). Now, since a 𝚫𝒙𝑖𝑛[𝑡] is 

small in comparison to 𝒙𝑛[𝑡], a Taylor expansion of 〈𝜌𝑛(𝒙, 𝑡)〉   around the position 𝒙 −
𝒙𝑛 comes from Taylor expansion of 𝑊(𝒙 − Δ𝒙𝑖𝑛 − 𝒙𝑛) as 

 

𝑊(𝒙 − Δ𝒙𝑖𝑛 − 𝒙𝑛) = 𝑊(𝒙 − 𝒙𝑛) − Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛) + ⋯                         (25) 

 

where we have neglected the third (unwritten) term of the Taylor expansion (related to 

the quadrupole moment). 7  

 By putting expression (26) into (24), we can wrote 𝜌(𝒙, 𝑡) ≡ 〈𝜌𝑝(𝒙, 𝑡)〉 as 

 

𝜌(𝒙, 𝑡) =∑ 𝑞𝑖𝑊(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒

𝑖=1

+∑ 𝑞𝑛𝑊(𝒙 − 𝒙𝑛[𝑡]) −
𝑁𝑚𝑜𝑙

𝑛=1
∑ 𝑷𝑛 · ∇𝑊(𝒙 − 𝒙𝑛[𝑡]) +

𝑁𝑚𝑜𝑙

𝑛=1
… 

   (26) 

𝜌(𝒙, 𝑡) =∑ 𝑞𝑖𝛿(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒

𝑖=1

+∑ 𝑞𝑛𝑊(𝒙 − 𝒙𝑛[𝑡]) −
𝑁𝑚𝑜𝑙

𝑛=1
𝛁∑ 𝒑𝑛𝑊(𝒙 − 𝒙𝑛[𝑡]) +

𝑁𝑚𝑜𝑙

𝑛=1
… 

 

We have defined the polarization vector of the 𝑛𝑡ℎ molecule as 𝒑𝑛 ≡ ∑ 𝑞𝑖𝑛
𝑁𝑛
𝑖𝑛=1

Δ𝒙𝑖𝑛 and 

charge of each molecule as 𝑞𝑛 ≡ ∑ 𝑞𝑖𝑛
𝑁𝑛
𝑖𝑛=1

. The macroscopic polarization 𝐏(𝐱, t) is 

 

𝐏(𝐱, t) = ∑ 𝒑𝑛𝑊(𝒙 − 𝒙𝑛[𝑡])
𝑁𝑚𝑜𝑙
𝑛=1 = ∑ 〈𝒑𝑛𝛿(𝒙 − 𝒙𝑛[𝑡])〉

𝑁𝑚𝑜𝑙
𝑛=1                    (27) 

 

Finally, we can rewrite the total charge as 

 

𝜌(𝒙, 𝑡) ≡ 〈𝜌(𝒙, 𝑡)〉 = 〈𝜌𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 − 𝛁 · 𝐏(𝐱, t) (28) 

 

and the Gauss (or first of Maxwell’s) equation(s) (6.1) become 

 

𝜀0∇ · 𝑬(𝒙, 𝑡) = 〈𝜌𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 − 𝛁 · 𝐏(𝐱, t)                        (29) 

 

                                                 
7
 While this is undoubtedly a reasonable procedure from the physical point of view, it should clearly be 

understood that these terms may not be an adequate approximation to the Taylor series. There are many 

independent variables and parameters involved and uniform convergence has not been examined, nor errors 

of approximation. Evaluating the accuracy of approximations like this is not a mathematical nicety. It is 

necessary if the approximations are to be used reliably. One must never forget the hundreds or thousands of 

terms needed in a classical multipole expansion (of Coulomb’s law in radial coordinates, for example) when 

the observation point is close to the source point as it usually is in computations of chemical bonds and 

molecular dynamics. 
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where we have defined 𝜌𝑓𝑟𝑒𝑒(𝒙, 𝑡) = ∑ 𝑞𝑖𝛿(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒
𝑖=1 + ∑ 𝑞𝑛𝛿(𝒙 − 𝒙𝑛[𝑡])

𝑁𝑚𝑜𝑙
𝑛=1 . We 

have defined 𝐄(𝐱, t) ≡ 〈𝒆(𝒙, 𝑡)〉 with the obvious property that 〈∇ · 𝒆(𝒙, 𝑡)〉 = ∇ · 〈𝒆(𝒙, 𝑡)〉 
Then, by defining the electric displacement field as 

 

  𝑫(𝒙, 𝑡) = 𝜀0𝑬(𝒙, 𝑡) + 𝐏(𝒙, 𝑡)  (30) 

 

the macroscopic version of the Gauss’s law can be rewritten as 

 

 𝛁 · 𝑫(𝒙, 𝑡) = 〈𝜌𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 (31) 

 

Note that the classical vector field 𝑫 depends on a constitutive law that does not describe 

actual experiments on matter. When the classical vector field 𝑫 is used, polarization is 

described by a single real number, the dielectric constant 𝜀𝑟. As we have documented in 

some detail previously, the polarization of matter cannot be described that way; indeed, the 

polarization of simple models of matter (as harmonic oscillators) cannot either. 

 It may be helpful to define a vacuum displacement field  

  𝑫𝟎(𝒙, 𝑡) = 𝜀0𝑬(𝒙, 𝑡) + 𝑷𝟎(𝒙, 𝑡) (31.1) 

along with 

  𝛁 · 𝑫𝟎(𝒙, 𝑡) = 〈𝜌𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔(𝒙, 𝑡)〉 = 𝝆𝑄 (31.2) 

 

The vacuum displacement vector field 𝑫𝟎 and the companion polarization 𝑷𝟎  field does 

not involve the properties of matter. It does not involve a constitutive law. These fields are 

as fundamental and universal as the Maxwell equations themselves (Mansuripur and 

Zakharian 2009). We call 𝜌𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 by the name 𝝆𝑄 later in this paper. 

3.2 The Macroscopic Current Density and Ampere’s Law.  

 

The particle charge densities in Eq. (4) can be spatially averaged from Eq. (23) as 

 

𝑱𝒑(𝒙, 𝑡) ≡ 〈𝒋𝒑(𝒙, 𝑡)〉 = ∑ 𝑞𝑖𝒗𝑖[𝑡]𝑊(𝒙 − 𝒙𝑖[𝑡])
𝑁𝑒
𝑖=1 + ∑ 〈𝒋𝒏(𝒙, 𝑡)〉

𝑁𝑚𝑜𝑙
𝑛=1              (32) 

 

with 〈𝒋𝒏(𝒙, 𝑡)〉 = ∑ 𝑞𝑖𝑛𝒗𝑖𝑛[𝑡]𝑊
𝑁𝑛
𝑖𝑛=1

(𝒙 − Δ𝒙𝑖𝑛[𝑡] − 𝒙𝑛[𝑡]) which implies a definition of 

the current of a molecule as 

 

𝒋𝒏 = ∑ 𝑞𝑖𝑛𝒗𝑖𝑛
𝑁𝑛
𝑖𝑛=1

𝛿(𝒙 − Δ𝒙𝑖𝑛 − 𝒙𝑛)                                        (33) 

 

Using the same Taylor expansion of 𝑊(𝒙 − Δ𝒙𝑖𝑛 − 𝒙𝑛) in (25) , we can rewrite the spatial 

average of (33) as 

 

〈𝑗𝑛〉 = ∑ 𝑞𝑖𝑛(𝚫𝒗𝑖𝑛 + 𝒗𝑛)𝑊(𝒙 − 𝒙𝑛)
𝑁𝑛

𝑖𝑛=1
 

−∑ 𝑞𝑖𝑛(𝚫𝒗𝑖𝑛 + 𝒗𝑛)Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛)
𝑀𝑛
𝑖𝑛=1

+     (34) 
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We have defined the velocity of the center of mass of the molecule and its relative motion 

as 𝒗𝑛[𝑡] = 𝑑𝒙𝑛[𝑡]/𝑑𝑡 and 𝚫𝒗𝑖𝑛[𝑡] = 𝑑𝚫𝒙𝑖𝑛[𝑡]/𝑑𝑡. As in the charge density, keeping only 

the first two terms in the Taylor expansion, we get 

 

〈𝑗𝑛〉 = ∑ 𝑞𝑖𝑛𝒗𝑛𝑊(𝒙 − 𝒙𝑛)
𝑁𝑛
𝑖𝑛=1

+ ∑ 𝑞𝑖𝑛𝚫𝒗𝑖𝑛𝑊(𝒙 − 𝒙𝑛)
𝑁𝑛
𝑖𝑛=1

− ∑ 𝑞𝑖𝑛𝒗𝑛Δ𝒙𝑖𝑛 ·
𝑀𝑛
𝑖𝑛=1

                                     ∇𝑊(𝒙 − 𝒙𝑛)  − ∑ 𝑞𝑖𝑛𝚫𝒗𝑖𝑛Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛) 
𝑀𝑛
i𝑛=1

    …              (35) 

 

The first term ∑ 𝑞𝑖𝑛𝒗𝑛𝑊(𝒙 − 𝒙𝑛)
𝑁𝑛
𝑖𝑛=1

= 〈𝑞𝑛𝒗𝑛𝛿(𝒙 − 𝒙𝑛)〉  is just the spatial average 

current of the molecule as if it were a point charge 𝑞𝑛 ≡ ∑ 𝑞𝑖𝑛
𝑁𝑛
𝑖𝑛=1

. We notice that the 

second term gives ∑ 𝑞𝑖𝑛𝚫𝒗𝑖𝑛𝑊(𝒙 − 𝒙𝑛)
𝑁𝑛
𝑖𝑛=1

=
𝜕

𝜕𝑡
〈𝒑𝑛𝛿(𝒙 − 𝒙𝑛)〉 + (𝒗𝑛 · ∇)〈𝒑𝑛𝛿(𝒙 −

𝒙𝑛)〉 . The third term can be easily rewritten as −∑ 𝑞𝑖𝑛𝒗𝑛Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛) =
𝑀𝑛
𝑖𝑛=1

−𝒗𝑛∇ · 〈𝒑𝑛𝛿(𝒙 − 𝒙𝑛)〉  . Neglecting again the influence of the fourth order term, we can 

write the fourth term as −∑ 𝑞𝑖𝑛𝚫𝒗𝑖𝑛Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛) = 
𝑀𝑛
𝑖𝑛=1

∇𝑊×(
1

2
∑ 𝑞𝑖𝑛Δ𝒙𝑖𝑛×
𝑀𝑛
𝑖𝑛=1

𝚫𝒗𝑖𝑛). We define the magnetic dipole moment of the 𝑛-molecule as (1) 

 

𝒎𝑛 =
1

2
∑ 𝑞𝑖𝑛Δ𝒙𝑖𝑛×𝚫𝒗𝑖𝑛
𝑀𝑛
𝑖𝑛=1

                                 (36) 

 

Rewrite the fourth term as  −∑ 𝑞𝑖𝑛𝚫𝒗𝑖𝑛Δ𝒙𝑖𝑛 · ∇𝑊(𝒙 − 𝒙𝑛) =  ∇×
𝑀𝑛
𝑖𝑛=1

〈𝒎𝑛𝛿(𝒙 − 𝒙𝑛)〉. 

 Finally, putting all the terms together, and noting that part of the second term and 

the whole third term become negligible, we get  

 

𝑱𝒑(𝒙, 𝑡) ≡ 〈𝒋𝒑(𝒙, 𝑡)〉 = 〈𝑗𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 + ∇×𝐌+
𝛛𝐏(𝐱,t)

𝝏𝒕
                        (37) 

 

Similarly to the definition of the macroscopic polarization 𝐏(𝐱, t) in Eq. (27), we have 

defined the macroscopic magnetic dipole moment as 

 

𝑀(𝐱, t) = ∑ 〈𝒎𝑛𝛿(𝒙 − 𝒙𝑛[𝑡])〉
𝑁𝑚𝑜𝑙
𝑛=1                                          (38) 

 

Now, we rewrite the Ampere law in (6.d) as 

 
𝛁×〈𝐛(𝒙,𝑡)〉

𝜇0
= 〈𝑗𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 + ∇×𝐌+

𝛛𝐏(𝐱,t)

𝝏𝒕
+ 𝜀0

∂〈𝐞(𝒙,𝑡)〉

𝜕𝑡
                            (39) 

 

Using the previous definition 𝑫(𝒙, 𝑡) = 𝜀0𝑬(𝒙, 𝑡) + 𝑃(𝒙, 𝑡) and a new definition of the 

magnetic field intensity 𝑯(𝒙, 𝑡) =
𝑩(𝒙,𝑡)

𝜇0
− ∇×𝐌, we arrive at a macroscopic version of the 

Ampere law in (6.d) as 

 

𝛁×𝐇(𝒙, 𝑡) = 〈𝑗𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 +
𝛛𝐃(𝐱,t)

𝝏𝒕
                                              (40) 
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Since the integration in Eq. (23) depends on 𝒙’ not on the variable 𝒙 and 𝑡 of 𝑎(𝒙, 𝑡), it can 

be easily demonstrate that 〈𝛁×𝐛(𝒙, 𝑡)〉 = 𝛁×〈𝐛(𝒙, 𝑡)〉 = 𝛁×𝐁(𝒙, 𝑡). Similarly, 〈
𝛛𝐞(𝐱,t)

𝝏𝒕
〉 =

𝛛

𝝏𝒕
〈𝐄(𝐱, t)〉 =

𝛛𝐄(𝐱,t)

𝝏𝒕
. 

 

3.3 The Macroscopic Particle Conservation Law and the Total Current Density 

 

In Section 3.1 we divided the charge density in Eq. (28) between what we call free charge 

that includes the electron and molecules (as a point particle) charge 〈𝜌𝑓𝑟𝑒𝑒(𝑥, 𝑡)〉 plus the 

terms 〈𝜌𝑛𝑜𝑡𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 = −𝛁 · 𝐏(𝐱, t). In Section 3.2, we divided the current density in Eq. 

(37) into two parts, the free current 〈𝑗𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 and 〈𝑗𝑛𝑜𝑡𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 = ∇×𝐌+
𝛛𝐏(𝐱,t)

𝝏𝒕
. The 

distinction between free and bound currents is discussed later in this paper where it is found 

to be of limited use in the study of liquids. 

 It is interesting to realize that the 𝑛𝑜𝑡𝑓𝑟ⅇⅇ  terms satisfy their own continuity 

equation 

 
𝜕

𝜕𝑡
〈𝜌𝑛𝑜𝑡𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 + ∇ · 〈𝑗𝑛𝑜𝑡𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 = −

𝜕𝛁·𝐏(𝐱,t)

𝜕𝑡
+ ∇ · (∇×𝐌 +

𝛛𝐏(𝐱,t)

𝝏𝒕
) = 0 (41) 

 

Since the total charge (either quantum or classical) also satisfies a continuity equation (4), 

we conclude that the 𝑓𝑟ⅇⅇ charge (due to electrons and the molecules understood as point 

charges) satisfies its own equation of motion 

 
𝜕

𝜕𝑡
〈𝜌𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 + ∇ · 〈𝑗𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 = 0                                 (42) 

 

These results just show that the approximation developed in Sections 3.1 and 3.2 for the 

macroscopic charge and current densities are consistent among themselves. As expected, 

it confirms that our model of free particles does not create or destroy particles locally.  

 Such separation between 𝑓𝑟ⅇⅇ and 𝑛𝑜𝑡𝑓𝑟ⅇⅇ dynamics, cannot be translated into a 

separation between 𝑓𝑟ⅇⅇ and 𝑛𝑜𝑡𝑓𝑟ⅇⅇ displacement current. The divergence of Eq. (40) 

gives 

 

∇ · (〈𝒋𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 +
𝛛𝐃(𝐱,t)

𝝏𝒕
) = ∇ · (〈𝒋𝑓𝑟𝑒𝑒(𝒙, 𝑡)〉 + 𝜀0

𝛛𝐄(𝐱,t)

𝝏𝒕
+
𝛛𝐏(𝐱,t)

𝝏𝒕
) = 0 (43) 

 

Therefore, in a two terminal device like the one in figure 1, we conclude that on some 

surfaces perpendicular to the transport direction, the total current is basically particle 

current, on other surfaces it is basically displacement current due to the time-dependent 

variations of the macroscopic 𝐄(𝐱, t), while on still other surfaces it is basically due to time 

dependent variations of the polarization 𝐏(𝐱, t), etc. On many surfaces, the current is just 

a mix of the three terms. In any case, this is the relevant message, the total current through 

any surface perpendicular to the transport direction of a two terminal device is equal. 

This separation of particle current (flowing from one end of a device—say a resistor—to 

the other) and surface displacement current from the surface of the resistor conforms to 

time honored engineering practice. Physical resistors are typically represented as idealized 
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Ohm’s law resistances with an additional separate circuit element representing the sum of 

(1) the stray capacitance and (2) the displacement current on the (nonterminal) surfaces of 

the physical resistor 8 . Stray capacitors do not appear explicitly in descriptions of all 

electronic circuits (Horowitz and Hill 2015) but they are always implied and their practical 

importance is great, as is well explained on p. 581 of (Horowitz and Hill 2015). Successful 

devices depend on the proper control of stray capacitance (Johnson and Graham 2003, 

Scherz and Monk 2006). 

‘Stray capacitance’ sounds as if it is a capacitance that could be removed if we were 

only clever enough to know how to do so. This is not the case, and no amount of work can 

reduce it beyond a minimum value. Stray capacitance is an unavoidable property of the 

electric field, describing the displacement current that is always present from the surface 

of real resistors. One might say stray capacitor holds the charge that is the “overhead”, the 

price we must pay to create the potential across an ideal resistor. This overhead limits the 

speed in many practical devices, for example, it limits the refresh speed of the digital 

screens of our (large) televisions and computer terminals. 

 

4. REALISTIC MACROSCOPIC DESCRIPTION OF THE CURRENTS  

 

 We move now to realistic descriptions of macroscopic systems. When Maxwell 

wrote his equations, technology did not allow measurement of time dependence at speeds 

faster than seconds and so delays between polarization and electric fields were essentially 

unknown. It was sensible then to begin study of the electric field by assuming that 

polarization was proportional to the electric field, with a single time independent constant 

embodied by a dielectric constant that is a real positive number, a constant. Polarization 

was supposed to be a local variable, independent of time or frequency, independent of the 

parameters and boundary conditions and even the positions of the boundaries and 

independent of the structure of the system. 

 It is remarkable that the formulation of Maxwell that was developed 

entirely in a macroscopic context applies exactly also at the deep quantum level 
(Albareda, Traversa et al. 2012, Marian, Zanghi et al. 2016) applied to atoms and within 

atoms to elementary particles, as shown in Section 2.3. One can only imagine what would 

have happened if Maxwell had lived long enough to apply his electromagnetic field 

equations to the statistical mechanics he was helping to create (Garber, Brush et al. 1986). 

 Our technology today allows routine measurements in times less than 10-15 sec 

(Riek, Seletskiy et al. 2017), even in complex biological systems (Tsen and Tsen 2016), 

and our computations of atomic properties start at 2×10-18 sec (Ferry, Goodnick et al. 2009, 

Vasileska, Goodnick et al. 2010), so it should not be a surprise that we resolve enormously 

more complex behavior of polarization charge than Maxwell. Indeed, it is safe to say that 

in the time scales just mentioned, polarization is never found to be characterized by a single 

dielectric constant (a single real positive number) in any material. And in most cases 

polarization depends on the parameters of the system, the boundary conditions, and their 

positions, and of course on the structure of the system. These are experimental facts known 

for nearly a century in many cases (Debye and Falkenhagen 1928, Debye 1929, Fröhlich 

                                                 
8 A clear example is the ever popular metal film resistor, which is anything but a resistor at high 

frequencies due to its inherent inductive nature. 
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1958, Böttcher, van Belle et al. 1978, Buchner and Barthel 2001). It would seem wise then 

to use a formulation of Maxwell’s equations that does not impose a fiction of a simple 

polarization property characterized by a dielectric constant that is a real positive number 

independent of time and frequency. 

 A hint of the complexities involved in real macroscopic systems can be found from 

the discussion of idealized harmonic oscillators given previously in this paper. 

Macroscopic systems involve myriads of interacting harmonic oscillators, and so obviously 

cannot be described by a simple polarization function. Serious attempts at derivation of 

polarization for simplified models of electron gases (Lundqvist and March 2013) show 

enormous complexity and applications to ‘gases’ made of quasi-particles in 

semiconductors p. 468-475 of (Mahan 1993) are hardly simpler. 

 Liquids have significantly more complex behavior than the idealized systems 

previously mentioned. Liquids move in many more ways than solids, and movement is 

driven by multiple forces, diffusion and convection as well as temperature gradients, with 

diffusion being a crucial mechanism in most applications.  

 Ionic solutions and liquids are much more complex yet than ‘uncharged’ liquids—

without permanent charge—because electric forces and migration in the electric field are 

dominant determinants of motion. Seawater resembles an ideal Ohm’s law resistor much 

more than an uncharged liquid. Movements are driven by all fields in liquids and ionic 

solutions, everything is coupled to everything else, so polarization currents in these 

systems depend on all parameters and properties of all fields, as well as on the structure 

and boundary conditions that constrain them.  

 In these systems, the distinction between bound charge and mobile charge is hard 

to make in a convincing way. Bound charge is found to have in phase components of 

current (in response to a sinusoidal perturbation over a range of frequencies) as well as the 

out of phase components characteristic of idealized bound charge and idealized 

polarization. Mobile charge is found to have out of phase components (in response to a 

sinusoidal perturbation over a range of frequencies) as well as the in phase components of 

idealized mobile charge of perfect conductors. Even the early simple models of polarization 

(Debye and Falkenhagen 1928, Debye 1929) have complex behavior. Polarization cannot 

be represented by a single dielectric constant, a real positive number independent of time 

or frequency in these oversimplified models. (See Historical Note early in this paper.) The 

(real positive) dielectric constant of the Maxwell equations becomes a complex variable 

(with real and imaginary parts, magnitude and phase) in the Debye model of polarization. 

As these models are adapted to deal with real systems, the approximation of polarization 

by a single dielectric constant becomes worse and worse. 

 Looking at real systems from the point of view of the experimental scientist—who 

does not know ahead of time what mechanism produces out of phase or in phase 

components of currents—it seems a daunting task to determine whether an in-phase 

component of current arises from a lag in a nonideal polarization current produced by 

complex movements of bound charge, or from a conduction current. It is difficult and, in 

our opinion, obviously artificial to make a distinction from experimental data alone, 

between nonideal properties of polarization current (of bound charges) and nonideal 

properties of conduction currents (of mobile charges).  
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 For these reasons we follow the lead of (Purcell and Morin 2013, section 10.4, p. 

505-507) and abandon the isolation of polarization current, but rather deal with any type 

of current at all, isolating only the vacuum displacement current (see eq. 31.1) that can in 

fact be characterized exactly by a single real constant the permittivity of free space ε0. We 

write current in any material as it is written for a vacuum in most textbooks of 

electrodynamics. We return to more traditional descriptions later to maintain contact with 

the traditional literature. 

 We find that abandoning the traditional approach is disturbing to our colleagues, so 

we think it necessary to cite others who have this view. In the well-known textbook Purcell 

and Morin p. 507 of (Purcell and Morin 2013) write  

“…. in the real atomic world the distinction between bound charge and free charge is more 

or less arbitrary, and so, therefore, is the concept of polarization density P. The molecular 

dipole is a well-defined notion only where molecules as such are identifiable – where there 

is some physical reason for saying, ‘This atom belongs to this molecule and not to that.’ In 

many substances such an assignment is meaningless. An atom or ion may interact about 

equally strongly with all its neighbors; one can only speak of the whole….”  

A liquid, or an ionic solution, fits perfectly into Purcell and Morin’s discussion. The 

structure of liquids (see Section 23.2 p. 629 of the definitive text (Berry, Rice et al. 2000)) 

ensures that “we cannot isolate any one pair of molecules from interactions with other 

molecules” (p. 529). Everything interacts with everything else. Analysis in terms of a single 

distribution function 𝑊(𝒙) is not likely to be adequate in a system like that, a liquid or an 

ionic solution.  

Quotations aside, the reason to abandon the traditional approach is clear simply from the 

properties of the distribution function used in classical analysis. The distribution function 

𝑊(𝒙) is written with one functional dependence, only on 𝒙. It should be immediately 

obvious that a single function 𝑊(𝒙) with functional dependence only on 𝒙 is unable to deal 

with the enormous range of dielectric properties observed experimentally in equilibrium 

measurements of linear dielectrics, for nearly a century, (Debye and Falkenhagen 1928, 

Debye 1929, Onsager 1936, Oncley, Ferry et al. 1940, Oncley 1942, Fuoss 1955, Fröhlich 

1958, Van Beek 1967, Nee and Zwanzig 1970, Hubbard, Onsager et al. 1977, Böttcher, 

van Belle et al. 1978, Anderson 1994, Barthel, Buchner et al. 1995, Barthel, Krienke et al. 

1998a, Buchner and Barthel 2001, Pitera, Falta et al. 2001, Oncley 2003, Prodromakis and 

Papavassiliou 2009). These measurements are now called impedance or dielectric 

spectroscopy (Macdonald 1992, Kremer and Schönhals 2003, Barsoukov and Macdonald 

2005). Their main topic is the complex functional dependence of dielectric behavior that 

cannot be described by a single dielectric constant, a real positive number. 

Non-equilibrium systems have much richer behavior than the equilibrium systems studied 

in impedance or dielectric spectroscopy. Indeed, that is exactly why most of the devices 

and machines of our technology are non-equilibrium, as are all of the systems of life. The 

polarization of non-equilibrium systems can also not be described by theories involving a 

single distribution function 𝑊(𝒙) with functional dependence only on 𝒙. Our technology 

and much of biology involve devices with well-defined inputs and outputs, as well as robust 

input output relations. Devices obviously include variables and parameters to describe 

inputs and outputs. These variables describe the essential function of devices. If the 

variables are not present in a description of polarization at all, the description obviously 
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cannot describe how polarization changes as the inputs and outputs change. 𝑊(𝒙)does not 

contain variables to describe inputs, outputs. 

 It might seem at this juncture that the situation is desperate and nothing useful can 

be said about systems in general, because the properties of polarization are so diverse, and 

that would certainly be the appropriate conclusion if only mechanical and steric forces were 

involved. 

 The remarkable result is that something can be said, and what can be said is very 

powerful indeed, because of the special properties of the electric field, because of 

Maxwell’s displacement current, that occurs in electrical problems in a special way.  

 Conservation of current and thus Kirchoff’s current law does not depend 

on any discussion of polarization. It is true at the fundamental quantum level as shown 

in Section 2.3 and it is true everywhere else as well. 

 Kirchoff’s current law is (nearly) enough to analyze and synthesize the linear and 

nonlinear networks of electronic devices, passive and active because those circuits have 

simple structure. They are fundamentally one dimensional systems with branches. 

Kirchoff’s current law is (nearly) enough to analyze and synthesize our electronic 

technology, digital and analog, that has allowed a 109 improvement in functionality in 60 

years. 

 

4.1 Mathematics of Current Flow.  

 

 A crucial property of the electric field can be derived without mention of 

polarization (Mansuripur and Zakharian 2009, Eisenberg 2016a, Eisenberg 2016b) at the 

quantum level as we have shown already and in general as we shall see. Conservation of 

total current 𝐉𝑡𝑜𝑡𝑎𝑙  and thus Kirchoff’s law for total current (in one dimensional branched 

systems) can be derived without mention of polarization. The mathematical derivation is 

quite succinct, although the physical meaning of that derivation seems to produce lengthy 

discussion.(Eisenberg 2016c)  

 The mathematical derivation depends on one of the key equations of 

electrodynamics, Ampere’s law, as modified by Maxwell.9 For easier reading, we rewrite 

equations (1) and (6.4) again here. We use capital letters, but we understand them without 

the spatial average discussed in section 3.1. They are fundamental and universal laws true 

on all scales, within and between atoms and true on macroscopic scales as well.  

 

  
1

𝜇0
𝛁×𝑩 = 𝐉𝑡𝑜𝑡𝑎𝑙 = 𝐉𝐷 + 𝐉𝑄;    𝐉𝐷 = 𝜀0

𝜕𝐄

𝜕𝑡
 (43) 

 

                                                 
9 Historically, this equation was a fulcrum in the history of physics: it allows waves to propagate at a velocity 

c (units: meter/sec) determined entirely by constants describing the strength of the magnetic field 𝜇0 (units: 

henry/meter) and the electric field 𝜀0  (permittivity of free space, farads/cm), namely 𝑐 = 1 (𝜇0𝜀0  )
1
2⁄ . 

Measurements of electrical and magnetic phenomena are enough to correctly calculate the speed of light! 
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As already mentioned, 𝐉𝑄 describes all movements of charge associated with matter, in this 

formulation of Ampere’s law (see p. 276 of and Ch.3. of (Lorrain and Corson 1970)).  𝐉𝐷 

describes properties of the vacuum—i.e., free space—and is independent of the properties 

of matter. Polarization properties of matter are included in  𝐉𝑄 as advocated in the quotation 

cited above from p. 507 of (Purcell and Morin 2013). The historical discussion of (Arthur 

2013) makes it easier to abandon traditional representations of polarization and D fields 

because it makes clear that they were never based on experimental reality. Eisenberg 

(2016a, 2016b) uses traditional representations of polarization to connect this approach to 

the traditional literature on linear dielectrics, used to describe the complex behaviors of 

polarization and 𝐉𝑄 found in experiments. 

 It is now a simple step to a universal law for current flow true for any polarization 

property at all. We apply the vector identity 𝛁 · (𝛁×𝑩/𝜇0) = 0 and derive a universal law, 

the conservation of total current.  

 The conservation of  𝐉𝑡𝑜𝑡𝑎𝑙  is universal —as universal as the Maxwell equations 

of electrodynamics. As indicated in expressions (7) and (8) in section 2.2, this conservation 

of current is expressed as 

 𝛁 ·  ( 𝐉𝑡𝑜𝑡𝑎𝑙 ) = 𝟎                   𝛁 · ( 𝐉𝑄 +   𝜀0
𝜕𝐄

𝜕𝑡
  

⏞    
𝐉𝐷

  ) = 0 (44) 

The key physical idea is that the E field is a variable that changes the displacement current 

 𝐉𝐷  so  𝐉𝒕𝒐𝒕𝒂𝒍  is conserved. Conservation of total current  𝐉𝒕𝒐𝒕𝒂𝒍  is possible because the 

electric field E field changes according to Ampere’s law.  

 We write a simple approximation to (44) as an illustration to show one way the 

electric field 𝐄 can change its shape to ensure conservation of current. In some cases, the 

electric field changes according to the equation 

  𝐄 = −∫ (𝐉𝑄(𝑡′; ⅇ𝑡𝑐. ) 𝜀0⁄ )
𝑡

𝑜 
𝑑𝑡′, (45) 

so current is conserved. Eq. (45) is obviously not a general statement. Eq. (45) implies eq. 

(44) but eq. (44) does not imply eq.(45). An explicit general statement for how 𝐄 must 

change to satisfy Ampere’s law and Maxwell’s equations is much more complicated  

4.2 Conservation of Charge.   

 Conservation of current is closely connected to conservation of charge (see 

discussion in section 2.1), through the continuity equation, which we now derive using the 

Gauss equation of electrostatics, often called Maxwell’s first equation in (6.1) rewritten 

here as: 

 𝛁 ·  𝐄 =
𝜌𝑄

𝜀0
    (46) 
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Here 𝜌𝑄 describes the density of all charge associated with the density of mass 𝜌𝑚𝑎𝑠𝑠. The 

charge density 𝜌𝑄 includes (i) any charge distribution independent of the electric field, (ii) 

polarization charge of perfect dielectrics (characterized by a single dielectric constant that 

is a real positive unchanging number), and (iii) any other charge that depends on the electric 

field, whether the dependence is simple as in the polarization charge, or more complicated, 

depending (for example) on other fields. The dependence of charge on other fields is the 

key to understanding many phenomena in complex fluids (Doi and Edwards 1988, Hou, 

Liu et al. 2009, Liu 2009, Hyon, Kwak et al. 2010); electrorheology (Sheng, Zhang et al. 

2008, Zhang, Gong et al. 2008), for example, of the Marangoni effect (Velarde 2003, Hu 

and Larson 2005, Sun, Liu et al. 2009), and ‘tears of wine’ (Fournier and Cazabat 1992) 

and ‘oil on water’ , studied by B. Franklin (Franklin, Brownrigg et al. 1774); 

electrodiffusion models like the (Poisson) drift diffusion equations (Van Roosbroeck 1950, 

Gummel 1964, Macdonald and Franceschetti 1978, Selberherr 1984, Markowich, 

Ringhofer et al. 1990, Jerome 1995) called Poisson Nernst Planck (PNP) equations in 

electrochemistry and biophysics (Eisenberg and Chen 1993, Eisenberg 1996, Eisenberg 

1999, Coalson and Kurnikova 2005, Ji, Liu et al. 2015).  

Now, we differentiate Gauss’ equation (46) with respect to time, and interchange order of 

differentiation in time and space, on the way to deriving the continuity equation for charge 

density 𝜌𝑄 

  𝛁 ·  (𝜀0
𝝏

𝝏𝒕
𝐄) =  

𝝏𝜌𝑄
𝝏𝒕

 (47) 

but from eq. (4) 

  𝛁 · ( 𝜀0
𝝏𝐄

𝝏𝒕
) =  𝛁 ·  (𝛁×𝑩/𝜇0)⏞          

=𝟎

 − 𝛁 ·  𝐉𝑄 (48) 

so we have the continuity equation relating the flux of any mass carrying charge to the 

density of that mass.  

   𝛁 ·  𝐉𝑄 = −
𝜕

𝜕𝑡
𝜌𝑄  (49) 

Note the electrical field E and the displacement current  𝐉𝐷 = 𝜀0 𝜕𝐄 𝜕𝑡⁄  do not enter into 

the continuity equation. Both the flux  𝐉𝑄 and the charge density  𝜌𝑄  describe all charge, 

whatever its origin. 

We now describe some of the many forms of charge, hoping to connect the reader 

to the more classical literature in this way and to motivate the reader to abandon the use of 

a dielectric fiction, namely a dielectric constant that is a single real number independent of 

time, frequency, and all other variables and fields. 

 (1) Perfect idealized dielectrics  𝑱𝑄  of a perfect dielectric includes polarization 

charge that is well described by a dielectric constant that is a positive real 

number that never varies with anything. Perfect dielectrics possess the 

idealized polarization charge of classical textbooks, reaching back to 1893, as 

described in (Becker and Sauter 1964), see (Abraham and Becker 1932). The 

idealization is an important aid in teaching and exploratory analysis of new 

systems, because it allows simplified theories. 
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Perfect dielectrics have (1) zero current flow as 𝑡 → ∞ when steady 

voltage is applied and (2) 90 degree phase difference between current and 

voltage at all frequencies when sinusoids are studied (3) amplitude (and 

phase) of current/voltage independent of frequency when sinusoidal 

voltage/current is applied.  

 

(2) Perfect idealized conductors have zero phase difference between current and 

voltage at all frequencies when sinusoids are studied. Current and voltage are 

proportional to each other, with a proportionality constant that is a single real 

positive constant at all times.  

 

It should be clearly understood, however, that matter never behaves as a perfect 

dielectric, with idealized polarization, or perfect conductor over the range of times 

and conditions of technological, biological, or chemical interest, as documented at 

length previously in this paper. Real materials are neither dielectrics nor conductors 

but rather a combination of both, with properties that always vary dramatically with 

time, and often with many other variables.  

 

(3) Linear Dielectrics are linear in the electric field, meaning currents are strictly 

proportional to the strength of the electric field at each time and position. The 

electrical potential (or current) can then be “divided out” and the linear 

dielectric can be characterized by properties and parameters that do not 

depend on voltage or current, parameters like conductance, resistance, 

capacitance, dielectric coefficient, admittance, impedance, and reactance. 

Linear dielectrics have properties that vary dramatically with frequency/time, 

composition, and concentration of the chemical species that make up the 

dielectric as shown in measurements done for nearly a century in a huge 

literature now called impedance spectroscopy (Debye and Falkenhagen 1928, 

Debye 1929, Onsager 1936, Oncley, Ferry et al. 1940, Fuoss 1955, Fröhlich 

1958, Van Beek 1967, Nee and Zwanzig 1970, Hubbard, Onsager et al. 1977, 

Böttcher, van Belle et al. 1978, Anderson 1994, Barthel, Buchner et al. 1995, 

Barthel, Krienke et al. 1998a, Buchner and Barthel 2001, Pitera, Falta et al. 

2001, Barsoukov and Macdonald 2005, Prodromakis and Papavassiliou 

2009). The literature includes many special effects (Debye Falkenhagen; 

Maxwell Wagner, for example) that highlight the complexity of phenomena. 

Every linear dielectric has properties that change dramatically with time or 

frequency, without exceptions known to us. 

 

(4) Materials in general. In most materials and all ionic solutions,  𝑱𝑄  includes 

coupled, often nonlinear properties that cannot be comfortably described by 

classical theory but seem to require a more general description. In fact, the 

coupled properties of ionic solutions have not yet been successfully described 

(Zemaitis, Clark et al. 1986, Barthel, Buchner et al. 1995, Barthel, Krienke et 

al. 1998a, Jacobsen, Penoncello et al. 2000, Myers, Sandler et al. 2002, 

Wilczek-Vera and Vera 2003, Lin, Thomen et al. 2007, Tresset 2008, 

Kontogeorgis and Folas 2009, Fraenkel 2010, Hünenberger and Reif 2011, 
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Eisenberg 2013b, Liu and Eisenberg 2015, Rowland, Königsberger et al. 

2015, Kohns, Reiser et al. 2016, Wilczek-Vera and Vera 2016, Xie, Liu et al. 

2016) over a range of compositions and concentrations found in seawater and 

living organisms (Kunz 2009, Kunz and Neueder 2009) even at equilibrium 

(without flows of any kind).  

Nonlinear properties characterize most transport in biology (Cole 

1972, Ruch and Patton 1973a, Ruch and Patton 1973b, Weiss 1996, Keener 

and Sneyd 1998, Ashcroft 1999, Hille 2001, Jackson 2006, Boron and 

Boulpaep 2008, Koeppen and Stanton 2009, Prosser, Curtis et al. 2009, 

Gabbiani and Cox 2010, Zheng and Trudeau 2015) and cannot easily be 

described by generalizations of the permittivity (𝜀𝑟 − 1)𝜀0  despite the 

attempts of Cole (Cole and Curtis 1936, Cole and Curtis 1938, Cole and Curtis 

1939, Cole 1947, Cole 1972, Huxley 1992). Currents in macroscopic 

biological systems (Hodgkin and Huxley 1952a, Hodgkin and Huxley 1952b, 

Hodgkin and Huxley 1952c, Huxley 2000, Huxley 2002) and in the molecules 

producing and controlling the currents (Armstrong and Bezanilla 1973, 

Bezanilla, Vergara et al. 1982, Bezanilla 1985, Vandenberg and Bezanilla 

1991, Sakmann and Neher 1995, Neher 1997, Bezanilla and Stefani 1998, 

Vargas, Yarov-Yarovoy et al. 2012, Horng, Eisenberg et al. 2017) are 

described by nonlinear differential operators including terms quite different 

from (𝜀𝑟 − 1)𝜀0 𝜕𝐄 𝜕𝑡⁄ , called the Hodgkin Huxley equations when the 

currents are macroscopic (op. cit.). Quite different representations are needed 

for currents that flow through single protein channels (Sakmann and Neher 

1995, Neher 1997). 

Nonlinear charge movements—some extremely nonlinear (Wegener 

2005)—create nonlinear optics, studied initially as lasers (Sutherland 2003, 

Boyd 2008, Hill and Lee 2008). Extraordinary optical devices are possible if 

materials are built with spatial variations of displacement current on the 

atomic scale, creating the exciting areas of photonics, quantum chiral optics 

(Lodahl, Mahmoodian et al. 2017) and cloaking devices (Islam, Faruque et 

al. 2016, Zheng, Madni et al. 2016).  

Spatially dependent nonlinear charge movements are creating several 

of the new fields of science and technology we read about in newspapers. 

Basov and Folger (Basov and Fogler 2017) write “High-temperature 

superconductivity, unconventional magnetism, and charge-ordered states are 

examples of the spectacular properties that arise in solids through many-body 

effects, a consequence of electrons strongly interacting with one another and 

with the crystal lattice” Lundeberg et al, point to the future (Lundeberg, Gao 

et al. 2017) “The response of electron systems to electrodynamic fields that 

change rapidly in space is endowed by unique features, including an exquisite 

spatial nonlocality.” Dielectric fictions are left far behind in this work. 
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4.3 Flow of mass. 

  

 The understanding of dynamics of charge movement  𝐉𝑄  depends of course on the 

dynamics of mass   𝐉𝒎𝒂𝒔𝒔 . A usable model requires explicit connection between the 

equations of motion of mass and charge, as for example, in the charged harmonic 

oscillators discussed earlier (Hall and Heck 2011). We consider a number of systems to get 

a feel for the issues involved. 

 Consider first the flow of uncharged matter, the traditional subject of fluid 

mechanics, and theory of complex fluids. If the mass has no charge (of any kind under any 

conditions), its flow is specified by a mixture of conservation of mass and constitutive 

equations. In simple cases, field equations as complex as the Navier Stokes equations arise. 

But mass is moved by many forces, for example, pressure, and temperature gradients 

depending on frictional dissipative processes.  𝐉𝑚𝑎𝑠𝑠  involves multifaceted interactions of 

various fields and differential equations, just as does   𝐉𝑄. Each facet of the various fields 

can interact with every other. Fitting parameters appear in the numerous cross terms of the 

differential equations describing these interactions and these are often determined poorly 

by experimental work.  

A variational approach minimizes the number of fitting parameters and leads to 

transferrable models useful in the design of devices. The variational treatment guarantees 

that results are mathematically consistent, with all variables satisfying all field equations 

and boundary conditions, with a minimal set of fitting parameters, that are in fact constant 

when the model fits data successfully. The EnVarA formulation introduced by Chun Liu, 

more than anyone else, is such an approach, including dissipation, as it must when 

condensed phases are involved (Ryham, Liu et al. 2006, Ryham 2006, Eisenberg, Hyon et 

al. 2010, Horng, Lin et al. 2012, Forster 2013, Wu, Lin et al. 2014b, Wu, Lin et al. 2014a, 

Xu, Sheng et al. 2014, Wu, Lin et al. 2015, Wang, Liu et al. 2016). Movements in any 

condensed phase involve strong atomic interactions on the 10-17sec time scale (‘collisions‘) 

because condensed phases have little empty space, by their very definition. Friction and 

dissipation are the macroscopic results of collisions. Treatments of condensed phases, 

including liquids and ionic solutions must include friction if they are to deal with flow. 

 

4.4 Flow of uniformly charged matter. 

  

 This simple kind of matter has a constant density of charge (per density of matter). 

The charge density is permanent, independent of the local electric field, and distributed 

uniformly in space. The description of uniformly charged matter requires variational 

methods just as does the flow of uncharged matter. 

It is unusual—if not unheard of—for the charge density of matter to be constant 

independent of the local electric field as we assume here. The electric field is so strong, as 

we have discussed, that it nearly always distorts matter, creating positive and negative poles 

of charge, leading to the name polarization for the change in the spatial distribution of 

charge induced by the electric field.  

Matter usually consists of molecules that have themselves asymmetrical permanent 

distribution of charge produced by a combination of polar bonds and asymmetrical 

distribution of permanent charges like the acid and base groups of amino acids, or other 
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weak acids or bases. Asymmetrical polar molecules like these rotate in electric fields 

including the fluctuating fields produced by thermal motion of charged atoms and 

molecules. Polar molecules have complex Brownian motion, involving rotation and 

translation, so the averaged distribution of charge depends on frequency or time, 

temperature, and the electric field itself, as well as of course any permanent charges, or 

ions with permanent charge that are present, as they usually are. More general molecules 

have stretching motions as well as complex twisting motions, not easily described in a 

general way, certainly not as elasticity. A brief look at the structure of nucleic acids and 

how they wind, unwind, as they self-assemble into ribosomes or chromosomes shows how 

complex these motions can be. (Remember that DNA and RNA are characterized by very 

large densities of acid groups, with their permanent negative charge on carboxylates, as 

well as by the strongly polar bonds of their nucleobases, purines and pyrimidines with large 

permanent partial charges, e.g., nearly −0.3ⅇ on the oxygen of carbonyls.) 

 The flow of charged matter in general is thus very complex indeed. Charged 

molecules are polarized by the electric field as just described. The charges of the molecules 

also help create the electric field of course. Everything interacts with everything else and 

all relevant equations must be solved together. Consistently, with all variables satisfying 

all equations under all conditions, with one set of unchanging (and thus transferable) 

parameters.  

The flow of mass  𝐉𝑚𝑎𝑠𝑠  and the flow of charge   𝐉𝑄  depend individually on the 

electric field in an intricate way, as we have discussed. The variable that relates these flows 

is the charge per mass, and that too has complex properties, as charged molecules, stretch, 

rotate, and interact. ‘Everything depends on everything else’ in these systems. Variational 

methods keep track of these interactions, in our view, and are particularly useful because 

they guarantee that all the output (dependent) variables satisfy all equations and boundary 

conditions. 

 The flow of  𝐉𝑄  is more complex than the flow of uncharged matter because the 

electric field strongly interacts with all the fields and flows of the variational treatment. 

The electric field is remarkably strong and so the electrical terms are large—often 

dominant—even in systems that are uncharged on the average.  

 Consider an uncharged system like liquid argon (Hirschfelder, Curtiss et al. 1964). 

The fluctuations in charge density in systems with zero mean charge like liquid argon 

produce dispersion forces (Israelachvili 1992, Parsegian 2006, Stone 2013)) that dominate 

the properties of the liquid argon and are of important components of all intermolecular 

forces. 

 Consider the technologically important phenomenon of dielectrophoresis (Pohl 

1978, Jones 2003) used in the separation of chemically similar molecules. In 

dielectrophoresis, particles with zero permanent charge can be transported by the electric 

field because the particles have induced polarization charge. That is to say, in formal terms, 
𝜕2𝐄

𝜕𝑥2 
≠ 0⇒  flow by dielectrophoresis. Phenomena like dielectrophoresis produce both 

transport of  𝐉𝑚𝑎𝑠𝑠  and   𝐉Q even when the molecules involved have no net charge. 

 Each of these systems requires a separate model and entire professions are devoted 

to each type of model. Few universals exist, but where they exist they are most helpful in 

constructing and constraining models. Conservation of charge, conservation of mass are 
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such universals. We believe conservation of current  𝐉total is another universal that will be 

helpful in constructing models. 

 Conservation of current  has rarely been used as an independent constraint on 

models probably because the current conserved is usually taken as the flux of charge  𝐉Q 

that depends on the dielectric properties of matter. See however (Mansuripur and Zakharian 

2009) and other extensive discussions of displacement current (Zapolsky 1987, Arthur 

2008, Selvan 2009, Arthur 2013). Dielectric properties, and polarization in general, are 

drastically oversimplified in usual treatments. Laws of current flow that involve these over-

simplifications are distrusted, for good reason, and so investigators do not use those laws 

when they try to construct realistic models of real matter.  

 We hope we have convinced the reader that conservation of electrical current  𝐉total 
is an independent constraint just as much as conservation of charge 𝜌𝑄  and conservation 

of mass.  𝐉total  is conserved because it includes Maxwell’s displacement current. That 

current is not included in the usual descriptions of mass and its flow and so conservation 

of current  𝐉total cannot be derived from the conservation laws of mass and its flow. 

 Conservation of current arises because of the special properties of the electric field 

and its displacement currents. Ampere’s law eq. (4) guarantees that conservation of 

mass 𝜌𝑚𝑎𝑠𝑠 and its flow 𝐉𝑚𝑎𝑠𝑠  does not imply conservation of total current. We believe 

conservation of total current is a universal property of the electric field, from atoms to 

animals, that does not involve polarization or its properties. 

4.5 Conservation of current in electronic technology. 

 In the branched one dimensional circuits of our electronic technology, conservation 

of 𝐉𝑡𝑜𝑡𝑎𝑙   implies (Bhat and Osting 2011) Kirchoff’s ‘current’ law, where ‘current’ is 𝐉𝑡𝑜𝑡𝑎𝑙  
not   𝐉𝑄 .  All the 𝐉𝑡𝑜𝑡𝑎𝑙  that flows into a node flows out, as described by Kirchoff’s current 

law. 𝐉𝒕𝒐𝒕𝒂𝒍  is never stored, not even a little bit, not at any time, not at any place. 

In contrast to the flow of current, the flow of charge is not described by Kirchoff’s 

law. All of the current   𝐉𝑄  that flows into a node does not flow out. According to eq.(45), 

some of the current   𝐉𝑄  is stored to create 𝐄 = −∫ (𝐉𝑄(𝑡
′; ⅇ𝑡𝑐. ) 𝜀0⁄ )

𝑡

0 
𝑑𝑡′ and that E is exactly 

what is needed to enforce Kirchoff’s ‘current’ law, where ‘current’ is 𝐉𝑡𝑜𝑡𝑎𝑙 , not   𝐉𝑄 .  

The stored charge taken from   𝐉𝑄  can be said to be ‘stored in the capacitance of 

free space’ determined by 𝜀0 and the geometry of the system. The stored charge taken from 

  𝐉𝑄  does not appear explicitly in most descriptions of electronic circuits (Horowitz and 

Hill 2015) because it is often viewed as a ‘parasitic’ stray capacitance, something to be 

avoided and denied, like other stray parasites. But every engineer knows that parasitic 

capacitance is important in the practical implementations of circuits p. 581 of (Horowitz 

and Hill 2015) and successful devices depend on the proper control of stray capacitance 

(Johnson and Graham 2003, Scherz and Monk 2006).  

Stray capacitance is clearly an unavoidable property of the electric field 

equation (1) that can produce 𝐄 = −∫ (𝐉𝑄(𝑡
′; ⅇ𝑡𝑐. ) 𝜀0⁄ )

𝑡

0 
𝑑𝑡′ by storing charge. That stored 

charge and that E is exactly what is needed to enforce Kirchoff’s ‘current’ law, where 

‘current’ is 𝐉𝑡𝑜𝑡𝑎𝑙 . ‘Current’ is not   𝐉𝑄 .   
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  As we have carefully stated earlier, leaving the stray capacitance out of idealized 

circuits is a well-motivated over-simplification making it easier to teach circuit theory to 

newcomers who have not actually built circuits. But that simplification produces 

inconsistencies if Kirchoff’s current law is mistakenly applied to the current 

  𝐉𝑄 .  Kirchoff’s law for 𝑱𝑡𝑜𝑡𝑎𝑙  is consistent with Maxwell’s equations. Kirchoff’s law for 

  𝐉𝑄  is not consistent with Maxwell’s equations, if circuits omit the stray parasitic 

capacitance of free space that supports displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄ . 

The conservation of current is most striking in a series circuit. In a series circuit, 

𝐉𝑡𝑜𝑡𝑎𝑙  is equal everywhere, no matter what the physics of current flow in each component 

(see examples in Fig. 2 of (Eisenberg 2016c)). Note the currents 𝐉𝑡𝑜𝑡𝑎𝑙  are equal at any 

time, including at the atomic scale 10−16 sec. Currents of   𝐉𝑄  are certainly not equal on 

the atomic scale because field fluctuations 𝜕𝐄 𝜕𝑡 ⁄  are so large on the atomic scale, 

producing huge displacement currents  𝐉𝐷 = 𝜀0 𝜕𝐄 𝜕𝑡⁄  in any consistent simulation of 

atomic or molecular dynamics. See the general review of computational electronics 

(Vasileska, Goodnick et al. 2010). 

 

4.6 Conservation of current in chemistry.  
 

 Chemical reactions are described as a series of reactions that obey the law of mass 

action. Reactions involving charged reactants produce current flow. It was a surprise 

(Eisenberg 2014a,b) to find that models of series chemical reactions 𝐴 → 𝐵 → 𝐶  have 

unequal currents  𝐼𝐴𝐵 ≠ 𝐼𝐵𝐶 .  The current 𝐴 → 𝐵 is not constrained to equal the current 

𝐵 → 𝐶  in classical chemical models. The models are usually not transferable. The 

descriptions of chemical reactions typically require different rate constants under different 

experimental conditions and so have limited utility. In future work, we will try to modify 

the description of chemical reactions so they conserve current. 

Chemical reactions involve charge storage as well as the flux of charge. Maxwell’s 

equations, and their displacement current, are needed to describe that storage of charge, as 

we have seen. In the chemical literature, stored charge is often described by the Born 

equation (Atkins and MacDermott 1982) for self-energy in an idealized systems without 

boundary conditions. For example, the interactions of ions with water (‘solvation’) are 

widely described by the Born equation, particularly in proteins and macromolecular 

systems (Bashford and Case 2000). The Born equation does not allow current flow, does 

not deal with displacement current in general, and ignores the boundary conditions that can 

change the qualitative features of the electric field in practically important ways (Mertens 

and Weeks 2016). The Born equation is a drastic approximation to the complexities of 

current flow in chemical reactions and systems. 

Higher resolution analysis involving simulations on the atomic scale are performed 

widely in molecular biology because of the wonderful structures (of more than 105 proteins, 

typically made of >105 of atoms) available mostly from x-ray crystallography. The beauty 

and power of these structures has enormous appeal to the mind’s eye, but that appeal makes 

it easy to overlook the other demands of the mind. 
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Protein structures do not include the electrical potentials and macroscopic 

concentrations that power the currents that flow throughout living systems, and therefore 

simulations are needed. Protein structure has allowed us to identify and look at the atoms 

that make up the proteins of life but structures are not enough. One can learn a great deal 

from snapshots of an automobile engine and its pistons. But one needs to study the motions 

to know how the engine works. 

Atomic resolution simulations extend our knowledge of protein structures in most 

important ways. But they do not provide an easy extension from the atomic time scale 

2×10-16 sec to the biological time scale of gating currents that starts at 50×10-6 sec and 

reaches 5×100 and longer (we hope). Calculations of currents from simulations must 

average the trajectories of atoms that last 50×10-3 sec and are sampled every 2×10-16 sec) 

involving some 106 atoms all of which interact through the electric field to conserve charge 

and current, while conserving mass. Simulations like molecular dynamics do not provide 

an easy treatment of interactions. It is obviously impossible to simulate all the interactions 

of the tremendous number of particles involved and their interactions which are so 

numerous that the word ‘tremendous’ seems quite inappropriate. (Some 1021 atoms are 

involved and interactions are not just pairwise, because of the crucial role of polarization. 

Polarization ensures that forces between any pair of atoms depend on the locations of all 

other atoms. Thus, the total number of interactions is far larger than 1021factorial!) 

It is difficult to enforce continuity of current flow in simulations of atomic 

dynamics because simulations compute only local behavior while continuity of current is 

global, involving current flow far from the atoms that control the local behavior. It is 

impossible to enforce continuity of current flow in calculations that assume equilibrium 

(zero flow) under all conditions. Current cannot be both zero and finite. Periodic boundary 

conditions are widely used in simulations. Such conditions take a box of material and 

replicate it identically, so the potential at the corresponding edges of the box are identical. 

If the potentials are identical, current will not flow. Periodic boundary conditions of this 

sort are incompatible with current flow from one boundary to the other. Voltage clamp 

experiments, and natural biological function involve current flow from one boundary to 

another. Atomic resolution simulations of current flow are not feasible now nor is it likely 

they will ever be feasible when trace ions (like Ca++) are involved, as they are in most 

biological systems. Too many water molecules must be computed to determine the trace 

concentration of Ca++.  

It seems to us that the wonderful resolution of structure and atomic simulation must 

be combined in a hierarchy of models so we can understand how changes in a handful of 

atoms control macroscopic current flow in proteins and biology. Continuum models are 

needed to extend high resolution simulations to macroscopic reality. 

Continuum models compute current flow as it depends on a variety of conditions, 

namely different electrical potentials, different concentrations and compositions of ionic 

solutions, and different structures of confining systems. The quantities from 

computations/analyses of models can be compared directly with experimental 

measurements of current. The quantitative models are dramatically reduced in complexity 

compared to structures or simulations of structures in atomic detail, but they are precise. 

Such is the nature of most physical models of condensed phases. Such must be the nature 

of physical models of biological function, in our view. 



 

 
41 September 1, 2017 https://arxiv.org/abs/1708.07400 

 

 

5. Conclusion  

  Atomic Control And Displacement Current 

 A few atoms control the transistors of our computers. A few atoms control living 

systems, although these atoms are billions of times smaller, and move thousands of millions 

of times faster than living things. Somehow the atoms do manage macroscopic control. 

How is this possible? 

 We need experiments, models, mathematics and simulations to approach an answer 

to this question. No single approach will succeed itself, despite the near-sighted vision of 

scientists who know and seek to support only their own approach. A nested hierarchy of 

models, at different length and time scales, are needed to connect the atoms to the 

macroscopic world of life and computer chips. Mathematics and simulations are needed to 

compute what these models can do and compare the computations with experiments. 

 Implementing these ideas in our models is hard to do. Reaching to the macroscopic 

scale, we develop models with lower resolution, and coarser grain, as presented in Sec. 3. 

But it is easy to lose significant fine structure of the atomic scale by the very process of 

coarse graining. Some atomic details matter a great deal, but most atomic details do not 

matter at all. 

 It is perhaps possible to construct the hierarchy of nested models one step at a time 

with exhaustive experimentation accompanied by theory and simulation at every stage. 

Indeed, that is the approach used (for the most part) in constructing the nested hieerarchy 

of transistors, integrated circuits, logic, arithmetic, and memory management units that 

make our computers.  

 But much of science is analysis, not design. Much of science, and most of biology, 

is concerned with the inverse problem of determining how something works, from 

measurements of inputs and outputs, using independent knowledge of power supplies and 

structure. Such backwards engineering is made much easier if there are principles and laws 

that apply widely in systems of diverse structure and scale. 

The laws of electricity are true on all scales. The great majority of our technology, 

and all our information technology, depend on these laws and their ability to transfer 

understanding developed on one scale to other scales. The laws of electricity are true on all 

scales with one set of parameters that do not change. We imagine that the universal nature 

of these laws allows atoms to control the macroscopic functions of life and computers, 

although we are quite aware of the gap between our imagination and proven truth. 

Conservation of current is a law we focus on here because that conservation law 

extends throughout space and couples ‘everything to everything else’ in a more dramatic 

way than other conservation laws. It is true on the atomic scale, within atoms, and between 

stars. On the macroscopic scale of life, conservation of current necessarily links far 

separated boundaries to each other, connecting inputs and outputs to one another, and 

thereby creating devices.  

We show that conservation of current is exact in systems with such complex charge 

movements that the words dielectric and polarization are not useful. Displacement current 

remains defined precisely and exactly even in such systems. Maxwell’s displacement 
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current allows conservation of current to be true universally from atoms to stars. We 

suspect that Maxwell’s displacement current flows from atomic to macroscopic scales and 

helps evolution find groups of atoms that can control machines and organisms, although 

our suspicion is certainly not settled science. It is a guess, a reach, far beyond our grasp. 

 We believe models, simulations, and computations should conserve current on all 

scales, as accurately as possible, because physics conserves current that way. We believe 

models will be much more successful if they conserve current at every level of resolution, 

the way physics does. We surely need successful models as we try to control macroscopic 

functions by atomic interventions, in technology, life, and medicine.  

 Maxwell’s displacement current lets us see stars. We hope it will help us see how 

atoms control life. 
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