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 All biology and much chemistry depends on the activity of ions in solutions. 

 A robust theory of activity is needed that is useful when current flows. 

 Our theory of the activity of ions, water and voids has one adjustable parameter. 

 Polarization is an output of the theory that varies with location and conditions. 

 The theory predicts properties of biological ion channels. 
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Abstract

A Poisson-Fermi model is proposed for calculating activity coefficients of single ions
in strong electrolyte solutions based on the experimental Born radii and hydra-
tion shells of ions in aqueous solutions. The steric effect of water molecules and
interstitial voids in the first and second hydration shells play an important role in
our model. The screening and polarization effects of water are also included in the
model that can thus describe spatial variations of dielectric permittivity, water den-
sity, void volume, and ionic concentration. The activity coefficients obtained by the
Poisson-Fermi model with only one adjustable parameter are shown to agree with
experimental data, which vary nonmonotonically with salt concentrations.

1 Introduction

Comprehensive discussions of theoretical and experimental studies on the ac-
tivity coefficient of single ions in electrolyte solutions have been recently given
by Fraenkel [1], Valikó and Boda [2], and Rowland et al. [3], where more refer-
ences can also be found. The Poisson-Fermi (PF) model proposed in this paper
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belongs to the continuum approach that traces back to the simple, elegant,
but very coarse theory – the Debye-Hückel (DH) theory. As mentioned by
Fraenkel, the continuum theory has evolved in the past century into a series of
modified Poisson-Boltzmann (PB) equations that can involve an overwhelm-
ingly large number of parameters in order to fit Monte Carlo (MC), molecular
dynamics (MD), or experimental data. Many expressions of those parameters
are rather long and tedious and do not have clear physical meaning [1].

The Debye-Hückel model is derived from a linearized PB equation [4]. Ex-
tended from the DH model, the Pitzer model [5] is the most eminent approach
to modeling the thermodynamic properties of multicomponent electrolyte so-
lutions due to its unmatched precision over wide ranges of temperature and
pressure [3]. However, the combinatorial explosion of adjustable parameters
in the extended DH modeling functions (including Pitzer) can cause profound
difficulties in fitting experimental data and independent verification because
the parameters are very sensitive to numerous related thermodynamic prop-
erties in multicomponent systems [3]. The Poisson-Fermi model proposed here
involves only one adjustable parameter.

The ineffectiveness of previous Poisson-Boltzmann models is mainly due to
inaccurate treatments of the steric and correlation effects of ions and water
molecules whose nonuniform charges and sizes can have significant impact on
the activities of all particles in an electrolyte system. Unfortunately, the point
charge particles of PB theories have electric fields that are most approximate
where they are largest, near the point. PB theories are not an appealing choice
for the leading terms in a series of approximations, for that reason. The PF
theory developed in our papers [6—10] demonstrates how these two effects can
be described by a simple steric potential and a correlation length of ions. The
parameters of the PF theory describe distinct physical properties of the system
in a clear way [9]. The Gibbs-Fermi free energy of the PF model reduces to
the classical Gibbs free energy of the PB model when the steric potential
and correlation length are omitted [9]. The PF model has been verified with
either MC, MD or double layer data at (more or less) equilibrium [6—8], and
nonequilibrium data from calcium and gramicidin channels [9,10].

Here, we apply the PF theory to study the activity properties of individual ions
in strong electrolytes. The steric effect of all particles and the interstitial voids
that accompany them are described by a Fermi-like distribution that defines
the water densities in the hydration shell of a solvated ion and the particle
concentrations in the solvent region outside the hydration shell. The resulting
correlations produce a dielectric function that shows variations in permittivity
around the solvated ion. The experimental concentration-dependent dielectric
constant model proposed in [2] is used to define the concentration-dependent
Born radii of the solvated ion in the present work. The experimental data of
the activity coefficients of NaCl and CaCl2 electrolytes reported in [11] are

2
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used to test the PF model.

2 Theory

The activity coefficient γi of an ion of species i in electrolyte solutions describes
the deviation of the chemical potential of the ion from ideality (γi = 1).
The excess chemical potential is µex

i = kBT ln γi, where kB is the Boltzmann
constant and T is an absolute temperature. In Poisson-Boltzmann theory, the
excess chemical potential can be calculated by [12]

µex
i = ∆GPB

i −∆G0

i , ∆GPB
i =

1

2
qiφ

PB(0), ∆G0

i =
1

2
qiφ

0(0), (1)

where the center of the hydrated ion (also denoted by i) is set to the origin
0 for convenience in the following discussion and qi is the ionic charge. The
potential function φPB(r) of spatial variable r is found by solving the Poisson-
Boltzmann equation

−εs∇
2φPB(r) =

K∑

j=1

qjCj(r) = ρ(r), (2)

Cj(r) = CB
j exp

(
−βjφ

PB(r)
)

, (3)

where the concentration function Cj(r) is described by a Boltzmann distrib-
ution (3) with a constant bulk concentration CB

j , εs = εwε0, εw is the dielec-
tric constant of bulk water, and ε0 is the vacuum permittivity. The potential
φ0(r) of the ideal system is obtained by setting ρ(r) = 0 in (2), i.e., all ions
of K species in the system do not electrostatically interact with each other
since qj = 0 for all j. We consider a large domain Ω of the system in which
φPB(r) = 0 on the boundary of the domain ∂Ω. The ideal potential φ0(r) is
then a constant, i.e., ∆G0

i is a constant reference chemical potential indepen-
dent of CB

j .

For an equivalent binary system, the Debye-Hückel theory simplifies the calcu-
lation by analytically solving a linearized equation of (2) so that the potential
function φPB(r) becomes a constant [4]

φDH = −
qiκ

4πεs
,
1

κ
=

(
εskBT∑2
j=1 q

2
jC

B
j L

)1/2
(4)

dependent of the bulk concentration CB
j , where L is the Avogadro constant.

3
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The Poisson-Fermi equation proposed in [9] is

εs
(
l2c∇

2 − 1
)
∇2φPF(r) =

K+1∑

j=1

qjCj(r) = ρ(r), ∀r ∈ Ωs (5)

Cj(r) = CB
j exp

(
−βjφ

PF(r) + Strc(r)
)

, Strc(r) = ln
Γ(r)

ΓB
, (6)

where Strc(r) is called the steric potential, Γ(r) = 1−
∑K+1
j=1 vjCj(r) is a void

fraction function, ΓB = 1 −
∑K+1
j=1 vjC

B
j is a constant void fraction, and vj is

the volume of a species j particle (hard sphere). Note that the PF equation
includes water as the last species of particles with the zero charge qK+1 = 0.
The polarization of the water and solution is an output of the theory. The
water can be described more realistically, for example, as a quadrupole in
later versions of the theory. The distribution (6) is of Fermi type since all
concentration functions are bounded above, i.e., Cj(r) < 1/vj for all particle
species with any arbitrary (or even infinite) potential φ(r) at any location r
in the domain Ω [9]. The Boltzmann distribution (3) would however diverge
if φ(r) tends to infinity. This is a major deficiency of PB theory for modeling
a system with strong local electric fields or interactions. The PF equation (5)
and the Fermi distribution reduce to the PB equation (2) and the Boltzmann
distribution (3), respectively, when lc = Strc = 0, i.e., when the correlation
and steric effects are not considered.

If the correlation length lc = 2ai �= 0, the dielectric operator ε̂ = εs(1− l2c∇
2)

approximates the permittivity of the bulk solvent and the linear response of
correlated ions [6,7,13,14], where ai is the radius of the ion. The dielectric
function ε̃(r) = εs/(1 + η/ρ) is a further approximation of ε̂. It is found by
transforming (5) into two second-order PDEs [6]

εs
(
l2c∇

2 − 1
)
Ψ(r) = ρ(r) (7)

∇2φPF(r) = Ψ(r) (8)

by introducing a density like variable Ψ that yields a polarization charge den-
sity η = −εsΨ − ρ of water using Maxwell’s first equation [7]. Boundary
conditions of the new variable Ψ on the boundary ∂Ω were derived from the
global charge neutrality condition [6].

To obtain more accurate potentials at the origin 0, i.e., φPF(0), we need to
consider the size and hydration shell of the hydrated ion i. The domain Ω is
partitioned into three parts such that Ω = ΩIon∪ΩSh∪ΩSolv, where ΩIon is the
spherical domain occupied by the ion i, ΩSh is the hydration shell of the ion,
and ΩSolv is the rest of the solvent domain as shown in Fig. 1. The radii of ΩIon

and the outer boundary of ΩSh are denoted by RBorn
i and RSh

i , respectively,
whose values will be determined by experimental data. It is natural to choose
the Born radius RBorn

i as the radius of ΩIon [12]. We consider both first and

4
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i
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R
i

Born

Ion

Solvent

Domain

Hydration Shell

Ω
Ion

Fig. 1. The model domain Ω is partitioned into the ion domain ΩIon (with radius
RBorni ), shell domain ΩSh (with radius RShi ), and solvent domain ΩSolv.

second shells of the ion [15,16]. The dielectric constants in ΩIon and Ω\ΩIon

are denoted by εion and εw, respectively.

The PF equation (5) then becomes

ε
(
l2c∇

2 − 1
)
∇2φPF(r) = ρ(r) =




qiδ(r− 0) in ΩIon

∑K+1
j=1 qjCj(r) in Ω\ΩIon,

(9)

where δ(r − 0) is the delta function at the origin, lc = 0 in ΩIon, lc �= 0 in
Ω\ΩIon, ε = εionε0 in ΩIon, and ε = εs = εwε0 in Ω\ΩIon. The shell radius RSh

i

is determined by Eq. (6) as

Strc
Sh = ln

VSh − vwO
w
i

VShΓB
= ln

Ow
i

VShCB
w
⇒ VSh =

ΓB

CB
w
Ow
i + vwO

w
i , (10)

where vw is the volume of a water molecule and VSh is the volume of the hydra-
tion shell that depends on the bulk void fraction ΓB, the bulk water density
CB

w , and the total number Ow
i (coordination number) of water molecules oc-

cupying the shell of the hydrated ion i. Note that the shell volume VSh varies
with bulk ionic concentrations CB

j . The occupancy number Ow
i is given by

experimental data [15,16] and so is the shell volume that of course determines
the shell radius RSh

i .

To deal with the singular problem of the delta function δ(r − 0) in Eq. (9),
we use the numerical methods proposed in [6] to calculate φPF(r) as follows:

5
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(i) Solve the Laplace equation ∇2φL(r) = 0 in ΩIon with the boundary con-
dition φL(r) = φ∗(r) = qi/(4πεionε0 |r− 0|) on ∂ΩIon.

(ii) Solve the Poisson-Fermi equation (9) in Ω\ΩIon with the jump condition[
ε∇φPF(r) · n

]
= −εionε0∇(φ

∗(r)+φL(r))·n on ∂ΩIon and the zero boundary
condition φPF(r) = 0 on ∂Ω, where [u] denotes the jump function across
∂ΩIon [6].

The evaluation of the Green function φ∗(r) on ∂ΩIon always yields finite num-
bers and thus avoids the singularity. Note that our model can be applied to
electrolyte solutions at any temperature T having any arbitrary number (K)
of ionic species with different size spheres and valences.

3 Results

Numerical values of model notations are given in Table 1, where the occupancy
number Ow

i = 18 is taken to be the experimental coordination number of the
calcium ion Ca2+ given in [15] for all ions i = Na+, Ca2+, and Cl− since the
electric potential produced by the solvated ion diminishes exponentially in the
outer shell region in which a small variation of Ow

i for i =Na+ and Cl− does not
affect numerical approximations too much. Obviously the coordination number
may be different for different types of ions and at different concentrations and
so on. We were surprised that we can fit experimental data so well using a single
experimentally determined occupancy number for all ions and conditions.

As discussed in [2], the solvation free energy of an ion i should vary with
salt concentrations and can be expressed by a dielectric constant ε(CB

i ) that
depends on the bulk concentration of the ion CB

i . Following [2], we assume
that

ε(CB
i ) = εw − δiC

B
i +

(
CB
i

)3/2
(11)

with only one parameter δi, whose value is given in Table 1, instead of two
in [2]. Note that ε(CB

i ) is a constant when the dimensionless CB
i is given. It

is not a function of a spatial variable r like ε̃(r). The parameter δi represents

the ratio of the factor of CB
i to that of

(
CB
i

)3/2
in the original formula, where

the factors of various electrolytes are taken from various sources of either
theoretical or experimental data [2]. Our ratios δi in Table 1 are comparable
with those given in [2].

The Born formula of the solvation energy can thus be modified as

∆GBorn
i (CB

i ) =
q2i

8πε0θ(CB
i )R

0
i

(
1

εw
− 1

)
, θ(CB

i ) =
ε(CB

i ) (εw − 1)

εw (ε(CB
i )− 1)

, (12)

where R0
i is the Born radius when CB

i = 0 (θ(0) = 1) and RBorn
i = θ(CB

i )R
0
i

6
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is the concentration-dependent Born radius used to define ΩIon in Fig. 1 when
CB
i �= 0. The Born radii R0

i in Table 1 are cited from [2], which are computed
from the experimental hydration Helmholtz free energies of these ions given in
[17]. All values in Table 1 are either physical or experimental data except that
of δi, which is the only adjustable parameter in our model. All these values
were kept fixed throughout calculations.

Table 1. Values of Model Notations

Symbol Meaning Value Unit

kB Boltzmann constant 1.38× 10−23 J/K

T temperature 298.15 K

e proton charge 1.602× 10−19 C

ε0 permittivity of vacuum 8.85× 10−14 F/cm

εion, εw dielectric constants 1, 78.45

lc = 2ai correlation length i = Na+,Ca2+, Cl− Å

aNa+, aCa2+ radii 0.95, 0.99 Å

aCl−, aH2O radii 1.81, 1.4 Å

R0

Na+ , R
0

Ca2+, R0

Cl− Born radii in Eq. (12) 1.617, 1.706, 2.263 Å

δNa+, δCa2+, δCl− in Eq. (11) 4.2, 5.1, 3.8

Ow
i in Eq. (10) 18

The PF results of Na+, Ca2+, and Cl− activity coefficients agree well with
the experimental data [11] as shown in Figs. 2 and 3 for NaCl and CaCl2
electrolytes, respectively, with various [NaCl] and [CaCl2] from 0 to 2.5 M. In
Fig. 4, we observe that the Debye-Hückel theory oversimplifies the Ca2+ activ-
ity coefficient to a straight line as frequently mentioned in physical chemistry
texts [4] because the theory does not account for the steric and correlation
effects of ions and water, let alone the atomic structure of the ion and its
hydration shell as shown in Fig. 1. Both PB and PF results in Fig. 4 were
obtained using the same atomic Fermi formula (10) for shell radii RSh

i in ΩSh

and the same concentration-dependent Born formula (12) for Born radii RBorn
i

in ΩIon. Therefore, the only difference between PB and PF is in ΩSolv, where
lc = Strc = 0 for PB and lc �= 0 and Strc �= 0 for PF. Note that these two
formulas are not present in previous PB models. Fig. 4 shows that the corre-
lation and steric effects still play a significant role in the solvent domain ΩSolv

although the domain is RSh
Ca2+ = 4.95 Å (not shown) away from the center of

the Ca2+ ion. The ion and shell domains are the most crucial region to study
ionic activities. For example, Fraenkel’s theory is entirely based on this region

7
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Fig. 2. Comparison of PF results with experimental data [11] on i = Na+ and Cl−

activity coefficients γi in various [NaCl] from 0 to 2.5 M.
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Fig. 3. Comparison of PF results with experimental data [11] on i = Ca2+ and Cl−

activity coefficients γi in various [CaCl2] from 0 to 2 M.

– the so-called smaller-ion shell region [1].

The PF model can provide more physical details near the solvated ion (Ca2+,
for example) in a strong electrolyte ([CaCl2] = 2 M) such as the dielectric
function ε̃(r) of varying permittivity (shown in Fig. 5), variable water density
CH2 O(r) (in Fig. 5), concentration of counterion (CCl−(r) in Fig. 6), electric

8
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Fig. 4. Comparison of Poisson-Fermi (PF), Poisson-Boltzmann (PB), and De-
bye-Hückel (DH) results on i = Ca2+ activity coefficients γi in various [CaCl2]
from 0 to 2 M.

potential (φPF(r) in Fig. 6), and the steric potential (Strc(r) in Fig. 6). Note
that the dielectric function ε̃(r) is an output, not an input of the model.
The steric effect is small because the configuration of particles (voids between
particles) does not vary too much from the solvated region to the bulk region.
However, the variation of mean-field water densities CH2 O(r) has a significant
effect on the dielectrics in the hydration region as shown by the dielectric
function ε̃(r). The strong electric potential φPF(r) in the Born cavity ΩIon and
the water density CH2 O(r) in the hydration shell ΩSh are the most important
factors leading the PF results to match the experimental data. PF theory deals
well with the much more concentrated solutions in ion channels where void
effects are important [9].

4 Conclusion

We have proposed a Poisson-Fermi model for studying activities of single ions
in strong electrolyte solutions. The atomic structure of ionic cavity and hydra-
tion shells of a solvated ion is modeled by the Born theory and Fermi distribu-
tion using experimental data. The steric effect of ions and water of nonuniform
sizes with interstitial voids and the correlation effect of ions are also consid-
ered in the model. With only one adjustable parameter in the model, it is
shown that the atomic structure and these two effects play a crucial role to
match experimental activity coefficients that vary nonmonotonically with salt
concentrations.

9



Page 12 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 4 6 8 10 12 14 16 18 20
45

50

55

60

65

70

75

80

Distance from the center of Ca
2+

 in Angstrom

D
ie

le
c
tr

ic
 f
u

n
c
ti
o
n

 a
n
d

 w
a

te
r 

d
e
n

s
it
y

 

 

Dielectric Function

Water Density in M

Fig. 5. Dielectric ε̃(r) and water density CH2 O(r) profiles near the solvated ion Ca2+

with [CaCl2] = 2 M.

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

6

7

8

9

Distance from the center of Ca
2+

 in Angstrom

C
l-

 c
o
n

c
e
n

tr
a
ti
o

n
, 

e
le

c
tr

ic
 a

n
d
 s

te
ri

c
 p

o
te

n
ti
a

ls

 

 

Cl
-
 Concentration in M

Electric Potential in k
B

T/e

Steric Potential in k
B

T

Fig. 6. Cl− concentration CCl−(r), electric potential φPF(r), and steric potential
Strc(r) profiles near the solvated ion Ca2+ with [CaCl2] = 2 M.

5 Acknowledgements

This work was supported in part by the Ministry of Science and Technology
of Taiwan under Grant No. 103-2115-M-134-004-MY2 to J.L.L.

10



Page 13 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

References

[1] D. Fraenkel, Simplified electrostatic model for the thermodynamic excess
potentials of binary strong electrolyte solutions with size-dissimilar ions, Mol.
Phys. 108, 1435 (2010).

[2] M. Valiskó, D. Boda, Unraveling the behavior of the individual ionic activity
coefficients on the basis of the balance of ion-ion and ion-water interactions, J.
Phys. Chem. B 119, 1546 (2015).

[3] D. Rowland, E. Königsberger, G. Hefter, and P. M. May, Aqueous electrolyte
solution modelling: Some limitations of the Pitzer equations, Appl. Geochem.
55, 170 (2015).

[4] K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical Chemistry (Houghton
Mifflin Co., Boston, 2003).

[5] K. S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general
equations, J. Phys. Chem. 77, 268 (1973).

[6] J.-L. Liu, Numerical methods for the Poisson-Fermi equation in electrolytes, J.
Comp. Phys. 247, 88 (2013).

[7] J.-L. Liu and B. Eisenberg, Correlated ions in a calcium channel model: a
Poisson-Fermi theory, J. Phys. Chem. B 117, 12051 (2013).

[8] J.-L. Liu and B. Eisenberg, Analytical models of calcium binding in a calcium
channel, J. Chem. Phys. 141, 075102 (2014).

[9] J.-L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling
biological ion channels, J. Chem. Phys. 141, 22D532 (2014).

[10] J.-L. Liu and B. Eisenberg, Numerical methods for a Poisson-Nernst-Planck-
Fermi model of biological ion channels, to appear in Phys. Rev. E (2015).

[11] G. Wilczek-Vera, E. Rodil, and J. H. Vera, On the activity of ions and the
junction potential: Revised values for all data, AIChE. J. 50, 445 (2004).

[12] D. Bashford and D. A. Case, Generalized Born models of macromolecular
solvation effects, Annu. Rev. Phys. Chem. 51, 129 (2000).

[13] C. D. Santangelo, Computing counterion densities at intermediate coupling,
Phys. Rev. E 73, 041512 (2006).

[14] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double layer in ionic liquids:
Overscreening versus crowding, Phys. Rev. Lett. 106, 046102 (2011).

[15] W. W. Rudolph and G. Irmer, Hydration of the calcium(II) ion in an aqueous
solution of common anions (ClO−

4 , Cl−, Br−, and NO−

3 ), Dalton Trans. 42,
3919 (2013).

[16] J. Mähler and I. Persson, A study of the hydration of the alkali metal ions in
aqueous solution, Inorg. Chem. 51, 425 (2011).

11



Page 14 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[17] W. R. Fawcett, Liquids, Solutions, and Interfaces: From Classical Macroscopic

Descriptions to Modern Microscopic Details (Oxford University Press, New
York, 2004).

12



Page 15 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

to be delivered offline by email 

*Author Biographies



Page 16 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

*Author Photos



Page 17 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

*Author Photos



Page 18 of 18

Acc
ep

te
d 

M
an

us
cr

ip
t

0 0.25 0.5 0.75 1 1.25 1.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

([CaCl
2
]/M)1/2

ln
 γ

i

 

 

Experiment (Ca2+) 

Experiment (Cl−)

PF (Ca2+)

PF (Cl−)

*Coverpicture




