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I. PHYSICAL CHEMISTRY AND LIFE

Ions in water are the liquid of life. Life occurs almost entirely in “salt water.”
Life began in salty oceans. Animals kept that salt water within them when they
moved out of the ocean to drier surroundings. The plasma and blood that surrounds
all cells are electrolytes more or less resembling seawater. The plasma inside
cells is an electrolyte solution that more or less resembles the seawater in which
life began. Water itself (without ions) is lethal to animal cells and damaging for
most proteins. Water must contain the right ions in the right amounts if it is to
sustain life.

Physical chemistry is the language of electrolyte solutions and so physical
chemistry, and biology, particularly physiology, have been intertwined since phys-
ical chemistry was developed some 150 years ago. Physiology, of course, was
studied by the Greeks some millennia earlier, but the biological role of electrolyte
solutions could not be understood until ions were discovered by chemists some
2000 years later.

Physical chemists and biologists come from different traditions that separated
for several decades as biologists identified and described the molecules of life.
Communication is not easy between a fundamentally descriptive tradition and a
fundamentally analytical one. Biologists have now learned to study their well-
defined systems with physical techniques, of considerable interest to physical
chemists. Physical chemists are increasingly interested in spatially inhomoge-
neous systems with structures on the atomic scale so common in biology. Physical
chemists will find it productive to work on well-defined systems built by evolution
to be reasonably robust, with input–output relations insensitive to environmen-
tal insults. The overlap in science is clear. The human overlap is harder because
the fields have grown independently for some time, and the knowledge base, as-
sumptions, and jargon of the fields do not coincide. Indeed, they sometimes seem
disjoint, without overlap.

This chapter deals with properties of ion channels that in my view can be
dealt with by “physics as usual,” with much the same tools that physical chemists
apply to other systems. Indeed, I introduce and use a tool of physicists—a
field theory (and boundary conditions) based on an energy variational approach
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developed by Liu [1–5]—not too widely used among physical chemists. My goal
is to provide the knowledge base, and identify the assumptions, that biologists use
in studying ion channels, avoiding jargon. Although we do not know enough to
write atomic, detailed physical models of the process by which ions move through
channels, rather simple models of selectivity and permeation work quite well in
important cases. Those physical models and cases are the main focus of this chapter
because they demonstrate the strong essential link between the traditional treat-
ments of ions in chemical physics and the biological function of ion channels.

At first, ion channels may seem to be an extreme system. They are as small as
they can be, given the particulate nature of matter. Ion channels are atomic valves
that allow a handful of atoms to control macroscopic flows of current, and thus
macroscopic properties of cells, tissues, animals, and life. They do this by working
at the extremes of forces as well as sizes. They have enormous densities of ions
crowded into tiny spaces with huge electric and chemical fields and forces of
excluded volume. These enormous densities are as far as one can imagine from the
vanishing densities of simple or ideal fluids. So ion channels may seem a special
case not of general interest to physical chemists.

I hope to show that the special case of ion channels gives general insight. “If
you look closely enough at a keyhole, you can look through it, and sometimes
even glimpse an horizon or even stars” (John Edsall, personal communication).
Whenever a physical system is controlled by a small space, whenever a chemi-
cal engineer uses a tiny valve, whenever a boundary layer near an electrode is a
determinant of electrochemical function, one can expect crowded charges in tiny
spaces. In those physical systems, crowded charges are likely to involve the same
physics as crowded charges in biological channels. A general theme can be viewed
through the biological channel.

The general theme that emerges is that everything interacts with everything else
in any crowded environment, including ions in channels. I will argue that crowded
conditions require a mathematics that deals naturally with interactions. I will argue
that the law of mass action (with constant constants) does not apply in crowded
cases. I will argue that crowded systems are complex, not simple fluids. Interactions
in complex fluids have been analyzed with Chun Liu’s variational method EnVarA
that naturally deals with interactions [2–5] and we are now applying that approach
to ionic solutions [6, 7].

A number of topics are discussed several times from different perspectives in
this chapter more in the tradition of an essay than a scientific paper. The motivation
is to provide physical, chemical, and biological views of the key topics. I hope those
already familiar with these ideas will have patience with this approach.

A. Ion Channels

Ion channels are the recurrent theme in the passacaglia of this essay, because
they provide a natural link between physical chemistry and molecular biology, as
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we shall see. Ion channels have been studied in astonishing detail [8, 9] despite
their staggering diversity [10–13]. Ion channels have enormous biological and
medical importance [8]. Thousands of diseases are produced by genetic defects
in channels, including many diseases of profound importance, like cystic fibrosis,
epilepsy, atrial and ventricular fibrillation, and so on, as documented in many
papers [14–98] among thousands of others. Many of these diseases are caused by
problems in the construction of channels, or the insertion of channels in the wrong
places in the wrong cells, or in the regulation and control of channels. This chapter
is not focused on such biological problems, because we do not know enough yet
to write physical models of the problematic biological systems.

This chapter is written to show the interactions of physical chemistry and molec-
ular biology in channels, in theory, simulations, experiments, and mathematics,
as well as in the text itself. Channels are defined, along with enough discussion to
show how they are used in biology, without (I hope) overwhelming the reader with
complexity. The selectivity properties of channels are discussed at length because
in some cases these can be understood quite completely with simple ideas from
the primitive (implicit solvent) model of electrolyte solutions of classical physical
chemistry. Selectivity implies interactions. In the world of ideal point particles K+
and Na+ are identical! The need to analyze finite size particles that interact because
of their size and electric field is a recurrent theme. The need to analyze flows is
also a recurrent theme, although most of that analysis is yet to be done. Flow must
be analyzed because ion channels, like most devices, work far from equilibrium.

Equilibrium is death to biology. A variational method EnVarA is introduced that
allows automatic extension of equilibrium analysis to nonequilibrium. EnVarA was
developed to deal with complex fluids, with flowing interacting subelements far
more complex than hard sphere ions. I argue that electrolytes can be viewed more
realistically as a complex fluid than as a simple fluid of classical theory. The
variational method is then applied to a few cases of interest. The article tries to
go full circle: describing ion channels, using classical physical chemistry to deal
with an important biological property of channels, introducing the new variational
approach to deal with flows through channels, and finally arguing that this varia-
tional approach provides a new perspective on ions in solution as well as channels.
I propose that ions in solutions are complex fluids in which interactions dominate:
“everything interacts with everything else.”

II. PHYSICAL CHEMISTRY AND BIOLOGICAL PROBLEMS

Many scientists want to apply physical chemistry to biological problems. The
question is, what problems? The challenge is how to do it. The answers to these
questions are hard for human reasons, I believe.

Physical chemists and biologists usually have different aims. Physical chemists
want to know everything [99]. Biologists want to understand so they can control.
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Biologists want to understand how machines, systems, and devices work well
enough to make life better, in health and disease.

Biologists have little interest in how living systems work under “nonphysio-
logical conditions.” Only anatomists study “fixed” (dead) material and they do so
because fixed material is easier to view than moving, living systems. Structure is
important, but it is important mostly because it can move and do something.

Biologists are much like engineers. Chemical engineers are as much physical
chemists as they are engineers. Physical chemistry is linked to important parts of
biology much as it is linked to chemical engineering. Physiologists and physical
chemists dealt with the same issues until molecular biology came along and focused
physiological attention on proteins, rather than the ions that surround them.

Engineers have a particular approach to problems shared by biologists. Engi-
neers study devices as they function in a particular case. Engineers want to study an
amplifier as it amplifies. (I use electrical examples because of my limited knowl-
edge of chemical engineering.) Engineers are not eager to study amplifiers when
they cannot amplify, when they are “dead.”

Little work is done on amplifiers at equilibrium, with power leads soldered
together and held at ground (zero) potential. Engineers (like biologists) usually
study systems in a limited set of conditions in which the systems actually work.
Few systems actually work at equilibrium. Most systems require specific “power
supplies.” Most systems are tolerant to some changes in conditions, but fail to work
at all outside a certain range.

Biological systems only function when gradients of ions are in a certain lim-
ited range. Gradients of chemical and electric potential are the power supplies
of biological systems. Gradients of ionic solutions drive signaling in the nervous
system, the control of muscle contraction, the secretion of hormones, enzymes,
and urine. Biologists are interested in ions because they power so much biology.
For them, this is a universe. For a physical chemist, it is not even a solar system in
the universe of all ionic phenomena.

Physical chemists have a broader view than engineers and biologists. They are
interested in everything that ionic solutions can do in any temperature or pressure,
in solutions made of many types of ions. They study the general properties of
ionic solutions. The special properties of ions important in biology—Na+, K+,
Ca2+, and Cl− in ∼150 mM aqueous solutions around 300 K—strike them as a
particular, perhaps boring, special case, while biologists (and physicians) call that
case life!

Biologists and engineers, however, do not find special cases boring. Both know
that their machines only work in special cases. Engineers know that locomotion is
not a general consequence of burning gasoline. Special structures and particular
ingredients and conditions are needed to make that happen. Biologists know that
animals live in only a narrow range of conditions [100]. Biologists and engineers
are interested in the special conditions in which their systems function.
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Machines are robust in some ways and delicate in other. Rather small changes
of ingredients or structure will stop the machine, and may in fact “gum it up” so it
will not ever work. Think of kerosene in the gas tank of a car.

Electrochemical devices, like electrical devices in general, require particular
power supplies. With the wrong voltages, they cannot work and can in fact be
damaged irreversibly. Similarly, ions in channel proteins perform useful functions
only under special conditions. They need certain concentrations and gradients of
electrical and chemical potential to function. They need certain concentrations of
control ions that regulate channels much as the accelerator of a car regulates the
speed of the car. The wrong ions or wrong concentrations of ions can irreversibly
denature proteins just as the wrong voltages applied to an amplifier will irreversibly
“denature” it.

Biological cells and molecules only function under restricted conditions. Ani-
mals are the same. We are all too familiar with the fragility of life. Outside a nar-
row range of temperature, we are uncomfortable. Outside a slightly wider range of
temperature we die. The properties of biological cells and proteins have the same
sensitivity. Indeed, one of the roles of a biological organism is to maintain the
special chemical and physical conditions that its cells, tissues, and proteins need
to function. Homeostasis and “fitness of the environment” are main themes in the
classical physiology of the nineteenth and twentieth century. The organism buffers
the cell and its molecules from the outside world much as our houses and clothes
buffer humans from what other animals experience.

Biologists and engineers know that their machines require power and special-
ized conditions to perform their function. Biologists and engineers know the im-
portance of structure. They know that the essence of their machines are the special
structures that use power to convert inputs into outputs of general use. Biologists
and engineers are trained to study systems that are alive and performing their “de-
sign” function. Biologists and engineers only study systems in the range that they
actually function. It seems obvious to them that an amplifier should not be stud-
ied without its power supply, or with its power inputs soldered together. It seems
obvious that function of living systems cannot be reproduced in death.

It seems obvious to biologists and engineers that no general analysis is possible.
It seems obvious to them that the desire of physical chemists for a general approach
cannot be satisfied. Biologists and engineers think a truly general approach is
impossible.

In fact, a powerful general approach is indeed possible, but only in a spe-
cial sense. A general approach is possible of the machine as it functions. Anal-
ysis of functioning machines will almost always reveal special structures that
use special conditions to perform an important function. The combinations of
special structures and conditions form motifs, design themes in engineering
and adaptations in evolutionary biology used again and again because they are
successful.
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Machines are designed to use complex structures and specific power supplies to
execute simple functions. An amplifier can often be described by a single number,
its gain. Many transistors arranged in a complex circuit are needed to produce
the simple behavior of an amplifier. Each transistor is described by complex field
equations—coupled partial differential equations in fact not so different from the
equations of ions in solutions and channels [101–104]. The transistors are con-
nected in a circuit of some complexity. The physical layout of the transistors is a
structure much more complex than the circuit diagram. All of that complexity is
needed to produce a simple property, in this case the gain of an amplifier.

The general behavior of the machine—for example, the gain of the amplifier—
can be simple and powerfully described by simple equations, often much simpler
than the general equations needed to describe the underlying physics or structure
of the machine. But that simplification is possible only because of the complexity
of structures involved, and the restricted set of conditions under which the machine
operates. A very complicated circuit is needed to make a linear amplifier, and that
circuit only works when given the right power supply. But the resulting linear
function can be described (for most purposes) by a single number, the gain.

A. Complexity in Structure and Physics Produces Simplicity in
Biological Function

Molecular biology illustrates these facts very well. Molecular biology shows how
complex structures and physics are used to make simple function. The revolution
of molecular biology is so important because it has revealed some universals of
life. These universals are complex structures that use physics to write the code
of life’s molecules. All life is inherited but almost the only thing inherited is a
blueprint to make proteins. The only things the blueprint (DNA) describes are
proteins. Attention is thus focused in biology on a very narrow world of proteins
and nucleic acids. Proteins and nucleic acids exist in a narrow range of temperatures
and pressures. These are the only conditions compatible with life. The study of
life is not general. It is the study of these systems of complex structure at those
temperatures and pressures.

The study of life is also the study of ionic solutions because life occurs in a
mixture of ions and water. Attention must be focused on ions in solution because
proteins and DNA require ions in water. Proteins and DNA “come with” ions, in
the sense that sodium comes with chloride in table salt or seawater. Ions are always
present to balance the electric charge of the rest of the DNA or protein molecule.
Indeed, the requirement for ions is usually more specific than that. Without quite
particular ions, most proteins and nucleic acids cannot maintain their structure,
cannot function. Indeed, without ions, many proteins simply denature, damaged
as irreversibly as when an amplifier input is connected to a voltage beyond its
design limit. Neither protein nor amplifier can survive too strong an electric field.
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Ions set the necessary milieu for proteins and nucleic acids that shields protein
permanent charge, so electric fields and potentials are small. Without the shielding
of charge, electric fields in proteins would be very large, likely to damage the
very structure that allows them to function. Ion channels illustrate this generality:
without proper concentrations and gradients of ions, most channel proteins simply
do not function.

Ions have another role. Ions act as controllers for most intracellular proteins.
Many intracellular proteins are controlled by the concentration of ions, much as
a gas pedal controls a car, or a dimmer (or rheostat) controls a light. Quite often
proteins are controlled by the concentration of Ca2+. The controlling concentra-
tions are very small making the physical chemistry of trace solutions of particular
biological interest. Ca2+ concentrations of 10−7 M are typical; many controllers
of proteins work in lower concentrations. Some “hormones” function at concen-
trations of 10−11 M.

The role of ions in life is too much to review in general. But the specific role
of ions in channel proteins is nearly manageable and so I write about them.

B. Ion Channels

Ion channels are proteins with a hole down their middle that control the flow of ions
through otherwise impermeable membranes (Figs. 1 and 2). Ion channels are the

Figure 1. A “longitudinal” section of a channel structure drawn to emphasize the selectivity
properties of ion channels. The structure of the channel OmpF is known from crystallography (see text
for references). Figure of ompF porin by Raimund Dutzler. (See the color version of this figure in Color
Plates section.)
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Figure 2. A “cross section” of a channel structure drawn to emphasize the crowding of ions in a
channel. The structure of the channel OmpF is known from crystallography [105–111]. Figure adapted
from Schirmer [112]. (See the color version of this figure in Color Plates section.)

nano (nearly pico) valves of life with as general a role as transistors in integrated
circuits. Ion channels form a useful path into biology for physical chemists, one that
carries familiar ions over potential barriers. Ion channels can help carry physical
chemists over the social and intellectual barriers formed by exhaustive descriptive
biology. The study of ion channels involves physical chemists in a biological
problem of great generality and importance, one that nonetheless can be attacked
(in large measure) by physics (and chemistry) as usual, without invoking vital new
principles of organization or complexity. We present a brief description of ion
channels now so the gate to physical understanding is open and not organically
blocked by unknown structures.

I focus attention on that part of ion channel function that involves ions most
clearly and directly. Ion channels must conduct different ions if they are to function
biologically because different ions carry different signals. Thus, the specificity of
channels to different types of ions is of great biological importance. It is that
specificity we will concentrate on in this paper. It is also that specificity that
makes physical chemistry essential to biology. Fortunately, the physical chemistry
of specificity can be dealt with by physics as usual, at least in the cases studied
here. Specificity of ion channels is then a subject of mutual interest to biologists
and physical chemists in which their interests and analyses overlap. The biologist
needs the knowledge of the physical chemist. The physical chemist benefits by
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the focus on a specific, well defined, reasonably robust system that uses a definite
set of forces and structures to maintain a definite set of properties, namely its
input–output relation. The physical chemist finds it much easier to study ionic
solutions around 200 mM ionic strength made of alkali metal ions and alkali earth
ions than to study all solutions of all elements at all concentrations. The physical
chemist (or at least the chemical engineer) can find the problem of determining the
transfer function of an electrochemical cell more approachable than the problem
of determining all properties of the solutions inside the cell. Biology provides
“the existence theorem” that guarantees that a reduced model can describe an ion
channel quite well.

The selectivity of ion channels is an easy subject to study in the physical tradi-
tion. The role of structural change (in the channel protein) is minimal and stereo-
typed, so elaborate descriptions of different types of conformational change are
not needed. The physics of selectivity is also quite stereotyped and so only a few
mechanisms are likely to be involved, although the balance between the energies
of different ions (and processes) is likely to be quite different in different channels.

Physical scientists often dislike descriptive detail. The selectivity of ion chan-
nels requires less descriptive detail than many other properties of channels (or
proteins), making ion channels a (relatively) easy biological object to study for
physical scientists.

Biologists on the other hand relish descriptive detail and many find selectivity
boring for that reason. Selectivity requires description in numbers, not names and
biologists are often glad to leave that to their physically oriented colleagues. The
common themes of all ion channels seem too common—and boring—to some
biologists. I hope they do not seem too challenging for physical chemists.

C. Channels Open and Close

Not all properties of ion channels are as simple as selectivity. Channels open
and close and open again and that process involves conformational changes of the
protein and of the electrical and chemical potential fields within the channel. When
channels are open, ions flow through a single structure that does not change on
the biological timescale (slower than say 100 �s). Ions flow through a “hole in the
wall” following the laws of electrodiffusion, at a fixed temperature, with a simple
contribution from hydrodynamics. Ion channels also share themes with each other
and with enzymes in general [113]. A general physical analysis of some functions
of channels is possible. Ion channels are much less complex objects to analyze
physically than amplifiers, particularly once the channel is open.

Ion channels are diverse biologically at the same time they are unified physi-
cally. The biological functions of channels require extensive description because
they are so diverse. The underlying physical plan of channel’s selectivity (prob-
ably) does not require so much description (at least as far as we can tell so far).
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The open channel so far falls into two types, one in which side chains of the
protein mix with ions and water in the pore of the protein (calcium and sodium
channels) and one in which the side chains face away from the pore and the pro-
tein forms a (relatively) strong “smooth” surface (as far as we can tell) (potassium
channels).

Ion channels are nanovalves that control most biological systems by control-
ling the flow of ions, water, and electric current across otherwise impermeable
biological membranes. The membranes are lipid bilayers that define cells and
structures within cells, like the cell nucleus or mitochondria as well as the cell
itself. Evolution—like an engineer—isolates subsystems from their neighbors by
insulators. Engineers use silicon dioxide. Evolution uses lipid bilayers. Subsystems
are connected through “channels” that cross the insulation.

Ion channels exist so ions can cross otherwise impermeable membranes in
disjoint physically separate pathways (“parallel resistors” if one likes engineering
images). Ion channels have internal structure that allows ions to move and external
structure that allows them to exist in lipid membranes.

Physical chemists need to be reminded of the importance of structures. Com-
plex structures are found in nearly all devices and biological systems. Complex
structures must be understood as much as physics must be understood if we are
to control and build devices and biological systems. The complex structures need
description. No engineer would consider studying a machine without its parts list.
A great deal of biology has been devoted to constructing that parts list, for centuries
at the macroscopic level, and now at the molecular level. It takes a great deal of
work to separate and identify the parts of a complex system, if you do not have
a blueprint. Molecular biology learned part of the blueprint when it learned of
the existence of genes and their biochemical basis, DNA and RNA. The blueprint
provides (most of) the information needed to make proteins. It determines the se-
quence of amino acids joined into a linear chain to make the protein. That is the
only function of the blueprint. But the linear chain is like a chain of beads that
folds to make the devices and machines of life. We do not know the rules that
fold the chain into devices and indeed sometimes additional information is needed
in the form of structural templates. That is why so much effort has been spent on
the protein folding problem. Much progress has been made but the truth remains
that we must catalogue the structures of proteins as we catalogue their sequence of
amino acids if we are to have a reasonably complete parts list. Our parts list must
include three-dimensional structures as well as sequences. Biology thus necessar-
ily involves a great deal of description. That description is needed before the role
of structure can be understood in biological function.

The structural complexity is achieved in many cases by combining subsys-
tems used in other systems, and so already found in the parts catalogue. Keeping
subsystems separate and (reasonably) independent allows construction of com-
plex systems from common building blocks. Linking (more or less) independent
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systems is an obvious strategy for building complexity from simpler building
blocks. Valves are the physical building blocks that control flow from system
to system. Ion channels are the nano (nearly pico) valves of life. Vacuum tubes
(“valves” to twentieth century speakers of UK English), and field effect transistors
(FETs) are a great deal easier to use than bipolar transistors because they are much
more independent. The input characteristics of a FET are far more independent of
output characteristics (of itself or its connecting devices) than bipolar transistors
and this makes design much easier and more robust.

A large fraction of the proteins in an organism are channel proteins that use
ions to carry a current of particles, just as a large fraction of the devices in a
computer are FETs that use their own channels as nanovalves to carry the current
of (quasi)-particles, holes, and “electrons.” The biologist and computer designers
need to know about channels and transistors because they are such a large fraction
of their systems. The physical chemists and physicists need to know about channels
and transistors because they are so interesting, providing mechanisms by which
tiny structures and powers can control large movements and flows. Channels and
transistors are valves. And valves use interesting physics.

The analogy between channels and FETs is useful and productive [102–115]
because they both follow similar mathematics even though the charged objects are
quite different. The charged objects of channels are ions, atoms with permanent
charge that do not change during the great majority of biological processes.

The electrons of semiconductors are more ephemeral. They are mathemat-
ical constructs with quite distinct properties from the electrons in a vacuum
tube. Surprisingly few scientists are aware that the negative quasiparticles of
silicon/germanium have little in common with the isolated electrons of physics
textbooks and cathode ray tubes. I wish the “electrons” of silicon/germanium
were named (something like) “semielectrons” (for semi[conductor]electrons) so
they are not confused with isolated electrons that flow in a vacuum. A mathe-
matical construct and a physical electron are really quite different things. It is
a naughty convenience to use the same word “electron” for both, at least in my
view [102].

D. Sigworth’s Equation: Single Channel Currents

The best way to become acquainted with ion channels is to think of them one
molecule at a time, corresponding to the way they can be studied experimentally
when reconstituted into lipid bilayers or measured in patch clamp setups. Of course,
ion channels are not used one at a time in biology, where large numbers of several
types are involved in almost any function. The question of how to account for the
properties of large numbers of channels is not a major subject of this chapter, and
in fact is too general for anything less than a book. I concentrate on ion channels
one at a time, dealing with macroscopic behavior of ensembles of channels only a
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little. I mention enough of the properties of ensembles so the reader will know the
main additional features that occur when channels work together. It would not be
good for the reader to be entirely divorced from the biological reality of cells and
tissues [116–131].

Consider an ensemble of N independent channels of the same type. Ion channels
control current flow in a simple way, summarized by Sigworth’s equation [132].
The equation describes the current flow I through N single channels measured in a
voltage clamp experiment in which all single channels have the same (open chan-
nel) conductance, voltage and concentration across them and all single channels
open with probability p to an identical mean current level < i >. (Historical note:
I choose the name for this equation for personal and historical reasons. Most chan-
nologists learned of the equation from Sigworth [132]. I certainly did, in a seminar
he gave us early in his career, while still a graduate student, if I remember correctly.
I do not know if there was a significant previous history.)

I = N < i > p = N(s)︸︷︷︸
Number

of channels available

· < i(�s) >︸ ︷︷ ︸
Amplitude

of single channel

· p(ms)︸ ︷︷ ︸
Probability
of opening

of one channel

(1)

Much of the lore of studying channels (“channology” if you will) is the applica-
tion of Sigworth’s equation to the particular case where there is just one channel
protein being recorded at a time. I try to make explicit what experimentalists learn
implicitly “in the lab.” This knowledge is needed by physical scientists, if their
work is to deal with real data. Theory and simulations are most useful when they
produce results indistinguishable in form and format from experiments.

Sigworth’s equation is used in the lab for the case where only one channel
protein of one type can open. It is used when there is negligible probability of
more than one channel being open. Experiments with single channels are often
designed to show openings of only one type of channel to only one level. Indeed,
one of the most important features of the single channel revolution of Neher and
Sakmann [133–136] is often unremarked. If an experiment records a single channel
molecule, it records a single type of molecule. One molecule can only be of one
type. Currents measured from that one molecule do not have to be “deconvolved”
into the currents of a multiplicity of channels.

The multiplicity of channels that plagued earlier recordings from membranes
was replaced with singular clarity with a single suck (i.e., the suction needed to
create the gigaseal that is the electrical key [133, 136, 137–148] to single chan-
nel recording). An old saying used to be “never do clean experiments on dirty
enzymes,” that is, be sure to purify an enzyme before you study it. Until single
channel measurements were done, almost all experiments on channels were dirty,
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that is, they almost all involved more than one channel type, and often unknown
channel types as well.

Single channel experiments are designed to study one channel protein of one
type. That is appropriate when the goal is to understand that channel protein. That
is the goal of much of molecular biophysics.

But channel proteins function in physiological systems made of many types of
proteins. In those systems many types of channels are present that interact to make
the system function. Physiology as a profession tried to link these scales for several
centuries, culminating in the successful analysis of the neuron from molecule to
membrane to cell, even to cells meters long.

The physiological tradition is not taught to most molecular biologists, however,
in my experience. Most molecular biologists need to be taught what steps are
needed to connect channels and cell function. They need to be taught the enormous
importance of intermediate scale models. No engineer would think of making an
all atom model of an amplifier. Indeed, most engineers would not make a model of
the physical layout of an amplifier. Many would avoid the complete circuit of the
amplifier. They would rather use the simplest equivalent circuit that illustrated the
properties they needed to know. Classical physiologists used the same approach
to the nerve cell. Thus, the linkage of atoms (e.g., ions), molecules (e.g., channel
proteins), cell structures (e.g., membranes), cells (e.g., nerve fibers) into a single
system is very well understood in classical neurobiology. Neurobiology has learned
to use a multiscale approach just as an engineer would, with different resolution
descriptions of ions, channels, membranes, axons, and nerve cells. A traditional
[149] and a modern textbook [150] illustrate this material very well, much better
than I can here.

More complex cases of more than one channel, or channel type, or of many
superposed channel openings—repeated openings of the same channel molecule,
or overlapping openings of several different channel molecules—can be handled in
theory by multiple convolutions. This is straightforward when individual openings
are independent and uncorrelated [136, 151] Openings of different channel proteins
are likely to be uncorrelated if the proteins are widely separated. On the other
hand, multiple openings of the same channel molecule are likely to be correlated.
Nearby channel proteins that interact “directly” will have correlated openings, by
definition. In these cases, theoretical methods must include every way a channel can
open, for example, by using enough nested convolutions to describe all interactions
that can open a channel.

Equation (1) has an explicit separation of scales that is important in its use. If
the timescales are not widely separated, the distinctions I am about to make do not
hold, and a more elaborate analysis is needed, and it is likely to be different for
each type of channel and each situation.

The timescale (seconds) indicated in parentheses in Eq. (1) means that the num-
ber of channels available for current is typically constant on a timescale shorter
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than seconds. Regulatory and metabolic processes can change the number on the
timescale of minutes, and (mechanistically obscure) processes labeled “slow in-
activation” can change the number of available channels on the timescale of (say)
seconds. The longer timescales are thought to reflect the construction of the channel
and the regulation of its biochemical state by covalent bond changes like phospho-
rylation [152]. Those timescales are supposed to be captured by the N variable in
Eq. (1) although that description is obviously an oversimplification. The inactiva-
tion, regulatory, and metabolic processes might change. Description by a constant
N would be misleading in that case. The properties of N need to be checked by
experiment in each case.

In Eq. (1) each channel protein conducts a current of i (�s) amps, where the
(�s) indicates that this current reaches steady state in less than a microsecond
[153, 154]. The current through a single channel in Eq. (1) follows a rectangular
time course. The current (in the mean, averaging out noise, by averaging over an
ensemble of measurements) is zero for a stochastic time after a voltage change (or
other perturbation) is applied. The current then suddenly switches to a new level,
the open channel current. The new level is maintained without drift or internal
correlations (once noise is averaged out [139, 140, 144, 155–159]) for a stochastic
duration, and then the channel suddenly closes, usually to the same zero level it
opened from. The channel may reopen. If it does, the channel will suddenly open
to the same level, within measurement error. Figures 3 and 4 show some classical
sudden openings of single channels and illustrate the difference between gating
and permeation.

E. Opening Time Course of Channels

Everyone wants to know how fast a channel opens. The time course of a single
channel opening has been studied by Miodownik-Aisenberg [153] and indepen-
dently by Tang et al. [154]. Neither group chose to publish a full length paper
(personal communication) because their results were so complex. On a timescale
in which a single channel opening could be resolved (say 100 ns), an enormous
range of behaviors was seen, that could not be easily summarized by either group.
Some openings were sudden, some were very gradual, some were gradual and
then sudden. It was not even possible to define a clear 10–90% risetime. What is
possible is to say that after a few microseconds, this complex opening behavior
seems to have no further effect on the current through an open single channel. We
do not know what questions to ask of the opening of the channel. We do know what
to ask of the open channel. So we study the open channel from now on, and ignore
the opening process. It is important for scientists not to ask questions they know
they cannot answer, particularly if they do not even know what question to ask.

What is relevant is the current through the open single channel. The open
channel current is independent of the duration of opening or the latency, within
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Figure 3. Typical “raw” recording of current through a single channel. The left-hand panel
shows a plot of current versus time recorded by Dr. Ramos-Franco from a single channel calcium release
channel, of the insoitol tris-phosphate receptor with a sampling rate of 20 k samples per second, through
a 1 kHz low pass filter. I am grateful for her permission to show these results. Under the conditions
shown, the channel is closed most of the time, opening suddenly from a level of nearly zero, to a
level of approximately 9 pA. The openings occur at stochastic intervals, and have stochastic durations.
Successive records are not identical, but are reproducibly distributed around a mean value. The right-
hand panel shows that the amplitude of the open (single) channel current is independent of duration.
This is a general property of single channel recordings and is nearly their “operational definition.” The
text argues that the amplitude can be independent of duration only if the “structure” of the channel does
not change significantly: if the structure changed by even 0.1 Å, the current would change because the
charges of the protein are so close to the ions in the channel. Indeed, the probably are mixed with them
in an ionic and “electric stew” (references in text). The word “structure” means the average location
of atoms, averaged over the duration of a few sampling intervals, here say 2 × 50 = 100 �s.

experimental error. Channels open and close stochastically, all to the same level,
if no perturbation is applied. The duration of opening is stochastic, usually expo-
nentially distributed, often distributed as the sum of a few exponentials [161–163].
The fraction of time the channel is open is a reflection of the gating process that
opens the channel, widely assumed to be a change in conformation of the protein,
although the relevant conformation in general is that of the (electrochemical) po-
tential profile along the channel and not the anatomical shape of the channel protein
[103, 104, 114, 164, 165].

The current through the open channel is a reflection of the permeation and se-
lectivity processes in channels and corresponds more or less to the “instantaneous
current–voltage relation” postulated by Hodgkin and Huxley [160, 166–170].
Permeation through channels occurs by electrodiffusion in a structure of fixed
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Figure 4. Gating, permeation, and selectivity. The figure shows a typical single channel record
(upper left, amplitudes are typically 10 pA, durations typically 10 ms). The histograms show the
distribution of amplitudes (on the right-hand side) and durations (on the left-hand side) in log and
linear plots. Selectivity properties of channels measure the current flow or binding in the open channel.
They are properties of the amplitude of the open single channel current. Gating properties are produced
by different mechanisms, with different structures, pharmacology, voltage, and time dependence. Most
of this review is about selectivity. Not enough is yet known to make physical models of gating.

dimensions (on the 10 �s and slower timescale, see Figs. 3 and 4). Flexibility seen
in simulations is on a much faster timescale [171–174].

Selectivity is produced by physical forces that depend on the ion charge and
size and chemical interactions with parts of the channel protein that form what is
called “the selectivity filter” [175–189]. Those chemical interactions can arise from
physical interactions of ions with side chains of the protein, physical interactions
with the permanent electrical charges in the protein, physical interactions with the
induced polarization (i.e., dielectric) charge on the protein, chemical interactions
involving changes in the distribution of charge within the molecular and atomic
orbitals of the protein. (If the changes in distribution of charge in the orbitals
are proportional to the local electric field, the change in charge is identified as
the induced polarization charge of a dielectric. If they are not proportional, I call
them “chemical.”) In any case, those interactions do not vary significantly on the
timescale of 10 �s or longer if they did, the single channel current level would not
be “constant” independent of duration of opening, or time after an opening.

It is important to realize the sensitivity of this argument. Changes in (aver-
age) open channel current of 5% are easily detected, since the (averaged) signal-
to-noise ratio of single channel measurements is often >40. Charged groups in
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the protein (whether partial charges in a carbonyl or full charges in a carboxylate)
are within an angstrom of permeating ions. The change in the electric field from
Coulomb’s law is large if these groups move. The electric force has an exponential
effect on current flow. Thus, tiny changes of structure (<0.5 Å) would have an
easily measured effect on open channel current, if the structural change lasts long
enough, longer than (say) 10 �s.

Sigworth’s equation is applied to cases in which the electrical potential across all
the channels is the same, as in voltage clamp experiments. Sigworth’s equation is
not applied to nerve or muscle cells when they are carrying action potential signals
because the voltage is then changing. The potential in voltage clamp experiments
(but not in real cells) is usually controlled in steps that change from one value to
another at one time or another (in the tradition of Hodgkin et al. [166,168]). The
chemical potential (e.g., the concentration of ions) on each side of the channel is
assumed not to change significantly with current flow or time in the classical tradi-
tion, although significant exceptions to this rule are common and indeed inevitable
in important cases like calcium channels, where the concentration of one of the
permeating ions is very low on one side of the channel or the other. Experiments
and theory should always be wary of the assumption of “constant” concentration
(independent of time and current amplitude) because it is an approximation that
cannot be generally true [190].

Classical voltage clamp analysis makes the tacit assumption that all important
properties of channels can be investigated by steps in potential. This is obviously
not true in general, since a channel property that depended on the time derivative
of potential would not be well studied by a voltage clamp command potential that
was a step function in time. A step function has time derivative that is zero, or
±∞, and so it does not explore the range of dependence on the time derivative
of potential, at all. This fact was taught me by Cole and coworkers [191, 192]
as he learned and questioned traditional electrophysiology. The inadequacies of
step functions were in fact well known to the founders of electrophysiology as I
found out when I asked Prof. Hodgkin, “Why do you think voltage steps allow a
complete analysis?” (around 1972 in a personal communication), and the answer
to my question was that he did not, and never had thought that responses to voltage
steps was enough to analyze any system. He had understood the need to analyze
the response to a continuous voltage waveform, not just discontinuous steps. He
actually had dealt with timing varying voltage early on (in Fig. 10 of Ref. [160]).
He chided me that I had not read his papers as carefully as I should have if I
had missed the importance of that experiment. Indeed, Hodgkin and Huxley both
made clear to me in repeated personal communications that this issue was a main
motivation for their calculations—by hand! without even a calculator that could
multiply—of the action potential itself. Huxley and Hodgkin showed they could
reconstruct a full waveform [170] of an action potential using data taken only
from step functions of voltage, using an intermediate scale theory that described
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the flow of current in transmission lines, submarine cables, and long cylindrical
cells, called cable theory [149, 150, 193, 194].

We return from history to the modern study of single channels. In the idealized
case, the individual channel behaves very much like a pore with a gate. The pore
conducts current carried by ions, with a diameter about half that of the pore. The
flow is controlled by a gating process that turns the current through the pore on
and off but does not otherwise affect that current. At least this is the classical view,
and a most useful initial approximation.

F. Open Probability

The probability that a single channel opens varies on a millisecond timescale and
so is written as p(ms) in our version of Sigworth’s equation (1). This p(ms) is
the probability of any one of the N channels opening. It is not the probability of a
particular channel opening. If one wishes to write the probability of any channel
opening as a functional of the properties of one channel opening, one must deal with
the variable latency and duration of individual (i.e., one channel) openings. One
must perform multiple nested convolutions, being sure to include the possibility of
multiple openings, of the same or of different channels, and durations that depend
on the number of openings, as well as the duration of previous openings, and so
on. The convolutions must sum all the possible openings one would see if one
made a very large number of measurements of the response of a single channel
protein to repeated steps of voltage in a voltage/patch clamp experiment. One
must be sure to include all the N channels that can conduct current. Usually those
channels are assumed to open independently (if the voltage is maintained constant),
but such is not expected to be the case if the concentration change produced by
channel openings correlates their properties, or if the channels interact through
their internal charge movements (i.e., through electric fields within the protein and
membrane), or by mechanical interaction, or by mysterious allosteric forces of
unspecified physical origin.

G. Relation to Nerve Function

We turn now to the properties of ensembles of currents in one important case,
the action potential of nerve fibers, the natural activity of nerve axons, which are
the “wires” that conduct signals long distances in the nervous system. This detour
from physical chemistry seems necessary to lend biological and medical reality to
our discussion.

The electrical currents flowing in voltage clamp experiments are related to
the natural activity of nerve fibers in a complex way that is in danger of being
forgotten when channels are studied in the voltage clamp tradition on the atomic
scale of molecular and cell biology, and of molecular dynamics simulations. Thus,
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I include the following description of textbook material [149, 150] meant mostly
for physical scientists new to channel research.

Channel proteins are typically some 10 nm in diameter, while the pores through
which ions move are typically 0.6–1 nm in diameter. Channel proteins are typically
(but not always: important exceptions include the node of Ranvier and parts of the
endoplasmic and sarcoplasmic reticulum) separated by substantial amounts of lipid
membrane. Channel proteins are thought to be built to operate independently so it
is natural to assume no interactions between channel proteins if they are all held
subject to the same electrical and chemical potential gradients in a voltage clamp
experiment. Many channel proteins are modulated by nearby proteins however,
that themselves are not channels, for example, the neurologically important GABA
receptor complex [195].

Channels are not independent when functioning in a natural unconstrained way.
Most channels are independent in a voltage clamp experimental apparatus but not in
nature in their natural setting in cell and organelle membranes. When experiments
are done without voltage clamp, the responses to stimuli and drugs are complex,
obviously not just the sums of components, in many cases. When experiments are
done with a voltage (and “space”) clamp system, responses to stimuli are much
simpler, often just the sums of components [167, 168].

Channels in nerve cells interact with each other strongly through the electric
field generated in part by the current through the channel. Channels control the
electric field by regulating the current flow through the membrane. The current flow
through the membrane in turn changes the potential. In the classical case of the
voltage clamped squid axon, channels interact only through the electric field cre-
ated by their current because the currents flow only for a few milliseconds. Even in
squid axons, however, current flow of potassium over somewhat longer timescales
than initially studied [160, 166] produces significant concentration changes that
produce interactions of channels [196]. The accumulation of potassium after a
series of action potentials in fact may be of crucial importance in a number of
biological functions (memory) and medical disorders (epilepsy) [197, 198].

Confusion can be easy here if the experimental situation is not precisely de-
scribed. The movement of current through a single channel rarely if ever is large
enough to change the concentration of ions significantly, unless the concentration
on one side of the channel is very very small (as with Ca2+ ions [199]). But the
movement of current through a macroscopic number of the same channel may
change the concentration quite significantly. (One must never forget that the con-
centration of messenger molecules like Ca2+ is in fact very very small, e.g., 10−7

M. Thus, calculations of Ca2+ flows must not assume that the intracellular con-
centration of Ca2+ is constant, or independent of current flow or experimental
conditions. The same is the case for calculations of other messenger molecules.)

Biophysicists, like traditional electrochemists, go to some length to separate
the properties of channels (that they are interested in) from properties of the
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surrounding solutions that seem (traditionally) to be uninteresting. Thus, they
work hard to remove the effects of gradients of electrical potential outside the
channel in the baths (by “series resistance compensation,” starting with [160] and
then developing into a substantial literature [200, 201]) and to remove the effects
of gradients of chemical potential (i.e., concentration) in the baths, by judicious
restriction of timescales, choice of ionic solutions, and even selection of experi-
mental records. “Concentration polarization”—as such effects were once quaintly
called—are particularly difficult to deal with because they necessarily involve
water flow and convection (at least in general and probably nearly always). The
rotating disk electrode method of electrochemistry [202–205] was developed to
control such effects by establishing a known and controllable convection field that
dominates the spatial distribution of concentration. Biologists seem not yet to have
used rotating disks or other methods to establish convection gradients and con-
trol concentrations outside channels, membranes, or cells. Such methods might
be particularly helpful in studying water and solution flow, which are plagued by
controversy, perhaps arising from their sensitivity to bath conditions. It is interest-
ing to note that controversy decreased dramatically in the fields of polarography
and electrodics (i.e., electrochemistry involving chemical reactions at electrodes)
once the rotating disk electrode was introduced.

Time dependent concentrations involving water flow are also particularly hard
to deal with in theories or simulations. Simulations on atomic scales ignore such
flows typically because they occur on timescales so remote from the timescales
of the simulations. (Water flows take milliseconds to second; atomic motions take
femtoseconds.) Theories have difficulty knowing how to mix different types of
flow (i.e., macroscopic pressure volume flows, diffusion, and electrical migration)
and how to deal with interactions of different solutes and ions.

Recently, variational analysis has been applied to this problem [6] and progress
seems possible. Energies and dissipations of different components are combined in
the energy variational approach and Euler–Lagrange equations are then derived, as
we show later in this paper. These partial differential equations are the unique con-
sequence of the contributions of individual components. The form and parameters
of the partial differential equations are determined by algebra without additional
physical content or assumptions. The partial differential equations of mixtures
automatically combine physical properties of individual (unmixed) components
without arbitrary parameters. It will be interesting to see how far this approach is
able to simplify the formidably complex descriptions [206–208] of water flow in
complex ionic solutions with many components.

III. ACTION POTENTIAL IS A COOPERATIVE PHENOMENON

One of the most important interactions of channels is the cooperative behavior that
produces the main signal of the nervous system, the action potential. The interaction
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of sodium channel opening, channel current, and potassium channel opening at one
location with the same openings at another location produces the action potential
that carries information long distances in nerve fibers [170, 209–211]. Hodgkin
proved [210, 212] (when he was an undergraduate) that the cooperative behavior
that produces propagation of the action potential is entirely electrical and does not
involve any “propagating wave” of chemical activity in the nerve membrane itself.
Hodgkin’s papers are beautiful examples, easy to read today, of what can be done
with minimal apparatus and maximal thought.

Hodgkin once told me that he had quite purposely written the papers to show
they could have been performed with apparatus available around 1900. Modern
readers of Hodgkin simply need to know that “electrotonus” is an old way of
stating, more or less, the change in membrane potential as a function of time and
distance. (Readers of the “There will always be an England” features—found in the
New Yorker magazine for many decades—need to know that Hodgkin did in fact
use an oscilloscope and not an electromechanical apparatus to record potential:
being aggressively archaic does not mean being foolish.)

Later work showed that the action potential itself, as well as its propagation, is a
passive process that does not involve the chemical interaction of different parts of
the membrane (i.e., that does not involve chemical interaction of different channel
proteins, in modern language). Channels cooperate to make an action potential
only through the electric field that the channel currents create (in the classical case
[170]). In the less classical case [213], concentration changes produced by these
currents also produce interactions. In no case are covalent bond changes or ATP
hydrolysis involved in the action potential.

Allosteric interactions between different channel proteins are not involved in
the main signaling phenomena of the nervous system, although it is certainly true
that the effect of membrane potential on the opening of a single channel might be
called allosteric. Binding proteins near ion channels can importantly modify the
properties of ion channels [195] but they are not involved in the voltage or agonist
responses of the classical sodium and acetylcholine channels of neurobiology.

A. Allosteric Mechanisms

The physics that produces allosteric interactions is not widely discussed, perhaps
because the inventors of the phrase “allosteric” thought physical mechanisms un-
interesting or unapproachable on the atomic scale.

Indeed, some scientists have avoided the atomic scale altogether. Some sug-
gested that an important allosteric interaction is produced by rigid rods [214] that
reach across an intracellular space to join two membranes. Such models seem to
me more appropriate for the macroscopic deterministic scale of laboratories than
the atomic Brownian scale of atoms.

When considering atomic or molecular scales, one must always remember that
friction dominates all motion [215, 216] because every atom reverses direction an
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enormous number of times in the shortest biological timescale (say 10 �s) as it
moves more or less at the speed of sound [217] in a system with almost no empty
space. Indeed, friction limits all motion [215, 216] to the overdamped case [218] in
condensed phases like ionic solutions. (It is important to remember that ice floats
on water, even salt water, thus showing that the density of liquid ionic solutions is
more than that of the relevant solid. Thus, the empty space in liquid ionic solutions
is less than the empty space in solid solvent. Gas-phase models of biochemical
reactions are more or less worthless, in this view, because the density of ideal gases
is nearly zero.)

My view [103, 104, 164, 165] is that local (i.e., incompletely shielded) changes
in electric field within the membrane, within a Debye length of proteins, are likely to
be involved in these long-range allosteric effects as well as conformation changes.
These local electric fields are likely to be focused by regions of low dielectric
coefficient such as found on the inside of the KcsA channel [219]. The focusing
of electric fields by dielectrics can create an enormous range of machines in the
hands of engineers [220]. It would be surprising if evolution did not do some of
what engineers do so much.

B. Conformation Changes

A macroscopic description of the forces driving conformation changes seems nec-
essary in both physical and biological models. The gap between atomic scales and
macroscopic scales seems too large to deal with in the foreseeable future, as we
discuss later in this paper.

Conformation changes and allosteric forces arise from the random motions of
atoms computed on a 10−16 s timescale in molecular dynamics but the resulting
conformation changes of channels are so slow (from 10−5 to 10 s) that comput-
ing them directly is likely to be difficult. It will be even more difficult to do the
computations, given the size of the system (involving 109 memory locations so
positions can be specified in three dimensions to 0.1% of a 1000 Å computational
box) and the ratio of timescales (1011–1017) and number densities involved. (The
number density of water is some 108× larger than the number density of intra-
cellular Ca2+.) Doing the calculations in a reliable way with known numerical
and mathematical error bounds requires calibration against known macroscopic
properties of physical systems [221, 222].

The requirement for calibration cannot be avoided in biological applications
by redefining the problem to an atomic scale. Biological function occurs on a
macroscopic time and concentration scale (even though the function is controlled
by atomic scale structures inside molecular scale proteins). Thus, the output of
calculations must be on the macroscopic scale of concentration and time with
structural inputs on the atomic scale. Calibrations of this sort will be difficult even
when the calculations can be done. It is important to note that as of now, as far
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as I know, no calibrations of biological (i.e., mixed) solutions have been made
successfully. Attempts to calibrate NaCl solutions are beginning [116–131, 223,
224] and are reasonably successful when dealing with properties of the neutral
combination NaCl, but are not so successful when dealing with cations and anions
separately. Cations go through channels and act in enzymes separately and so cal-
culations involving them must calibrate ions separately. Indeed, sodium channels
are called sodium channels and not sodium chloride channels precisely because
sodium—not sodium chloride—goes through them. Calibrations of solutions with
divalents have not been completed as far as I know. Mixtures of ions have not been
attempted, even though mixtures are invariably present and important in biologi-
cal solutions. Thus, atomic scale simulations of conformation changes in realistic
ionic conditions with calibrated results are not on the immediate horizon.

In my view, uncalibrated analysis is dangerous, not really part of a proper scien-
tific process. Uncalibrated analysis can go on and on, sucking resources from other
kinds of science that might lead to reproducible results and answers to questions.

In my view, multiscale analysis is needed in which parts of the problem are
handled on atomic scale and parts on macroscopic scale. The coupling of scales is
part of the model in any multiscale analysis. Multiscale analysis requires treatment
of reduced models, and the interactions of reduced models. What is important is
that the reduced models can be checked against experiments in a range of condi-
tions relevant to their use. In my view, physical chemistry can be of enormous help
in dealing with biological problems if it addresses multiscale problems explic-
itly and insists that structural biologists and simulators deal with the macroscopic
reality of ionic solutions. Studying individual trajectories, whether imagined or
calculated, does not deal with the macroscopic reality of trajectories and ionic
interactions. Trajectories and ionic interactions are incredibly complex, involv-
ing a more than astronomical number of terms if all ions are coupled by the
electric field.

The models of structural biologists and molecular dynamics must produce re-
sults comparable with experiments if they are to be compared to experiments.
Graphs must have the same variables whether they come from experiment or the-
ory. To replace graphs with verbal discussions, or individual trajectories, is to
replace science with metaphor. However beautiful, metaphors are not helpful in
actually building machines and devices. They are hardly likely to be more helpful
in understanding and building biological machines and devices. There is no engi-
neering without numbers; there should be little molecular biology or biophysics
without numbers, for the same reasons.

One of the most important targets of multiscale analysis should be the con-
formation changes of proteins. These occur on timescales from femtoseconds to
seconds, and length scales from atoms to whole proteins.

Conformation changes have a physical origin, partially electrical. Identifying
conformation changes as arrows in models is only the first step in understanding
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them. Naming them as allosteric might in fact be a step away from understanding if
newcomers or structural biologists felt that the adjective “allosteric” had a specific
physical meaning. The arrows of allosteric models might seem to be disguises
for the law of mass action. Indeed, the arrows of allosteric models do become
specific statements involving the law of mass action once the rate constants of that
law are identified with physical processes. But that identification is not one of the
main topics of discussion in the usual treatments of allostery. Physical chemistry
is needed to replace the metaphor of allostery with the reality of numbers.

Later we will discuss the law of mass action and the physical origin of its
“constants.” Briefly stated, we will show that the law of mass action is usually used
in a misleading way. The law is most helpful if reactants are ideal. It is most helpful
if reactants are uncharged solutes, and rate constants are identified as a property of
unidirectional fluxes into absorbing boundaries. But reactants are often not ideal.
Indeed, reactants are present in enormous concentrations in channels and close
to active sites of enzymes where they are important. Reactants in those locations
more resemble an ionic liquid [225–229] (e.g., melted NaCl) than a solution of
infinitely dilute uncharged solutes. Indeed, ions in solution always come “in pairs”
(more precisely in groups of anions and cations that are exactly balanced in charge
so the systems are neutral taken as a whole). Ions come in pairs because anions
and cations interact so strongly. Anions and cations cannot be independent solutes
and also form solutions that are exactly electrically neutral. Ionic solutions are
electrically neutral because their ions interact. If the reactants in the law of mass
action are not ideal, the rate constants must be variables, and rather strongly varying
variables at that. In fact, the variables often change exponentially with potential
[230–235]. The law of mass action with constant rate constants seems a poor initial
guess at a transport law for ions in multimolar concentrations near active sites or
in channels.

The forces that drive conformation changes (and determine the rate constants
of models of conformation change) are not known, but are likely to be electrical
and mechanical arising from excluded volume of ions and side chains [176]. The
forces driving conformation changes are closely related to the mechanical forces
in classical Donnan systems [184, 236] that produce osmotic pressure.

C. Cooperative Behavior Produced by Current Flow

In this multiscale spirit, we change perspective (and scales) now from intermolec-
ular forces (femtoseconds and 0.1 Å) back to the cooperative behavior of channel
proteins in a normal nerve signal (0.1–10 ms and 100 Å to 1 cm). We present in
more detail a specific biological system that extends across scales from atomic to
macroscopic and is well understood. The issues that arise need to be considered in
general. They are likely to arise whenever physical analysis is applied to biological
systems.
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The ionic current that flows through channels in an action potential flows down
the length of the fiber a long distance (think mm in myelinated nerve fibers of ver-
tebrates and cm in squid nerves) to a neighboring region. This longitudinal current
(that happens to be conducted by different ions from those that cross the membrane
to make the action potential at the original location) changes the potential in that
neighboring region. That change in potential changes the probability of a channel
being open quite dramatically, which in turn produces an action potential in this
new region, and the process continues down the nerve fiber, creating a propagating
action potential. The process is rather like that in an underwater cable with repeater
stations some distance apart that restore a digital signal to its original specification.

IV. COMPUTATION OF THE ACTION POTENTIAL

A complete mathematical theory of the propagating action potential has been avail-
able for a long time [9, 237–239]. Measurements of channel currents in voltage
clamped axons allow computation of the propagating action potentials [170] with-
out the introduction of any new physics. Thus, a complete mathematical theory
of a major biological function is possible and was essentially complete (although
without molecular explanation) in 1952. Molecular explanation followed in the
work of many channologists [9, 237–239], culminating in the single channel mea-
surements [136] and Nobel Prizes to Sakmann and Neher with structural insight
provided later by Mackinnon [240–242]. A complete mathematical theory of a
major biological function starting from atoms and finishing with nerves of the
length of a giraffe leg has been available for several decades. Sadly, we do not
have room here (or time in our lives) to write a full description of this remarkable
accomplishment of physiologists and biophysicists. Good accounts can be found
in Refs [8, 9, 149, 150, 209, 243, 244].

In thinking of this theory of channels and their function, it is important to re-
member the distinctions between experiments and natural behavior, so the single
channel molecular biophysics of one protein [9, 136] is not confused with the
physiology of conductance and gating [209, 245] of billions of channels. Experi-
ments are designed—or anyway, should be designed—to remove as much of the
complexity of nature as possible so they can reveal mechanism. Experiments like
the voltage clamp were designed to simplify the complex process of the action
potential and its propagation. In mathematical language, experiments should be
designed to remove as much of the ill-posedness of inverse problems as possible.

In particular, voltage clamp experiments are designed to remove correlations
arising from macroscopic properties of current flow in nerve and muscle fibers.
Voltage clamp experiments are designed to remove the (electrically produced) co-
operativity that makes the action potential a propagating all-or-none phenomenon.
Electrically produced correlations are removed by “short circuiting” both the
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spatial and temporal dependence of the natural propagating action potential. The
spatial dependence is removed (“short circuited by a space clamp,” in lab jargon)
by inserting a wire down a cylindrical nerve fiber. The wire keeps the potential
at all locations (hopefully) the same at all times [246–249]. The spatial depen-
dence can be removed by studying spherical cells that do not allow propagation
[250, 251].

The temporal variation of electrical potential is prevented by electronic circuitry
and the experimental setup, the voltage clamp apparatus, see Ref. [252] for history,
and Ref. [136] for recent implementation in “whole cell clamp.” A variation called
the patch clamp is used if the system includes only one or two channels [136,
138–140, 142–144, 149, 156, 253].

A. Changes in Ion Concentration

The voltage clamp experimental apparatus is designed to isolate single types of
channels or individual channel molecules so they can be studied independently,
as we have just discussed. In nature, channels interact by passing current that
changes the electrical potential across the membrane of the cell and the thus across
neighboring channels. The current through the channels is carried by one type of
ion depending on the selectivity of the channels. The current inside the cell is
carried by a different type of ion depending on the types of ions inside the cell.
The potential inside the cell changes the potential across the cell membrane and is
usually nearly equal to the membrane potential (see Refs [191, 250, 251, 254] for
an experimentally important exception). The experimental apparatus is designed
to prevent this natural interaction so the underlying mechanisms can be isolated
and studied. The apparatus does this by controlling electrical potential with an
electronic feedback apparatus (and a system of four electrodes to link amplifiers
with ion currents) that prevents the natural interactions between channels.

In nature, channels may also interact by changing the concentration of ions
near channels (called accumulation or depletion, or “concentration polarization”
in the older literature). Such effects are particularly important in calcium channels,
because the calcium concentrations inside cells (on the intracellular side of the
channel protein) are small [Ca2+]in ∼= 1 × 10−7 M compared to the intracel-
lular concentrations of potassium [K+]in ∼= 3 × 10−1 M or sodium [Na+]in ∼=
3 × 10−2 M. The amount of charge actually carried through a channel is of-
ten set functionally by the capacitance of the nearby cell membrane (typically
0.8 �F cm−2), producing a capacitance of some 63 pF for the 7.85 × 10−5 cm2 of
membrane in spherical or cylindrical cell of diameter 5 × 10−3 cm with typical
electrical properties.

An important function of current through the channel is to change the voltage
by a given amount. The concentration of ions near the channel must also change,
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when current flows through the channel. Electrical forces are much stronger than
chemical forces (see the first paragraphs of Feynman et al. [255]) so, in some vague
sense, we expect the charge carried by current to be more important than the mass,
that is, change in concentration, produced by the ions that carry the current.

The importance of charge versus concentration depends on the concentration
of ions present before the charge moves. If the electrical charge and current are
carried by sodium or potassium ions through the membrane, the concentration of
ions is changed by a much smaller fraction than if the current is carried by calcium,
because there is so much less calcium present to begin with inside cells. Calcium
concentration inside cells can be easily changed by calcium current through chan-
nels while potassium and sodium concentration cannot because there is so little
calcium inside cells (some 10−7 M Ca2+ versus 10−2 M Na+ or K+). In chemical
and biological language, calcium is hardly buffered by the “background” con-
centration inside cells but sodium and potassium ions are buffered, because the
concentration of sodium and potassium inside cells is so much higher than cal-
cium [190, 196, 256]. (The reader should be warned not to think of this buffering
process as simply as this. Elaborate subcellular machinery is present to control
these concentrations and that machinery involves transporters that use chemical
energy to control concentrations.) A given amount of current (i.e., charge) passing
through a channel changes the concentration of any ion (with the same valence)
carrying the charge by the same amount. The relative importance of this change in
concentration depends on the background concentration (before the current flow).
If the concentration is high, like K+ inside a cell, the relative effect of the inward
charge movement is small. If the concentration is tiny, like Ca2+ inside a cell, the
relative effect of the inward charge movement is large.

Changes in calcium concentration inside cells are often used by biological sys-
tems as signals (“messengers”) of channel activity for this reason. In a similar,
but less dramatic way, changes in potassium concentration outside cells can be
used by biological systems as signals of channel activity. The background resting
potassium concentration outside cells is typically [K+]out ∼= 2 × 10−3 M compa-
rable to the calcium concentration outside cells, but much less than the sodium
concentration there. Of course, the concentrations of ions inside and outside cells
are also regulated by diffusion and convection and “active” properties of nearby
biological structures designed to control concentration.

The sketchy calculations made in the last paragraphs are only a motivational
starting point for serious work. Models of the flow of ions through channels need
to be coupled to models of the flow of ions inside cells and to descriptions of the
active systems that help control these ions. An elaborate mixture of biophysics,
structural biology, physical chemistry and mathematics is needed to describe and
understand these processes. They are much harder to deal with than the selectivity
issues I focus on later in this paper.
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B. Gating Processes

This chapter does not deal further with the gating process that opens channels
because simulations of gating are not quite in our grasp and the physical basis of
gating has not yet been described by reduced models. (Historical note: despite their
numbers, models based on arrows [9, 257, 258] instead of physics have not proven
useful and make little connection to the physical properties of channel properties
or ions. A British physiologist, who in fact had written a number of arrow models,
once told me “You can tell how much is known by how few papers are written on
a subject. When it is understood, little more needs to be said.” He was referring to
his early work on the (mesoscopic scale) sliding filament “hypothesis” [259–261]
not to his own later arrow models on the atomic scale.)

Some of the many states postulated by arrow-based gating models are likely
to exist in a well-defined sense, even if most of them cannot be unambiguously
identified or measured, but the problem is that the traditional arrow models of
biochemistry, biophysics, and channology (compare [9, 257, 262] and [209, 245])
do not let you know which states are significant and which are not. It seems unlikely
that enough data could possibly be measured to determine the arrangement of the
arrows in the models containing tens or even hundreds of reactions. Indeed, the
amount of information needed is much larger than the number of rate constants
themselves, because rate constants vary with conditions and cannot be constants. It
seems likely that deviations from expected behavior would always be explained [9,
263] not by questioning the models themselves, but by invoking still more states and
rate constants that could themselves be measured only with great difficulty. This
process seems unlikely to be an efficient way to understand how channels work,
particularly given that the underlying models themselves are not appropriate, at
least in my view [103, 104, 164, 165, 264–266].

I believe one needs a physical model that shows specifically how proteins move
from state to state, under what forces, and with what dependence on electrical and
chemical potentials, physical properties of the channel protein, and so on, if one is
to make progress. One needs a physical model that shows how the conformation
changes of the channel protein reveal themselves as an ionic conductance or as the
nonlinear capacitive current called gating current [267–280]. Physical analysis of
gating in this spirit is beginning [278,281–283] but it is not mature enough for me
to review.

Direct atomic simulations would be another path to understanding gating. The
conformation and charge storage processes involved in gating and gating current
are too slow (from 10−5 to 10 s) to easily simulate in simulations of the molecular
dynamics of all atoms (that occur on a 10−16 s timescale). Reduced models are
not yet available to deal convincingly with protein conformation changes. We look
forward to the successful simulation and analysis of gating in the next few years,
as the exponential progress of Moore’s law [284–286] provides tools for the actual
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calibration and checking of simulations in atomic detail as well as simulations of
long enough duration.

C. Selectivity and Permeation

Physical models of selectivity and permeation are easier to construct than physical
models of gating because the structure of the open channel that produces selec-
tivity and permeation does not change on the biological timescale > 10 �s. It is
important to realize that ions in channels are often next to the charged atoms of
the channel protein. (Remember many atoms of proteins have significant partial
charges—that is, are polar—even if they are not ionized acids or bases. Something
like half of the atoms in molecular dynamics programs have significant charge,
i.e., more than 0.1 proton charges.) Coulombic and excluded volume forces are
immense on this scale. Even a small change in the separation of such atoms that
lasted more than 10 �s would produce a large change in the forces on the perme-
ating ion (e.g., on the electrical and on the chemical potential) that in turn would
change the current observed to flow through the channel. The resolution of single
channel measurements is great [136, 287], and changes of 5% (that would occur,
for example, from a 2% change in diameter in a macroscopic system) are easily
seen because signal to noise ratios are >40. Random changes in current are in fact
seen in experiments and complex, more deterministic phenomena such as subcon-
ductance states [136, 288], but the classical approximation is a good first step to
understanding the important features of reality. The conductance of a single open
channel is (nearly) constant unchanging in the mean on a scale that can resolve
at least 5% changes in amplitude, no matter what the duration of the opening,
showing no correlation with the time from the channel opening.

The open channel behaves as if it has a single structure that hardly changes
on the biological timescale. Selectivity and permeation can then be analyzed with
reduced models that do not involve conformation changes of the protein slower
than some 10 �s. Of course, how to construct such models is another question
altogether, and it may even be the case that no useful reduced models can be built,
and all atom simulations are needed to understand the physics of permeation and
selectivity in some channels.

D. Physiological Models of Permeation and Selectivity

Physiologists [9] continue to use state models of permeation (as they have for a
long time [257, 262, 289–291]) that assume specific states of ions in channels and
simple rate models for the transition between these states, although the traditional
use of these rate models has long been attacked [265, 292–294] and discredited in
the biological [103, 104, 164, 165, 177, 218, 264, 295–299] and physical [231, 232]
literature (see Appendix A). (Refs [165,264,299] summarize the main criticisms.
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Ref. [292] shows simulations designed to reveal the diffusive nature of ionic motion
through channels, compare Ref. [300]. Refs [175–177, 180, 181, 301] show the
success of diffusion-based models.)

E. Rate Models have their Place

Rate models (see Appendix A) are useful when

1. the energy profiles and landscapes that define the states are well defined;

2. states are well defined and separated by large barriers [302], as discussed
in the next paragraphs, and the number of states is not increased arbitrarily
[263] whenever new conditions are studied;

3. transitions between states in fact follow well-defined one-dimensional paths
independent of conditions;

4. physically appropriate equations describe motion along those paths;,

5. fluxes predicted by the models are comparable to experiments.

It is important to realize that these prerequisites/assumptions are not easily or
automatically satisfied. We consider them one by one.

1. Energy Profiles are Well Defined

It is difficult to define energy profiles well and specifically. The potential profiles
and landscapes must describe free energy, and specify how they deal with the en-
tropy production and dissipation that inevitably occur [303] when atoms move in a
condensed phase without empty space, like solutions [99] or proteins or channels.
(Any simulation of molecular dynamics shows that proteins and channels, like so-
lutions, have no empty space on timescales of nanoseconds, let alone the biological
timescale >10 �s.) Does the potential profile include entropy? How does it deal
with entropy production that always accompanies flow? Does potential profile use
the dissipation principle [273] of Rayleigh [304] (Eq. 26) and Onsager [305, 306]
to compute entropy production? A well-defined theory using energy profiles has
clear answers to these questions.

Ion channels are open systems in which matter, charge, and energy cross bound-
aries. Rate models need to deal with potential profiles in these open systems.
How is potential described in these open systems? Open systems always involve
boundaries and electrodes to maintain and supply concentrations and electrical
and chemical potentials. How are the boundary conditions involved in the com-
putation of the electrical potential, or the potential of mean force used in these
models or in the energy landscape in general? Indeed, is it meaningful to define
a single energy for a channel system as is classically done, given that the profile
of concentration, electrical, and chemical potential within a channel must depend
on the concentrations of ions (because of screening [307] as reflected in the sum
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rules [308, 309] of equilibrium statistical mechanics)? These profiles depend sen-
sitively on the same variables that determine biological function [176–179, 310],
including the electrical potential across the channel, the charge distribution and
structure of the channel protein itself, and concentration of controlling ions (like
Ca2+, hormones, and second messengers). Crudely speaking, “potentials of mean
force,” like biological function, must be expected to vary with a host of significant
parameters. The rate constants of reaction models must then also vary with these
parameters, often exponentially.

A single potential of mean force or energy landscape cannot capture even the
main properties of channels or proteins for these reasons [311, 312]. The classical
constant field [9, 313, 314] model is unlikely to describe the field corresponding
to anything that actually determines biological function or current flow through
channels, no matter how widely it is taught or used. Constant field models [315]
made the understanding of semiconductor rectifiers much harder [316,317], and (in
my imagination of historical events [318]) prevented their authors from inventing
transistors. Constant field models have had nearly as serious an effect on the study
of ion channels, I fear.

A model that imposes a single unchanging energy landscape on a system, even
if conditions change, can do so only by injecting energy, charge, and or matter into
the system. If the model did not inject energy, charge, or matter, the chemical or
electrical potential would change. A model of this sort must not be used to describe
a system that does not in fact have access to energy.

If the system does not have access to energy, charge, or matter, the energy
landscape must change when conditions change. Thus, describing a protein or
channel as an unchanging energy landscape [218, 293, 311, 319, 320] is likely
to seriously misrepresent [103, 104, 165, 178, 179, 321–323] the system. After
all, most systems, and almost all channels have no access to sources of energy,
charge, or matter as was established long ago [324] in the history of ion channels
[209, 245, 252, 325].

This misuse of energy landscapes and constant field theory is an important
example of the “Dirichlet disaster” that undermines the law of mass action and the
usual treatment of Brownian motion [266] that we will discuss later in this paper.
These disasters are automatically avoided by a variational approach that deals
self-consistently with all interactions of the energies and dissipations specified in
a model.

The energy variational approach [4, 326–333] we call EnVarA derives partial
differential equations from the energies and dissipations built into a model, instead
of assuming those differential equations. The differential equations are the results
of algebraic operations on the energies and dissipations and involve no physical
assumptions (beyond those built into the energies and dissipations themselves).
The equations change when different energies are involved or different conditions
are present. Extra energy cannot be inadvertently introduced into the system
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because the variational process itself constrains the energy before the partial
differential equations are derived. EnVarA does not assume an energy profile.
EnVarA produces boundary value problems in which energy can be injected as it
actually is injected in the real experimental or biological system.

2. Existence of a Large Barrier

It is not obvious that large barriers exist in channels while they conduct current.
There are real biological arguments suggesting that large barriers should not exist.
Flow through the classical voltage-activated channels of nerve fiber immediately
determines the conduction velocity of an action potential and the conduction veloc-
ity of an action potential is an important determinant of survival in most animals,
particularly an animal like a squid, one imagines. Thus, it is reasonable to assume
that ion channels are built by evolution to maximize flow, by having as small
barriers as possible.

It is interesting to note that traditional models of current flow through chan-
nels, like the Goldman–Hodgkin–Katz [9, 313, 314] constant field [315] equation,
assume no barriers, because they describe ion movement through channels as elec-
trodiffusion through an uncharged system without barriers, much like the (electri-
cally neutral) salt water in a macroscopic pipe, or more precisely like a solution
of KCl in a pipe (KCl cannot support substantial diffusion potentials because the
diffusion coefficient of K+ and Cl− are nearly the same). It is surprising that so
much of the channel literature simultaneously uses constant field equations that
assume no barriers and rate models of selectivity and permeation that assume large
barriers, following standard texts [9].

3. Assumption of a Single Path

A single reaction path, independent of conditions, cannot usually be assumed
as discussed in Refs [334–336]. Even two-dimensional reaction surfaces have
anisotropic behaviors that cannot be described as a simple single invariant reac-
tion path. This fact undermines [335–337] one-dimensional models of chemical
reactions and rate models of ion permeation [218, 230, 234, 235, 312, 338–342].

The failure of the idea of a single path is easy to understand. In a high dimen-
sional space, like that of a chemical reaction, which may involve 1020 coordinates,
it is much harder to define an optimal path uniquely than it is to define an optimal
path when walking through a three-dimensional mountain range. (Even that task is
hard in three dimensions. Only one-dimensional paths are easy to define uniquely
in my experience.) This difficulty arises in the mathematical treatment of steep-
est descent in even the simplest textbook cases of one or two dimensions (see p.
265 of Ref. [343]). Crudely speaking, error terms in steepest descent treatments
appear inside integrals and so the full integration must be done before one can
be sure of the size of the total (integrated) error. The error can be very different
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in apparently similar expressions. A term that is small inside the integral—in the
integrand—may have a large effect once the integral is performed. Singularities
in the integrand must be studied in detail in each specific case to evaluate the size
of the total integrated error. This mathematical reality defeats general treatments
based on steepest descent methods in chemical reactions [257, 290, 291, 338]. To
put it baldly, a mathematical derivation of a reaction path that does not deal with
the specific properties of a system is not possible.

In fact, the singular nature of reaction paths is apparent in direct calculations
of ions moving through a bacterial protein porin [111, 344]. Different ions follow
different paths. The idea of a single path fails (“is singular” in mathspeak) because
anions and cations follow different paths. The electric field perpendicular to the
path of the ions (i.e., parallel to the plane of the membrane) is large because the
permanent charges on one side of the channel are acid (negative) and on the other
side are basic (positive) [105–108, 110–112, 344–348].

These calculations show that a single potential of mean force cannot describe
the movement of ions through a channel. The path depends on the charge of the ion,
and presumably (judging from other work) on its diameter, chemical interactions
with the channel protein, concentration, and electrical and chemical potentials on
both sides of the channel. It is not clear that much is gained by introducing the idea
of a potential of mean force or pathway for current flow. It may be just as easy to
compute the current flow itself.

In any case, one must calculate the current flow separately for each type of ion
under each set of conditions and not presume that they all follow the same reaction
path. A complete treatment shows that different ions follow different paths and
these paths depend on the charge and concentration of the ions. They are expected
to vary with the transmembrane potential, temperature, and so on.

4. Motion Along the Reaction Path

Traditional models [9, 257, 262, 290, 291] also use an unrealistic description of
flux along a reaction path. Flux along a reaction path is diffusive, as we have
discussed previously. Flux occurs in a condensed phase without significant empty
space and so always involves friction. Flux must be treated as Kramers did [231,
232] even in idealized cases where a single path is guaranteed by assumption. The
importance of friction was clearly stated by Eyring and coworkers [235] in their
original paper on condensed phases, although it seems to have progressively [230]
been lost sight of in later years [233, 238, 258].

Rate equations of the ideal gas phase [9, 349] that ignore friction can never be
used (in my opinion) to describe the motion of ions in condensed phases under
biological conditions [103, 104, 164, 165, 264–266, 350]. Rate equations of the
gas phase assume no collisions (because ideal gases [351, 352] have vanishing
density). Condensed phases of ions in proteins always have friction and rarely
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allow potential profiles or rate constants independent of conditions. In my view,
traditional rate models do not apply.

5. Rate Equations Predict too Little Current

Rate equations that do include friction [9, 258] among their variables cannot pre-
dict anything like the currents actually observed in open channels [103, 104, 164,
165, 264, 265]. Rate models that leave out friction describe ions moving in bal-
listic trajectories, without collisions. They thus predict much larger currents than
ions that move in condensed phases. Currents predicted by rate models with fric-
tion appropriate for a condensed phase cannot exceed a few tenths of a picoamp.
Currents measured in single channels are usually tens of picoamps, often much
larger. Currents are reduced by the friction that must exist whenever ions move in
a condensed phase with little empty space.

This issue is so central to the view of channels and proteins that I will describe
the underlying situation at some length. Motions of atoms in a condensed phase
with little empty space, like a protein, cannot occur without collisions. Empty
space is a small fraction of a liquid. (Remember ice floats on water so it has much
space between atoms than water does.) Atoms move more or less at the speed of
sound [217] 1551 m s−1 or ∼1.6 nm (16 Å) every picosecond, or 1.6 mm every
microsecond (!). If the mean first passage time of an ion through a channel 1.5 nm
long is 100 ns [295]—one ion crossing a channel every 160 ns produces 1 pA of
current—the ion must travel 100,000 lengths of the channel before it first reaches
the other side. The ion travels a total distance of 0.15 mm as it moves a net distance
1.5 nm. In fact, calculations and simulations of several models [295] show that the
great majority of trajectories of ions go back and forth “innumerable” numbers of
times and almost always (but not always) wind up on the same side—the so called
“cis” side—of the channel they begin on (if the potential barrier is not negligible).
Mathematical analysis confirms [218, 353] what the simulations show: the doubly
conditioned ionic trajectories—conditioned by the location of their source and also
of their sink—that cross the channel are often a vanishingly small fraction of all
the trajectories present. These “trans” trajectories that cross the channel are the
biologically important ones. Because they are such a tiny fraction of all trajectories,
their calculation (with known error) poses special problems. These back and forth,
cis versus trans properties of trajectories in channels cannot be approximated by
rate models of the gas phase that do not include collisions at all.

The reality of diffusion and diffusive paths mean that classical rate models
of channels [9, 349, 354] do not deal with these fundamental properties of the
physics of condensed phases and proteins. It is no surprise that they have not
proven very helpful [9] in understanding how the function of proteins arises from
their structures and physical laws.
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Despite these negative words, I have been taught [2–5, 329, 355–359] that it
is possible to create a field theory of ion permeation in an open system, involv-
ing dissipation and interactions of everything with everything else, if the proper
mathematical apparatus is used, of energy variational methods EnVarA that pro-
duce boundary value problems appropriate for the energies and dissipations of the
model, and boundary conditions imposed by the experiment and biological struc-
ture [4, 326–333]. This theory is just past conception [360, 361], so its success
cannot be judged, despite the enthusiasm of its parents.

None of this discussion means that high barriers are unimportant. Whenever
distinct states exist, barriers exist that define those states. Distinct states clearly
exist in the substrates and reactants of enzymes. Distinct states clearly exist in the
gating of most types of channels. Motion over the barriers that define these states
must be computed in such cases. What is crucial is that the barrier be computed
self-consistently from the physical model, preferably with a variational approach
that guarantees self-consistency. It may in fact be possible to make elegant ap-
proximations of high barriers computed self-consistently, for example, if the high
barrier is one of permanent charge.

However, this computation is trickier than it might seem. It should be noted that
flows actually computed over high barriers are surprisingly sensitive to assumed
details of the shape of the high barriers, for example, the shape and symmetry of
even very high barriers, as we found to our surprise [295]. As in so many other
cases, actual computations show properties not present in simplified discussions.
Flow over high barriers is so sensitive to details that even when high barriers
exist, and are computed self-consistently it may be safer and wiser to compute the
flow over general shaped barriers, where incorrect assumptions are harder to make
inadvertently. Simple expressions can be derived for flux over arbitrarily shaped
barriers [see Eq. (A4)] and it is not clear why these cannot be used in general
instead of the slightly simpler classical exponential expressions.

F. Structural Models of Permeation and Selectivity

Analyses of mechanisms—including selectivity and permeation—of proteins with
newly discovered structures are found in most issues of the widely read journals
Science and Nature as well as the more specialized journals of molecular and
structural biology and biophysics. These analyses of mechanism [219] follow the
traditional practice of biochemistry textbooks and are nearly always verbal, without
quantitative specification (however, see Ref. [354] that cites Kramers [234] but
uses arbitrary rate constants and prefactors without physical discussion). These
discussions of the mechanism of protein function are entirely in words, without
reference to measurements of function, or graphs or numbers at all. Poetic license
has its place but this is not it, at least in my view.
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The mechanisms of structural biology usually depend on arbitrary choices of
impossible ionic trajectories—impossible because the trajectories never reverse
direction, unlike trajectories of real atoms that reverse so often that they travel
0.15 mm before they reach the end of a 1.5 nm channel, as we have just seen.
(Indeed, in the Brownian approximation, widely used in simulations of channel
motion [111, 218, 293–295, 323, 362–373], trajectories reverse an infinite number
of times in any finite time, no matter how small. That is a fundamental property of
the stochastic processes mathematicians call Brownian.)

The functional models of structural biology ignore the statistical reality of
atomic physics known at least since the time of Maxwell (see history in Ref.
[374]) and so are even less helpful than the arrow models of physiologists. They
resemble Kekule’s molecular dreams more than physical reality. The simulations of
molecular dynamics available now for decades [375] should have provided a visual
vaccination against the idea that ions move in smooth slightly curved paths. Roux
and coworkers [292] address the issue most directly, in contrast with MacKinnon
and coworkers [354], in the same issue of the journal Nature. Sadly, a glance at
the literature of structural biology shows essentially no “back-and-forth” paths of
ions like those that actually characterize atomic motion. Verbal models of smooth
paths are nearly always used to describe the “mechanisms” of molecular biology,
just as in biochemistry textbooks for what seems to be forever.

The reader may think that these smooth paths should be thought of as average
paths. Average paths of course can be smooth, but renaming the paths of struc-
tural models begs the question. How are the smooth paths chosen? It is not at all
clear how one should average the astronomical number of atomic motions that
determine the motion of an ion as it crosses a channel without calculation and
theory. Statistical physics and molecular simulations were in fact developed to do
that averaging. Modern simulations of ions in channels are beginning to average
trajectories successfully and this work may eventually succeed in reaching bio-
logical timescales. The other issues of scales are so large, however, that atomic
simulations of biological systems seem likely to remain out of reach for a long
time, as we discuss at length later in this chapter. The key idea is that all the gaps
of scales (see Table I, much later in the paper) must be dealt with simultaneously

TABLE I
Time, Space, and Concentration Scales

Variable Computations Biology Ratio

Time 10−16 s, vibrational modes 10−4 s, action potential 1012

Space 10−11 m, side chains 10−5 m, typical cell 106

Solute concentration − 10−11 to 5 × 10 M 5 × 1012

Volume − − 1018

Spatial resolution − − 109
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in a fully atomic simulation, because all those scales exist and are significant to
the natural function of ion channels.

Calculations of selectivity or functional properties involve much more than the
average paths, of course. They also involve the driving forces (of concentration,
electrical, and chemical potential) that send ions through these paths and the “resis-
tances” of various forms of friction that result from the motion along these paths.
The friction involves collisions, with water, ions, and atoms of the channel pro-
tein and even more importantly (I imagine) dissipative electrostatic interactions
(dielectric friction) with charged atoms of the protein, water, and solutes within a
Debye length or two of the ion itself. The average paths change with experimental
conditions and so the friction must as well.

In the real biological case, the number of atomic motions and interactions in-
volved are far larger than astronomical. The current flow through a sodium channel
during a propagating action potential depends on the electrical potential over a
distance of millimeters. All the ions in that region interact and are significant in
producing the propagation and waveform of the electrical potential. The number
of interactions of some 1019 ions is very large indeed.

Verbal descriptions do not deal with these issues at all. But the issues exist
whether or not structural biologists choose to discuss them. Statistical physics
has been developed over the centuries because words alone cannot account for the
properties of inorganic solids and liquids. Indeed, it is hard to see how verbal models
can be falsified, or verified, even in principle. They have more characteristics of
metaphor and poetry than of science and engineering.

Poetry and metaphor have important places in scientific thinking, as motivators
of the guesses that start most scientific work. But the checking that makes the
metaphorical guess into science needs to be objective and quantitative if at all
possible. Quantitative analysis addressing the known properties of atoms is needed
to deal with ions in channels. The molecular mythology of smooth reaction paths in
traditional biochemistry textbooks is not useful if we wish to compute and control
biological systems the way engineers compute and control inorganic systems. An
objective method of computing those smooth paths is needed, that includes the
ionic conditions, and boundary conditions, as well as the structure of the protein.
Engineers do not use verbal models to design or build things, any more than
building contractors do.

Verbal structures fall of their own weight unless buttressed by numbers. But
verbal structures can take a long time to fall if words are allowed to replace actual
theories that confront specific experimental data.

G. Reduced Models are the Essence of Biology and Engineering

Despite their misuse, verbal descriptions of structure and mechanism have a crucial
role, even if they cannot be the end point of analysis. Verbal descriptions and
qualitative discussions are starting points for quantitative investigation.
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Biological systems are like engineered systems. One needs a general descrip-
tion, a list of parts, and a knowledge of function (and power supplies) before
one knows how to write equations. Biological systems cannot be analyzed without
some knowledge of structure, just as engineering systems cannot be analyzed with-
out some knowledge of their structure. One must know which wires are the inputs
and outputs (and power supplies and ground wires) of amplifiers, before they can
be analyzed. But one does not need to know the full (logical) circuit diagram, let
alone the physical layout, let alone the location of all the atoms of the amplifier.
One needs enough knowledge to specify a reduced model, an input–output relation
that allows us to summarize quantitatively what we need to know to control and
improve the amplifier.

Of course, what we need to know is not unique. It depends. An engineer work-
ing for NASA needs to be concerned about power consumption of amplifiers (as
does a designer of memory or CPU chips nowadays). But for most of us power
consumption is not so important. A designer of audio amplifiers needs to worry
about distortion. How much she or he worries depends on the type of music. Folk
songs and Mozart arias are one thing; rap music is another. A designer of patch
clamp amplifiers needs to worry about input currents. But even in these cases,
reduced models are used. Only a few elements are needed to describe the input
and output impedance of amplifiers, including their input currents and even their
output slew rates. These extra elements make reduced models more complex, but
they do not involve all the circuit elements let alone all the atoms of the device. A
handful of extra elements are involved, not the astronomical numbers in molecular
dynamics, or the tens to hundreds in rate models or the uncountable number in
metaphorical treatments of smoothed trajectories.

Complete descriptions are rarely needed or wanted in biology and engineering.
The magnificent molecular architecture of proteins are cathedrals of structural
knowledge. We can admire their beauty but we do not need to know all the details
of that beauty to know what the cathedrals do, or how to enter them, and even how
to make them work. The doors and altars are often easy to find. The architecture
can be reduced to a simple plan if we have limited needs and goals. We do not
need to know everything.

Reduced models are what are needed to understand protein and channel func-
tion, in my view. The problem with the reduced rate models of physiology [376,
377] and biochemistry [257, 262, 290, 291] is not that they are reduced but that
they are based on the properties of uncharged ideal gases, which do not resemble
the properties of ions and proteins in condensed phases. The problem with the ver-
bal models of structural biology is that they do not involve numbers and equations
and so cannot deal with experiments: reduced models cannot be used unless they
involve numbers and equations.

Reduced models of proteins and channels are of great help if they start with
recognizable properties of condensed phases and then can successfully calculate
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properties that can be measured in a range of conditions. Such reduced models can
be tested and a sequence of models constructed that will allow understanding and
control of biological and engineering systems.

H. The Scientific Method and Channels

Guess a model; check it; fix it, and add more if needed. One should start by
assuming that the usual models and methods of physics and engineering can deal
with biological complexity. The usual procedures of physics and engineering can
then be employed to understand and control channels. If those procedures prove
inadequate, new principles can be introduced, special to biology, if they are specific
and quantitative, and testable.

We follow standard procedures of physical analysis here as we use reduced
physical models and try to understand the selectivity of calcium and sodium chan-
nels. We guess what physics may be involved. We derive as carefully as we can the
consequences of that guess. We check the consequences, and modify the model as
needed to improve the guess. “Guess and check” is the name of the game.

V. REDUCED MODELS OF CALCIUM AND SODIUM CHANNELS

Reduced models of channels are built in this tradition of guess and check. The
hope is that these models capture the essential physics used by biology to create
the selectivity important for biological function. The models are simple enough
so that the physics they contain can be calculated with some accuracy. They are
justified by their fit to data and by the robustness of their results: methods from
MSA [182], to SPM [184], to Monte Carlo (MC) [378, 379], to DFT [380], and
PNP-DFT [381] give essentially similar results, often quantitatively [182, 378,
379, 382] as well.

We concentrate on reduced models of calcium and sodium channels because
they have been quite successful in dealing with the selectivity of these channels as
measured over a wide range of conditions. These models represent the side chains
of proteins as spheres of charge that occupy volume and interact with mobile ions
(K+, Na+, Ca2+, and Cl−) through volume exclusion and electrostatics much
as the mobile ions interact with each other. The ions and “side chains” mingle
together in the selectivity filter of the channel, typically a region 10 Å long and
6 Å in diameter to which the side chains are confined. The solvent and protein are
represented implicitly as dielectrics.

We hope that the principles of a general approach to channel permeation and
selectivity emerge from this specific analysis, along with some general physics
that may be present in most problems of channel and protein function. The general
approach assumes that understanding of selectivity requires measurements in a
wide range of solutions of different concentration and types of ions. Computations
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of a “free energy of binding” in a single solution are not helpful for two reasons.
Properties in a single solution are too easy to explain. It is difficult then to separate
one model of selectivity from another. Second, it is clear that the “free energy of
binding” is not constant, but depends on ionic conditions. The ions in the baths
and channel are not ideal. Everything interacts with everything. The free energy of
binding depends on all concentrations. Thus, calculations done under only one set
of conditions are not very useful, for our purposes. They do not permit comparison
with a range of data; they are vague enough that calculations with different models
cannot be compared.

This reduced model of selectivity is in the long traditional of primitive im-
plicit solvent models of ionic solutions. Models of bulk solutions using implicit
solvents have a long and successful history in physical chemistry [116–119, 124,
126, 128–130, 383–391], and have been particularly investigated and compared
with experiment in Turq’s group [384, 385, 392–399]. Implicit solvent models of
proteins are also widely used in the study of protein function. Indeed, the literature
of implicit solvent models of proteins is too large to review [2–4, 329, 355–359,
375, 400–431].

The lack of detail in implicit solvent models is primitive, as the name implies.
The treatment of polarization as a dielectric is actually embarrassing to those of us
who are aware of the complex dielectric properties of ionic solutions [432–436]
and electrochemical systems in general [57, 178, 201, 260, 432, 434, 437–440].
I spent many years making impedance measurements of the complex dielectric
properties of biological systems to determine their electrical structure [441–446]
and so have measured the dielectric properties of cells, tissues, or ionic solutions
that cannot be described by dispersion, or a single dielectric constant.

The dielectric “constant” of ionic solutions, in particular, is nothing like a con-
stant. It varies from 80 to 2 in the time range of atomic motions relevant to molecular
and Brownian dynamics (i.e., from 10−13 s to 10−7 s). The likelihood of nonlin-
ear field dependence in the region close to an ion (particularly a multivalent ion)
cannot be denied. Indeed, electron orbital delocalization may occur in some cases,
and then solvation has some of the characteristics of a classical chemical reaction
involving (partial) covalent bond formation. The fact is, however, that so far the
most successful treatments of ionic solutions are primitive despite the impressive
progress of a number of laboratories [116, 121, 124, 130, 383, 387]. Only the
primitive model has allowed calculations of the fundamental properties of ionic
solutions, namely their free energy per mole or chemical potential. Primitive mod-
els are a good place to start. They are also surprisingly successful. Perhaps the most
important properties of ionic solutions depend mostly on integrals of the dielectric
properties over all frequencies because of the Kramers Kronig relations and this
integral property is captured by implicit solvent models well enough.

The fundamental property of any ionic solution is its free energy per mole,
its activity, or electrochemical potential, all nearly the same thing, differently
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normalized, written in logarithmic, exponential, or linear scales [99, 118, 119,
126, 128, 129, 217, 390, 447, 448]. Almost all solutions have excess chemical
potential, activity coefficients, or osmotic coefficients not equal to unity because
few solutions are ideal.

The central fact of electrochemistry is that the excess chemical potential of an
ion is not zero [120, 125]. The excess chemical potential in fact varies as the square
root of its concentration (speaking loosely for 1-1 electrolytes like NaCl) and not
linearly [119, 126, 390, 449]. Ions are not independent in ionic solutions.

Ions are not independent in ionic solids, where we take for granted the fact that
there are exactly equal numbers of Na+ and Cl− ions (or we would be electro-
cuted each time we salt our food [450]), and ions are not independent in solution
[449] because of the screening [307] reflected in the fundamental sum rules [308,
309] describing ionic fluids. The requirement of electroneutrality in bulk solutions
guarantees that ions in solutions have highly correlated behavior not found in ideal
infinitely dilute gases of point particles without charge.

Ionic solutions are not ideal. Their extensive properties are not proportional
to number density. The “independence principle” that Hodgkin and Huxley [160,
167–170, 211] used so brilliantly to understand the properties of nerve membranes
does not apply to bulk solutions. The independence principle correctly describes
the movement of different species of ions through different (and independent)
protein channels in a membrane, if they are perfectly selective to those species.
The independence principle describes almost nothing else.

A. Different Ions Carry Different Signals

Selectivity is an important, even fundamental property of channels and proteins.
Indeed, one of the founders of molecular biology (Nobelist A. Klug) said [451]
“There is only one word that matters in biology, and that is specificity. The truth is
in the details, not the broad sweeps.” While this might be mild (but understandable)
hyperbole, the historical fact is that specificity of channels is so important that it
is widely used to name them. The specificity was unprecedented in the physical
world until quite recently. Even now, such specificity in chemistry is usually found
only in biomimetic applications.

The true significance of specificity and selectivity in biology is their biological
importance. Biology uses the concentration—really, the activity—of individual
types of molecules as distinct signals, the way a computer uses the voltage in
an individual wire (or transistor) as a distinct signal. If the wires (or voltages) get
mixed up, the computer stops functioning. If animals lose their ability to distinguish
ions (e.g., even the commonplace Na+, K+, Ca2+, and Cl− ions), the animals die.
Selectivity of channels and proteins allows ions to carry specific signals.

Selectivity of channels allows ions to provide energy for biological function.
Animals use gradients of Na+, K+, Ca2+, and Cl− to provide energy for many
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of their most fundamental functions, from signaling in the nervous system, to
coordination of contraction in muscle (including the coordination of contraction
of cardiac muscle that allows the heart to function as a pump), to the transport
of nearly every foodstuff that provides nutrition. Animals use gradients of these
ions to maintain the osmotic integrity of cells. Failure of selectivity between Na+
and K+, for example in the nerve terminals of the human brain, quickly leads
to irreversible swelling of the terminals (i.e., they burst) and death. The more
important the nervous system is to the animal, the more dense the network of
nerve terminals, the more it must cope with the finite selectivity of channels to
ions, the more likely the animal is to die if it cannot cope (by active transport
requiring oxygen) with the “leakage” of Na+ (and accompanying water) through
imperfectly selective channels.

Nothing is more important than selectivity in my view, although I would not
say it is the only word that matters, as did Klug [451]. As we shall see, details
are in fact crucial in the selectivity of calcium and sodium channels, as Klug said
they would be in general, but the details can be computed [175–178, 182–184,
298, 299, 452] from the broad sweeps, much to the surprise of the founders of the
reduced model (Wolfgang Nonner and Bob Eisenberg, soon joined by Douglas
Henderson, Dezs´́o Boda, and Dirk Gillespie).

B. Selectivity of the Calcium Channel

We turn now from generalities to a specific model and its analysis, a reduced model
of the L-type calcium channel of skeletal and cardiac muscle described extensively
in the literature [179, 440, 453–481]. This channel coordinates contraction in the
heart, allowing the heart to function as a pump. Its biological importance is difficult
to exaggerate. Its medical and clinical importance is as great as its biological impor-
tance. The L-type calcium channel is the target of calcium channel blockers of con-
siderable pharmacological significance. The easiest way to document the medical,
clinical, and biological importance is to do a Google search on “calcium channels.”

The selectivity of calcium channels has been well described [469–474] and
so we need not describe it again here. It is important to say, however, that one
class of experiments on calcium channels, and calcium binding systems in gen-
eral, has been misinterpreted because of a technical difficulty in the construc-
tion of solutions buffered to known activity of calcium [177]. Standard methods
[482–483] of calculating the activities of calcium buffers (like EGTA) involve
the ionic strength of the solutions; they treat Na+ and K+ the same way, for
example, see p. 224 of Ref. [482]. This treatment is, however, an unfortunate
oversimplification.

Na+ and K+ have different effects on the activities of Ca2+ when Ca2+ is at
high concentration because such solutions are not ideal [119, 126, 388, 389], not
even approximately ideal. Ca2+ is at very high concentration close to the EGTA
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molecules used to buffer its concentration. The standard methods of computing the
activities of ions in calcium buffers introduce corrections based on ionic strength,
and so treat Na+ and K+ the same way, for example. They are in error because Na+
and K+ do not have the same effect on Ca2+ when ions are highly concentrated.
This common method of computing activity produces incorrect interpretations of
experiments, as discussed in detail in one case in Ref. [177]. Sadly, this problem
is likely to be important wherever calcium buffers have been used and other ion
concentrations have been varied. Na+ and K+ concentrations have been varied in
many such experiments.

The question then is how do we calculate the properties of the calcium channel?
What kind of model should we use? Later in this paper (see Table I) we argue that a
full atomic scale calculation is likely to stay out of reach for sometime: the gaps in
scales, for length, volume, time, and concentration are too large, particularly when
one has to deal with all the gaps at once, as the channel itself does. The channel
“knows” how to use atomic scale structure to control macroscopic flows controlled
by trace concentrations of ions. But we do not. Our task is to try to determine how
evolution has chosen to make such a system.

We proceed by guessing a reduced model using the insight that channels are
very crowded places with enormous densities of charge. We will try the simplest
representation of the ions we can think of (as hard spheres) and the wild guess
that side chains of the protein can be represented as spheres just like mobile ions.
The spheres are free to move anywhere within the channel without constraints, but
they are not allowed out of the channel. It is not clear that anyone—particularly
well trained and (we hope) well bred classical physiologists like Wolfgang Non-
ner and myself—would have guessed a priori that such a system would work. But
we wanted to understand publications of Turq’s group [384, 385] on the mean
spherical approximation [399, 484–487] and we knew of the role of the EEEE
(glutamate glutamate glutamate glutamate) side chains in the L-type calcium chan-
nel (see more recent review [474]). John Edsall (in his last conversation with me, at
his 95th birthday celebration symposium around 1998) had guided me once again
“Bob, can you include the size of ions in your nice work on electrostatics? You
know, van der Waals doesn’t do too badly.” Perhaps he knew of Widom’s paper
[488, 489] reworked with such clarity by Henderson [490].

Early calculations [182, 183] showed promise and motivated Douglas Hender-
son to show us how to extend them [378, 379, 491, 492] using more appropriate
and convincing methods—Monte Carlo simulations of the primitive model of ionic
solutions with an implicit solvent—he had developed with Dezs´́o Boda [492–494].
Before we knew it, high-quality simulations [184, 378, 379, 491, 492] showed that
the EEEE system had the main selectivity properties of a calcium channel. Later
work [176, 177, 179, 180, 184, 301, 310, 378, 379, 491, 492, 495–500] suggests
that this simple model captures the essential features of the biological adaptation
used by evolution to create calcium selectivity.
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C. Reduced Model of the Calcium Channel

The reduced model of the calcium channel we analyze (Fig. 5) considers only the
signature amino acids of the channel EEEE that confer selectivity on the channel
according to experiments [457, 474, 479, 501] discussed in more detail below. The
side chains are represented as movable spheres, so they have excluded volume,
which in fact fills a substantial fraction of the selectivity filter. The selectivity filter
is 6 or 7 Å in diameter [268,271,287] and 10 Å long. The number density of ions
(called “concentration” for short) varies with location and so plots of concentration
versus distance are always examined. Occupancy is defined to be specific as the
total number of ions in the central 5 Å of the filter. (Other definitions could have
been used. This choice seemed sensible but needs further investigation.) The ions
in the solution are treated as hard spheres with “crystal” radii of Ca2+ 0.99 Å; Ba2+
1.35 Å; Li+ 0.6 Å; Na+ 0.95 Å; K+ 1.33 Å; Cl− 1.81 Å; O−1/2 1.4 Å. Precise
numbers are given here to avoid ambiguity. The carboxyl groups are treated as

Figure 5. Reduced model of the crowded charge model of selectivity. The model is shown for the
L-type calcium channel. The channel protein is represented as a right circular cylinder (the oval shape
in the figure is for artistic effect) containing eight half charged oxygens that represent the side chains
of the glutamate amino acids (residues) known to be responsible for the selectivity of this channel.
The “side chains” are treated as mobile ions, except they are not allowed to leave the channel. In a
Monte Carlo simulation the side chains are distributed according to a Boltzmann distribution in the set
of locations that provides lowest free energy for the system. This set of locations changes significantly
even dramatically when the ionic concentrations in the baths are changed.
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two half charged oxygens because the oxygens of glutamates are symmetrical in
bulk solution and so the acid making electron of the carboxyl is expected to be
shared equally. The side chain oxygens are called “structural ions,” “oxygens,”
“glutamates,” or “side chains” in different places in the literature. The side chains
are allowed to move within the channel according to the same rule as the ions
themselves except the side chains cannot be outside the channel. Monte Carlo
(attempted) moves that place oxygens outside are rejected.

The diameters of the ions and side chains are never changed. They are the same
in all our publications (except for inadvertent errors). Indeed, a sensitivity study
of the effects of small diameter changes is probably needed.

The constancy of ion diameters is of great importance because it is an important
distinction between our work and that of workers on K channels who often “back
engineer” diameters of ions (and other parameters), for good reasons, no doubt.
We avoid such procedures because we think they would make it too easy to fit
data. It would seem quite easy to adjust diameters to get reasonable results with a
wide range of disparate models, although we cannot be sure, not having done that
ourselves.

To reiterate, our goal is to fit existing experimental selectivity data with a model
with unchanging diameters and parameters in a wide range of ions (e.g., Li+, Na+,
K+, Rb+, Cs+, Ca2+, Mg2+, Ba2+) in a wide range of concentrations including
the biologically crucial range of 10−7–0.1 M for Ca2+. We believe this much data
with this much constraint on our parameter estimation is needed. Estimates of free
energy of binding made in one condition (i.e., one solution of one concentration)
are not helpful in our experience because the free energy of binding is a highly
nonideal quantity depending on all concentrations in the baths. This is what we
expect from a system containing some 20 M salt in the channel in which everything
interacts with everything else in a highly nonideal way.

There are serious problems with our model. For example, the choice of ionic
diameters can quite rightly be criticized because it ignores hydration shells and
other specialized interactions between ions and water or channel. These have not
been ignored out of ignorance—they were explained clearly to me as an under-
graduate in 1959 by Edsall [502, 503]. Rather, our goal is to see how well we could
do without such shells and interactions, whose energy and nonideal properties are
so difficult to calculate reliably. In fact, it seems that representation of solvation
and hydration by the implicit model is good enough. Properties estimated from a
dielectric structure and spherical ions fit experiments quite well.

D. The Ionic Environment of the Channel is Remarkably Crowded

In the reduced model of the calcium channel, eight half charged oxygens are located
in a channel of volume 2.8 × 10−28 m3 at number density of ∼2.8 × 1022 cm−3.
The structural oxygen ions are present at a concentration of about 46 M! For
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comparison, the concentration of NaCl in a solid is 37 M and the concentration of
oxygens in liquid water is 55 M.

The volume of the oxygens in our model is ∼8.8 × 10−29 m3 that means the
oxygens occupy about 31% of the volume of the channel. The four permanent
negative charge of the oxygens can be balanced by four sodiums that have a con-
centration of 46 M and occupy another 1.67 × 10−29 m3 or 5.9% of the volume
of the channel. The two calciums needed to balance the negative charge of the
oxygens would have half that density, namely 23 M, and occupy half that volume.
It is clear that the two calciums would be much easier to pack than the four sodi-
ums and the difference in the energy of repulsion is an important contributor to
the selectivity of the calcium channel [182].

Concentrations of this size are far beyond saturation in a bulk environment. This
environment inside a channel is that of an ionic liquid [227, 504] in which nearly
all atoms are charged. This environment inside a channel has no resemblance to the
infinitely dilute environment envisioned in a perfect gas because the environment is
so concentrated. Perfect gases are perfectly dilute. It is not surprising that theories
based on properties of ideal gases are not very useful. Solutions in channels or active
sites are not small perturbations of an infinitely dilute solution. For that reason,
simulations using force fields calibrated in infinitely dilute environments should
be expected to face difficulties in such concentrated environments. Even so, nearly
all force fields used in molecular dynamics simulations are calibrated in infinitely
dilute environments, or in environments without definite ion concentrations. In the
first generation of molecular dynamics force fields, the problems of calibration
in biologically relevant mixtures of ions were understandably avoided. Now that
molecular dynamics is established as an indispensable tool of structural, if not
molecular biology, more realistic calibrations will be made, no doubt.

It is important to realize intuition is no guide in a concentrated environment
like that inside an ion channel with large forces of opposite signs. The excluded
volume forces are enormous. The electric fields are enormous, often larger than
0.1 V in 1 nm, or 108 V m−1. The electric forces are long range. The excluded
volume forces extend at least the length of the channel. The electric forces can
have either sign and thus can balance the excluded volume forces or add to them.
In a mixture like this, the only thing that can be certain is that reasoning based
on the properties of uncharged point ions is useless. Sadly, the traditional theories
of channel permeation and selectivity all use chemical reaction models in which
electric charge and excluded volume play no role. (Appendix A discusses some of
the difficulties with these models.) It is not surprising that such traditional analysis
has not been helpful.

E. History of Reduced Models of Ca2+ Channels

The reduced model of calcium channels used here was originally motivated [182,
184] more by its simplicity than anything else. Neither Wolfgang Nonner nor I
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imagined that a handful of glutamates—represented as spheres—would be very
successful in dealing with selectivity in calcium channels, because selectivity was
such a complex phenomenon, involving properties in tens of solutions, particularly
compared to the stark simplicity of the model.

The first calculations of the model [182, 184] showed striking calcium selectiv-
ity, however; and a long series of papers [175, 176, 178, 179, 182, 184, 301, 378,
379, 380, 381, 438, 497, 505–512] has shown that the model works remarkably
well for both calcium and sodium channels, despite its obvious defects and lack
of structural detail.

In particular [175–177], a single model, with two parameters, and one set of
diameters of ions (chosen to be crystal radii, not hydrated radii) deals well with
the selectivity properties of two different types of channels (calcium and sodium)
with the same unchanging parameters (dielectric coefficient and volume of the
selectivity filter), in a wide variety of solutions of different composition and con-
centration.

Only the side chains differ in the models of the sodium and calcium channel. The
difference in side chains is enough to produce the strikingly different properties
of the channels, including the biologically important selectivity of the sodium
channel for Na+ over K+.

No additional “chemical” energies are needed to reproduce the behavior sodium
and calcium channels over a wide range of conditions. The binding free energies
are outputs of this model and vary with conditions. Simulations in atomic detail
are not needed. Indeed, simulations of selectivity that ignore ionic conditions, or
that produce a single free energy of binding as an output are obviously irrelevant
in this case, because the free energy of binding varies so dramatically with ionic
conditions. Amazingly, the reduced model calculates the free energy of binding
correctly (i.e., well enough to fit experimental data), over a wide range of concen-
trations of different types of ions. The reduced model of a calcium and sodium
channel does far better than any atomic detail model of any channel we know of.

F. Reduced Model Properties

The reduced model [177] represents the channel protein as a dielectric surrounding
a cylindrical pore some 10 Å long and 6 Å in diameter. The pore contains spherical
ions Na+, K+, Ca2+ or Cl− (and sometimes other ions) in amounts and locations
that are determined as outputs of the calculation. Water in the pore is represented
as a uniform dielectric. The bulk solutions are represented as spherical ions in a
uniform dielectric. This is the primitive model of ionic solutions using an implicit
model of the water solvent. In much published work, the dielectric constant of the
pore is taken as equal to that of the surrounding bulk solution, although obviously
one should use a smaller value. Preliminary work shows that using a more realis-
tic value in a channel model containing three dielectric regions does not change
important conclusions of our work.
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The pore contains spheres meant to represent the side chains of the amino acids
that make up the wall of the channel protein. The side chains are charged spheres
and the charge is taken as the charge of the fully ionized side chains. The model
corresponds to experiments at say pH 8.0 where acidic groups are likely to remain
fully ionized at all membrane potentials and all solutions of interest. Treatment
of cases with variable ionization would add complexity to our analysis but can be
done simply by including the ionization energy (and dissipation if desired) into
the EnVarA theory described later in this chapter.

The side chains (as we will call the spheres from now on for the sake of simplicity
but not realism) are treated as mobile ions that are confined to the selectivity filter
of the channel (as we call the 10 × 6 Å cylindrical pillbox) making it a classical
ion exchanger [236] and a typical Donnan system described in physiology and
biochemistry texts for more than 100 years.

What is different from the classical ion exchanger is that in our model the
ions and side chains are mixed into an “electric stew” (as Ed McCleskey [470]
so aptly called it) in which the ions and side chains have finite volume. This stew
corresponds to the view of the calcium channel of many experimental papers [453,
454, 456, 457, 460, 461, 466, 474, 478, 479] that study the accessibility of side
chains in a variety of experiments using mutations and cysteine scanning [501].
That work is reviewed in Ref. [474] where an important conclusion is reached (on
p. 134). “The Ca channel field is convinced that the EEEE carboxyl side chains
project into the pore lumen.” This structure is in contrast to the better-known K
channels where side chains face away from the pore lumen and the protein presents
a wall of carbonyls to permeating ions and water.

What is different from the classical ion exchanger is that the Donnan system
is analyzed with modern methods and molecular insights: Monte Carlo simu-
lations are used to deal with the important nonideal properties of the ion ex-
changer arising from the finite diameter and electrostatic interactions of the solid
spherical ions.

The spatial locations of ions and side chains are an output of the calculations
using the reduced model. The content of side chains (i.e., the total number of side
chains in the selectivity filter) is fixed, but the content of ions is not fixed. The
content of ions varies with conditions as does the location (but not number) of side
chains. The energy of the selectivity filter is taken as the sum of the electrostatic
energies of all the spheres, assuming that the spheres have the dielectric constant
of the bulk, with all their charge at their center. Spheres are not allowed to over-
lap, so an important determinant of their locations and free energy are excluded
volume effects. The most realistic calculations are done by Monte Carlo simu-
lations (Metropolis algorithm) with methods discussed at length in the literature
[175–177, 310, 378, 492, 497, 498, 505–507, 513, 514]. The reader is sent to that
literature, and standard references for more details of the Metropolis Monte Carlo
Method [515–521]. Suffice it to say here that the method is remarkably robust and
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able to produce good estimates of the distribution of particles in a wide variety of
systems.

Monte Carlo simulations of the primitive model used here are quite efficient
when ions are treated as hard spheres. If the spheres overlap in one of the trial
moves of the Monte Carlo simulation, the energy is taken as infinite, and the
trial is rejected. If the spheres do not overlap, the energy of the ion (injected in
the trial) is computed from the electrostatics of its central charge, and the trial
move is accepted or rejected according to the Metropolis criteria. The Metropolis
procedure guarantees that the computed distribution of particles is in a Boltzmann
equilibrium once computed distribution has aged and lost its dependence on initial
conditions. It is easy to examine a calculation to see if it has aged sufficiently.

VI. CROWDED IONS: PROPERTIES OF THE MODEL OF
CALCIUM CHANNELS

The most striking property of this model of the calcium channel is the density of
ions in the channel, as mentioned previously. The number of ions within the ionic
atmosphere of the selectivity site must equal the net charge of the protein within
the selectivity site if the system is electrically neutral. The system must be neutral
because biological systems are destroyed by voltages more than 200 mV. So the
net charge cannot create a potential more than 200 mV. The net charge can be
estimated by Gauss’ law applied to a sphere, say 10 Å in diameter, in a dielectric
of 78 extending to infinity. The net charge that produces a potential of 200 mV is
very small indeed a negligible fraction of the ions present.

The charge of the side chains themselves (without the mobile ions) is enor-
mously high in the channel. The charge is 4 charges in 2.8 × 10−29 m3 or a num-
ber density of 1.4 × 1022 charges cm−3, in chemical units 23 M! For comparison,
the density of solid NaCl is 37 M. It seems clear that active sites of channels are
extraordinarily highly charged. The contents of a selectivity filter or active site are
an ionic liquid [227, 504] with constrained components.

Of course, the mobile charge—that balances the side chain charge—does not all
have to be within the channel itself: the ionic atmosphere must extend outside the
channel, perhaps quite significantly. The effects of the ionic atmosphere outside
the channel can be modeled in a simple way by representing that atmosphere as
a spherical capacitor, with a potential equal to the potential on the end of the
channel. The equations of the capacitor and channel can be solved simultaneously
and the effects of the spillover charge can be computed this way. These effects
are significant quantitatively in many cases, particularly when the ionic charge
cannot balance the fixed charge (e.g., Ca2+ cannot balance an odd number of
fixed charges), as Douglas Henderson pointed out to me long ago. Nonetheless,
the qualitative properties of the model survive. Interestingly, Ca2+ channels have
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much lower single channel conductance than Na+ channels, suggesting that the
mobility of Ca2+ is much lower than Na+ inside a channel. Perhaps this fact is
connected to the charge balance between Ca2+ and the permanent charge of the
channel. Perhaps it is not: Ca2+ conductance of a Na+ channel is low too. The
physical origin of the conductivity of ions inside channels is an important subject
to address with high-resolution methods of molecular dynamics.

Our model of a channel as a rigid body containing spherical side chains probably
works so well because channels are so crowded with charges and side chains free
to move. In the special case, exploited by biology, the energies of the crowded
charged spheres probably resemble those of the much more complex structures
they crudely approximate. Future models should clearly include more complex and
realistic models of side chains. Of course, this is a guess, written provocatively on
purpose. This guess needs checking by simulations with higher resolution models.
We need much more work on the physical chemistry of systems of crowded charge
to make clear just what properties are well described by our simple model, and what
are not.

The enormous concentration of ions in a selectivity filter reflects a general
property of proteins. Proteins are highly charged objects. Early workers on proteins
often were trained as physical chemists and immediately noticed the large charge
density of proteins. As Tanford says [502, 503, 522, 523], proteins “bristle with
charge.” These workers were referring to the charge density of the outer surface
of a protein. Imagine what they would have said if they had known that the charge
density of active sites was 10−50 times larger than that!

The enormous concentration of ions in an active site or selectivity filter has
not been widely discussed even though the argument about electrical neutrality
is not difficult. Indeed, there are a large number of enzymes, and a few channel
proteins in which X-ray crystallography can actually resolve these counter ions.
We (Liang, Jimenez-Morales, and I) are currently involved in searching databases
to establish the density of acidic and basic amino acids in active sites and document
this important fact in an objective way. It seems likely that the density is very high in
most enzymes, binding proteins, and channels, suggesting that the crowded charges
may play a central role in protein function in general. Proteins may be designed to
exploit the nonideal properties of highly concentrated ionic environments, stews
of charge.

It seems natural that any ion exchanger used for a specific purpose will have
as large a concentration of ions as possible, just as electrodes in electrochemical
systems or batteries will have as large a density of ions nearby, or transistors will
have as large a density of holes and electrons as possible so they can conduct large
currents.

It is clear that understanding why a simple model works so well will be very
important in making reduced models of other channels, enzymes, proteins, and
nucleic acids. Atomic scale simulations of these wide range of molecules do not
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yet include ionic solutions of varied composition realistically, if at all. Perhaps it
will be easier to make reduced models of these biological systems than to make
realistic simulations of the ions and atoms of the solutions and proteins of the
systems.

A. Limitations in Analysis

One might object, of course, that the ions in these models are at such density that
in some sense they are not able to move. One might imagine they are “salted out”
as a local precipitate. However, that precipitate kind of binding cannot be present
in ion channels. Ions in channels carry current through the channel in a reasonably
normal way, albeit with a mobility probably some 100× less than in bulk solutions
(see p. 1182 of Ref. [175] for discussion and references). The properties of the
trajectories that carry current are interesting but problematic. So few trajectories
succeed in crossing a channel that one must be very careful. Individual trajectories
as usual are uninterpretable, even individual successful trajectories, because they
reverse direction so very often, as we have discussed.

The set of successful trajectories that would be computed by a simple Langevin
version of the primitive model [225, 347, 524] might be easily characterized by
its flux, mean first passage time, doubly conditioned probability functions, and
so on as in stochastic analyses [218, 353] of related problems. Or the successful
trajectories might have very special properties—for example, cooperative motion
of (neutral) ion pairs over potential barriers—quite different from those of typical
trajectories. In that case, the special properties would need to be identified and
dealt with separately. In other words, the stochastic analysis would need a reduced
model to interpret its results. The set of successful trajectories computed from a
full molecular dynamics simulation is more likely to have such special properties
than those computed from a Langevin simulations, because so many more forces
and effects are dealt with. The set of trajectories selected by biological structures
and evolutionary pressures to perform a specific biological function may be very
unusual. The useful trajectories may be a tiny subset of all trajectories, yet those
may be the “only” ones that determine biological function. The complex struc-
tures of technological devices and biological systems are not random. They are
designed to make certain inherently implausible things happen all the time. Re-
duced models are built to describe these useful properties of a system. Reduced
models can be viewed as models built to describe a highly conditioned system,
with trajectories chosen to perform a particular function. Estimators are needed
to select the useful trajectories, to take the staggering number of atomic trajecto-
ries and select from them those that perform a useful biological or technological
purpose.

The estimators needed to make sense of a complete stochastic analysis have
many of the properties of a reduced model. Indeed, one systematic strategy for
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finding reduced models is to use the theory of inverse problems [321, 525, 526] to
find estimators of biological properties (e.g., unidirectional flux) with useful sen-
sitivity properties and robustness. Physical chemists are needed to study the actual
set of trajectories that cross channels in high-resolution simulations and determine
their special properties. Mathematicians with expertise in inverse problems may
be needed to help identify these special trajectories efficiently.

In the case of proteins in general, ions are also probably reasonably free to
move in active sites, for example in enzymes. Precipitates are probably not present
because the ions in question are often the substrate of the enzyme, and thus obvi-
ously participate in a reasonably normal way in the chemical reaction catalyzed
by the enzyme.

I imagine that if ions were so tightly bound that they were precipitates, they
would always be visible in X-ray structure along with the protein structures that
bind them. After all, binding means that the positions of the bound molecules are
fixed and the motions of the bound molecules covary the way atoms covary in a
solid. If the parts of the protein that do the binding move with enough order to be
seen in crystallography, the ions that they bind as precipitates should (often) be
seen as well. In fact, ions are not often seen in X-ray crystallography, implying
that the ions are not precipitates.

It seems to me that a single number—the density of ions in a channel, selectivity
filter, or active site—tells us where to start our thinking. It provides an important
starting point for any discussion of selectivity in channels, or indeed for a discussion
of the physical chemistry of channels and enzymes, and binding proteins.

For example, enormous number densities in active sites and ion channels im-
mediately imply that traditional treatments of enzyme kinetics [263] and channel
permeation [9, 258] are suspect. It is clear that number densities in channels ex-
ceeding those of solid salts—46 M for oxygens or Na+ in an EEEE calcium channel
versus 37 M for solid NaCl—cannot be approximated—in any normal sense of
that word—as ideal chemical species. They do not resemble uncharged, infinitely
dilute perfect gases of uncharged atoms with negligible interactions because they
have negligible densities. Traditional treatments of enzyme kinetics and channel
permeation do not deal with the finite volume of ions and hardly deal with their
electric field. Force fields of molecular dynamics simulations are almost always
calculated and calibrated in ideal environments very different from the ionic liquids
found in channels or near active sites. Errors must result.

The active sites of channels and enzymes and binding proteins are very special,
very highly charged places, in which ions and atoms are severely crowded. They
are a kind of ionic liquid, not an ideal gas [227, 504, 527, 528]. They have little
room for much water, and certainly have excess free energy (beyond the ideal)
that dominates their properties. Ions in active sites resemble an ionic liquid, like a
molten salt at room temperature (with constrained counterions, namely side chains)
more than they resemble a perfect gas.
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B. Crowded Charge as a Biological Adaptation

The above physical and chemical view of active sites can be supplemented by
a powerful biological perspective. When a biologist, particularly an evolutionary
biologist, sees a structure or physical property that is rarely or never seen in the
physical world, she/he knows that it is likely to be part of the adaptation evolution
has made to solve a problem of natural selection, as documented in many examples
in the essays of SJ Gould, for example [529–532].

Many nonbiologists are skeptical of teleological arguments of this sort, because
they seem like a metabiology, more akin to metaphysics than to hard science.
Reading the extensive literature of evolutionary science should change this view.
There should be little barrier to that literature, given the magnificent series of essays
available in the semipopular scientific press [529–532]. Even without such reading,
skeptics would admit, I think, that the initial guess—the working hypothesis for
investigation—should start with the unusual feature of the biological system, rather
than assume its opposite. One should start a treatment of active sites and ion
channels from their unusually high density of charge. One should guess that the
special properties of ions in high density have been used by evolution to make
the special properties of the channel or protein. One should obviously not start
by assuming properties that are the opposite extreme from what are found. Close
packed ions do not resemble infinitely dilute gases. Calculations without definite
ion concentrations seem a poor way to approximate a system that has a specialized
adaptation of enormous ion concentrations at its active sites.

The efficiency of the scientific process, like that of any investigation of the
unknown, depends on the quality of the initial guess. If the guess about the mech-
anism is entirely wrong, it will be hard to correct, particularly given the human
tendency to elaborate the initial guess, rather than replace it. If the initial guess is
good enough, the scientific process rapidly converges, much as the solution of an
inverse problem proceeds rapidly if one knows where to start. So starting with the
idea of crowded ions seems a good idea to me.

I believe that investigations of mechanisms of selectivity, and active sites of
proteins in general, should begin with the investigation of ions at enormous density
mixed with side chains. That is what our reduced models of the selectivity filter
do, although I am not sure Wolfgang Nonner and I were fully conscious of that
when we started. That is where I think we should begin, adding structural details
as they prove important in determining the forces and energetics of the system and
model.

C. Necessity of Calibration

When we add structural details, however, we must be sure that we retain the
essential features of the reduced model that ensure its success. We must be sure
that more detailed calculations actually reproduce the properties of simple models
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that are important for the success of the simple models. The necessity of such
calibration is obvious in the laboratory. Before one does new experiments, one must
show one can repeat the old ones, if they are relevant. This habit of calibration and
step-by-step extension of results is essential to the success of experimental science.
It will be essential to the future success of computational biology, I believe, a view
shared by many in computer science [222] if not by students used to running
simulations without calibrating the programs that run them.

VII. BALANCED FORCES AND STRUCTURES IN
CROWDED SYSTEMS

The key properties of systems with so much crowded charge is the competition
between charge and space. The electrical forces are enormous when charges are
at this density; but so are the repulsion forces that arise because ions and atoms
cannot overlap. (More precisely their electron orbitals cannot overlap in the kind
of systems we are dealing with here because of electrostatic repulsion and Pauli
exclusion, as long as covalent bond formation is not involved. The systems of
interest here do not involve formation of covalent bonds.)

The initial guess in the “guess and check” process should be that the properties
of crowded ions dominate the properties of active sites and selectivity filters.

In such systems, forces and potentials will be very sensitive to conditions. The
smallest change in position of a charge has a huge effect on the forces on a charge
1 Å away, and charges within a selectivity filter, or active site are nearly this close.
Systems like this with balanced large forces are well designed for control. Small
changes in the balance can make large changes in the results. Thus, systems like
this are widely used in engineering, where control is often the key requirement,
more important than efficiency or even performance. It is the same in biology, I
suspect.

A. The Structure of Forces in Proteins

Systems with large balanced forces depend on details of the forces and the structure
supporting the forces. Systems like this depend on details of boundary conditions
and have very different behaviors for different balances of forces on the bound-
ary or for different structures of boundaries. Systems like this do not have many
general behaviors that are true in a range of conditions. Thus, systems like this
are unattractive to mathematicians and theoretical physicists seeking generality.
Even so, we must dive into biological detail with the enthusiasm of a zoologist and
structural biologist so we can behave like a bioengineer and understand how these
systems work. The potential profiles in these systems are outputs sensitive to the
balance of forces. They must be computed, not assumed. The spatial distribution
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of atoms in these systems are outputs sensitive to the balance of forces. They must
be computed not assumed. Both the spatial profiles of (chemical and electrical)
potentials—that determine the forces on mobile ions—and the spatial profiles of
locations of atoms are needed to determine the flux through the channel. The bio-
logical function depends on both the structure of the forces and the structure of the
atoms. Both have important spatial structure. In ideal cases, the spatial distribution
of location of atoms can be seen by X-ray crystallography. The spatial distribution
of forces cannot be observed by any method I know of. Structural biology concerns
itself with only the spatial distribution of location. Biophysics, like physiology and
engineering, must concern itself with both the spatial distribution of location and
the spatial distribution of forces. The conformation of forces is as important as the
conformation of the atoms of a protein.

Models in which potential profiles are assumed or assumed to be independent
of experimental conditions are not likely to be useful because actual profiles vary
in the real world. Keeping the profiles constant in models requires introducing
artificial sources of charge and energy not present in the real world. Such models
are unlikely to deal correctly with the real world. The scientist using them is likely
to need to introduce new complexities in the potential profile (i.e., new states and
rate constants) every time she/he changes experimental conditions. (In my view,
this is the likely origin of the enormous number of states used in models of channel
gating.) Or she or he is likely to simply ignore the experimental conditions in the
hope that others will forget their importance. (In my view, this is the likely origin
of the practice of ignoring experimental conditions when calibrating force fields
in molecular dynamics.)

We will return to this issue again under the name “the Dirichlet disaster” because
it is the key, in my view, to why so many classical models fail. Classical models
often inadvertently specify potentials within a system, and keep them constant as
conditions change, when those potentials in the real world change as conditions
change. By keeping potentials artificially constant, classical models introduce se-
vere artifacts that often prevent the understanding of systems, I fear. The disaster
would be much less common I think if we realize that when we talk of potentials
in systems, or potentials of mean force, we are really specifying the forces in the
system. I shudder at the idea of keeping forces fixed as conditions change. I find
the idea of keeping a potential fixed as conditions change much more abstract.
Both are of course actually equivalent.

Rates of chemical reactions, or diffusive crossing of large barriers, often de-
pend exponentially on energy. In that exponential scale, the effects of the visually
dominant details of structure of 1kBT or less would be hard to resolve. Perhaps that
is why reduced models with so little structural detail are reasonably successful.
They deal with the large free energies (5 − 10kBT ) of crowded ions quite well and
the structural details they do not include have free energies that are much smaller
than that.
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B. Importance of Structures

The availability of crystal structures of proteins has importance that cannot be over
emphasized. The structures observed in X-ray crystallography represent the basic
architecture of the systems. Without knowing the basic structure, one can often not
make intelligent guesses about mechanism so the scientific process of guess and
check does not converge to a useful result in such cases. It is the crystal structure that
reveals the basic architecture of the system, not the sequence of amino acids. The
sequence of amino acids may reveal the evolutionary control of the system (e.g.,
four glutamates producing calcium selectivity) and even the evolutionary control
of the crystal structure (the characteristic sequences that produce alpha helices).

But observing the basic structure is not the same as observing the energetics.
Indeed, if the basic structure reveals enormous densities of permanent charge,
as in active sites and selectivity filters containing acid and basic side chains, the
structural analysis implies that electrical and excluded volume forces of crowded
ions will dominate the system. These are more or less invisible in the structure, so
in this case the structural analysis points to the irrelevance of its own structural
details—that is, the irrelevance of the details seen in X-ray structures—while
providing evidence about what is important, namely the free energy of the unseen
ions and the (often seen) charged side chains.

The impressive detail of magnificent structures, however, does not automatically
reveal the free energies and forces that determine mechanism. In crowded systems,
energies and forces determined will be typically 5–10 times the thermal energy
[175, 182–184, 452], that is, 5–10kBT , where kB is the Boltzmann constant and T is
the absolute temperature. The entropic effects associated with particular locations
of atoms and side chains are unlikely to have free energies this large, except in
very special cases. They are more likely to be 0.1–1.0kBT . The structural details
that are so evident in X-ray structures of proteins are likely to be associated with
much smaller free energies and forces than the structures of crowded charge. The
free energies of crowded ions are likely to be much larger than the free energies
associated with the details of protein structure.

Indeed, the structures important to function may be so sensitive to conditions
that they are more or less impossible to observe by available structural methods.
We have examples of this every day in our technology. The structure of an amplifier
is complex and impressive even on the macroscopic scale. The circuit diagrams
are immensely complex, and every detail is worked on by an army of engineers
to optimize performance, reliability, and profit. The amplifiers and digital circuits
of our technology all are built in crystals of silicon, with insulating layers of SiO2
(that have a role like that of lipid membranes), punctuated by the channels of
FETs in which charged particles (holes and electrons) flow across an otherwise
impermeable barrier. The crystal structure of an amplifier or digital circuit is ex-
traordinarily complex and beautiful and important, just as is the structure of a
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protein. Yet the electrons and holes that make an amplifier work are more or less
invisible to structural analysis [533]. The only relevant structure is the distribution
of doping (permanent charge). Of course, proteins are not semiconductors; their
charge carriers have more reality and solidity than the quasiparticles, holes, and
electrons. The charge carriers of life are ions with diameter and permanence. The
diffusion terms in proteins are very much more important than in semiconductors
(at least at the frequencies we use them). Thus, the structure of proteins must be
known in detail to have full knowledge of their function. But knowing the structure
is not enough. Knowing the forces is also needed. Neither knowing the structure,
nor knowing the forces is enough. One must have a reduced model that deals with
both structure and forces to be able to calculate and thus understand the function
of proteins, in my view.

Reduced models are the essence of engineering. Most of the properties of an
amplifier can in fact be described by a single number (the gain), and almost all
its properties can be described by a handful of numbers that summarize its in-
put impedance and output properties, its output impedance, and ability to deliver
current (e.g., slew rate, fan out, and so on).

In a similar way, the structures of side chains and ions that form the active sites in
our models of calcium channels would be invisible to ordinary structural analysis.
But they probably can be calculated. Calculations with Metropolis Monte Carlo
methods can estimate the structure of the side chains in reduced models as outputs.
And similar methods may be applied successfully to fully resolved structures of
enzymes and binding proteins [534–541] some day. So much is known of some
structures, and some are so important to biology and medicine (e.g., thrombin [542–
551]), that creating successful reduced models of these soluble proteins would have
dramatic practical effects, I believe.

C. Some Structural Properties are So Important that they Cannot
be Observed

In crowded conditions, small changes in the location of the ions in this structure
produce large changes in forces and energies, because the ions are so crowded.
The ions cannot move without “hitting” each other. This means excluded volume
forces are enormous. Any movement of charge produces large changes in electric
forces. Thus, the structure of these systems is a sensitive function of the conditions
of the system.

The side chains (like the other ions) in Monte Carlo calculation of a reduced
model are always in a Boltzmann distribution with a distribution of location (both
mean and distribution of location) that is an output of the calculation. In other
words, the side chains form a self-organized structure. That is to say details of the
structure are determined by the forces between the atoms that create the Boltzmann
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distribution of their locations and velocities, and their energies and entropies.
These structures may be so sensitive that they have to be computed, and cannot
be observed, just as the structure of forces in a protein must be computed because
they cannot be observed.

D. Self-Organized Structures

The structure of the protein is self-organized by the Boltzmann distribution. Self-
organized means that all the atoms are in a Boltzmann distribution with both
entropy and energy at their “optimal” values.

Locations are not fixed in proteins, no matter how fixed they seem in the beau-
tiful images of crystals published weekly in Science and Nature. Locations of
atoms are not held at the positions seen in crystallography. There are no magic
forces to hold atoms at the locations seen in crystallography. Atoms are in the lo-
cations seen in crystallography because those locations minimize the free energy
under those conditions. Under different conditions, different locations minimize
the free energy. The conditions of crystallization and X-ray crystallography are
rather extreme. Temperatures are very low, to reduce entropy and to make the
crystal “strong enough” (i.e., with little enough entropy I suspect) to withstand
radiation. The “mother liquor” from which crystals are formed is not a physiolog-
ical solution, but in fact is a peculiar cocktail of ingredients not always stated in
full detail in publications. The ionic environment around the proteins themselves
is not the same as the mother liquor. Thus, the locations of atoms that minimize
free energy in X-ray crystallography are different from the locations of atoms in
the real protein; the entropy of the atoms is likely to be even more different. When
the ions surrounding a protein are changed, on one side of a channel, or the other,
or the electrical potential across the channel is changed, the free energy profiles
are changed, and all atoms will be in different positions with different entropies.
In one phrase, the structure is self-organized and different in different conditions.

For these reasons, it is useful to think of the structure of the protein side chains
as induced. The structure of the protein side chains and the location of the ions are
both induced by each other. The binding site—of ions and protein side chains—has
a structure induced by the experimental conditions including the concentrations of
ions in the surrounding baths. The structure of the binding site is self-organized
and is induced in the same sense that the structure of the ions are induced. All are
in a Boltzmann distribution.

The Metropolis Monte Carlo method produces an ensemble of structures that
form the self-organized systems that so many physicists discussed as they turned
to biology soon after the Second World War. The Metropolis Monte Carlo method
lends quantitative specificity to the qualitative idea of induced fit and self-organized
structure. Indeed, both the dispersion and the mean location of side chains and ions
in these structures are important.
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Self-organized structures automatically have an induced fit between their com-
ponents. The side chains fit to the substrates, and the substrates fit to the side
chains, with mean locations and dispersions of the Boltzmann distribution. The
self-organized structures of these models are outputs of the Monte Carlo simu-
lations. They vary with conditions. The variation in energy and entropy (roughly
speaking mean and dispersion of location) are both important.

E. Limitations of Crystallography

Structures of proteins and ions change with conditions so that measurements of
them would have to be made under the conditions in which they function if they
are to show the structures that perform the function. This is a difficult requirement,
more or less incompatible with X-ray crystallography as we know it. Crystal forma-
tion requires special conditions, with special salts, detergents, and other conditions.
The free energy of ions near the protein active sites are unknown in crystals. The
number density and free energy of ions near the protein active sites are usually
unknown in crystals. It is not reasonable to expect structures that are sensitive to
experimental condition in simulations to lose that sensitivity in the laboratory even
when they are in crystals at 100K.

None of this is to deny the enormous importance of structure for what it is:
the average distribution of ions under special conditions. Models must certainly
be compatible with those structures when the models are computed under the
conditions in which the structures are measured. But structures measured in one
(unknown) ionic condition cannot show how the structure changes under other
conditions, let alone what the energetics and forces are in either case.

A further point needs making, judging from experience with students and col-
leagues, even if it seems obvious. Most measurements of structure are made at
100K, where disorder is much less than at biological temperatures. The entropic
contribution to free energy is proportional to the absolute temperature: it is roughly
speaking T�S. The difference in the entropic contribution at 100 and 300K is sub-
stantial [552] and would have enormous effects in any calculation of rates that
depend on the exponent of the free energy (see Ref. [553] and p. 1991 of Ref.
[182] and Fig. 11 of Ref. [176]). Of course, the structures observed at 100K are
not artifacts. Of course, many of the structures are visible at 300K. Of course, cold
temperatures are used to minimize experimental artifacts (like crystal damage).
Of course, it is also true that ions found in specific locations at 100K cannot be
assumed to be there at 300K [553]. Ions found at specific locations at 100K may
be there simply because the entropy at that temperature is too low to move them
to where they normally reside and function. They may be “salted out” by the cold,
to use some old fashioned language.

In my view, detailed physical analysis is required along with structural analysis,
if selectivity and protein function are to be understood. Computations in atomic
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detail starting with the dynamics of all atoms may someday provide such physical
analysis, but they can only do that after the computations are calibrated to be
sure they estimate macroscopic variables correctly. We know that macroscopic
“thermodynamic” variables describe many biological functions essential to life.
Concentrations of ions and average electrical potentials determine whether nerves
conduct, muscles contract, and patients live. Computations in atomic detail must
be able to compute these variables if they are to deal with the biological functions
they describe.

Perhaps it is best to view the functionally relevant “structure of a protein,” as
well as the structure of forces in a protein, as the computed consequence of a
model, constrained by conventional crystallographic and functional data.

VIII. INVERSE METHODS AND SELECTIVITY MODELS

Determining the mechanism of selectivity is an example of “reverse engineering.”
We wish to determine what is inside the black box of the selectivity filter from
measurements taken outside. Inverse problems of this sort are notoriously difficult,
and involve a set of mathematical problems [525, 526, 554] quite different from
forward problems. In general, the central issue in reverse engineering or inverse
problems is doing the right measurement. Inverse problems are usually ill-posed,
without enough data present to give unique solutions, and often show extreme
sensitivity to error. When a desired result (e.g., the energetics of calcium ions)
is insensitive to the measurement, the measurement is not worth doing. When
the desired result is too sensitive to the measurement, the measurement cannot be
made well enough (with little enough systematic and random error) to give reliable
estimates of the parameters of interest. It is the goal of the experimental scientist
to make measurements of variables that allow the appropriate sensitivity, so the
parameters of interest can be determined.

Despite their difficulties, inverse problems can be solved and are done so rou-
tinely in industry [555], where they are an important tool in process design. The
key is always to have enough data of the right kind. The inverse problem for the
distribution of charge within a channel has been solved with these industrial meth-
ods [321] using a PNP–DFT theory applied to the reduced model described here.
No ad hoc assumptions were needed. Calculations done with added noise and sys-
tematic error were quite robust because of the large amount of data available from
a range of ionic conditions, and the high signal-to-noise ratio of the measurements
of current–voltage relations. In fact, the numerical problem was that of (far) too
much data (for computers at that time) and not too little! Thus, one can have con-
fidence that reduced models can be built that can be tested experimentally. This is
one of the few problems in channel biology or perhaps molecular biology in which
a formal mathematical treatment of the inverse problem has been made.
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The key to solving the inverse problem in channels was to have a large number of
measurements in many different solutions of different concentrations of different
types of ions. Reduced models allow calculations of channel properties under this
range of conditions. So far, high-resolution simulations have not been done in a
range of concentrations. Indeed, many are done with an ill-defined concentration
of ions with uncalibrated free energy. (That is to say, the activity of the ions is not
known.) Reduced models are needed (so far) if calculations are to be done under
the wide range of conditions needed to solve inverse problems.

The need to solve the inverse problem should not be viewed as a mathematical
nicety. If the inverse problem cannot be solved, different investigators will not be
able to distinguish their different models of how selectivity occurs. A search of
the literature concerning the selectivity of K+ channels will show an enormous
diversity of explanations, sometimes with more than one explanation per scientist
or research group. I only cite a fraction of the enormous literature here [42, 171,
172, 174, 185–189, 219, 288, 292, 349, 354, 419, 485, 533, 556–622]. Because
these explanations do not actually deal with experimental data over a range of
concentrations of different types of ions, they cannot be told apart (in my view). In
my view, calculations producing results that cannot be distinguished have limited
utility. Reduced models are needed so far to do calculations in a large enough set
of conditions that one can tell one explanation from another.

I argue again that reduced models have a general role in biology. Without
reduced models, discussion is ill-posed. Different models cannot be distinguished.
One cannot tell one idea from another.

I argue that biology can be analyzed by a series of reduced models, each with a
complexity appropriate for the biological question be asked, each appropriate for
the scale on which evolution has built that biological function. I argue in fact that the
range of scales involved in biology forces us to use a sequence of reduced models.
Inverse methods can help us choose these models intelligently. Variational methods
allow us to compound models on different scales into one overall theory, at least
in principle. Both methods are discussed later in this paper in a general context.

Practical scientists are not impressed by the theory of inverse problems, under-
standably enough, since successful biologists are often people who wish to test
all ideas themselves without the help of abstractions of mathematics or abstracted
mathematicians. So now we move on to the specific case of calcium channels.
Practical scientists can judge the utility of reduced models in everyday experimen-
tal work. Calcium channels can actually be built using the design principles of
these models [509, 510, 512].

A. Building Calcium Channels

Miedema and his colleagues at BioMade Corporation (Groningen, Netherlands
and Rush University Chicago) took a bacterial protein OmpF [105, 110, 112, 344,
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Figure 6. Current–voltage relations recorded from several mutants of OmpF porin. The details
of the mutants are described in papers referred to in the text and they are important. The wild type of
porin is unselective and so has a “reversal potential,” which is channel language for the gradient of
chemical potential of permeant ions of +25 mV under these conditions. The mutants with large densities
of glutamates and small volumes (because of the glutathione derivatives) are calcium selective and have
reversal potentials of approximately −25 mV. See the original papers [509, 510, 512, 624] for details.
The graph is redrawn from data in those papers. Figure built by Henk Miedema, Wim Meijberg of
BioMade Corp., Groningen, The Netherlands. (See the color version of this figure in Color Plates
section.)

346, 623] (in the outer membrane of Escherichia coli) and systematically mutated
and modified it to make a calcium selective channel (Fig. 6).

Many biologists speak of selectivity as a global property arising from the en-
tire structure of the channel protein. If that were the case for calcium selectivity,
mutating a few amino acids in OmpF would not be expected to produce a calcium
selective channel. A bacterial channel shares no properties with eukaryotic calcium
channels. The bacterial protein is built on a different plan, using � barrels instead
of α helices so it has no structural resemblance. Its gating is very different from eu-
karyotic channels. It is obviously built to survive the environmental stresses faced
by E. coli that thrive in the intestinal tract, survive the acids of the stomach (of
industrial strength, pH 1), and drying on the ground. On the other hand, calcium
channels of the eukaryotes are in highly protected environments, maintained by
the homeostatic mechanisms of mammalian life [625]. Small changes in the ionic
environment can have large effects on eukaryotic channels, whereas large changes
in environment have little effect on outer membrane proteins of E. coli.
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Miedema et al. found however that placing glutamates in the constriction zone
of OmpF made a quite selective calcium channel [509]. If glutathione derivatives
were used to fill the constriction zone further, following a suggestion of Professor
George Robillard, very selective channels indeed were created [510, 512]. Figure 6
is redrawn from that work and shows that two different mutants combined with
glutathione derivatives produce channels nearly perfectly selective to calcium over
chloride and reasonably selective to calcium over sodium. The full selectivity of eu-
karyotic calcium channels was not reproduced, however, and this is not surprising
because homology models of the channel show that the volume of the selectivity
filter is much larger in the mutated OmpF than in the wild-type eukaryotic calcium
channel. The theory does not predict a fully selective calcium channel because the
ions are not crowded enough [512].

The success of these experiments suggest that the reduced model is “on the
right track.” But OmpF is a hard protein to work with. It comes in a “three pack” (a
trimer of channels), and its gating is hard to control. Further work on other proteins
closely related to OmpF is under way to see if a fully selective calcium channel
can be built and if one can be modified into a sodium channel.

B. Mutations of Channels

We turn back now to computations of specific systems, in this case the selectivity
of the sodium channel. It turns out that the selectivity of calcium and sodium
channels is interchangeable, in some sense. Mutations can change one into the
other by changing the amino acids in the active site. The question is, can the
models deal with this reality without adding arbitrary complexity?

When mutation experiments of this sort were first proposed, many objected,
on the logical grounds that a mutation of one amino acid into another is likely to
produce confusing, uninterpretable results. The structure of the protein is likely to
change and a variety of interacting physical forces will surely change. Compar-
ing properties of mutated and unmutated proteins would be comparing different
proteins. Results were expected to be uninterpretable.

These objections made good physical sense. After all, changing one transistor
type for another in a digital circuit is not generally a good strategy for modifying
the circuit in a defined way. Confusion is likely to occur when trying to interpret the
results of such a swap, if any results can be found at all: in most cases, switching
transistors will stop function altogether, and there will be no properties of the
computer to study. The computer will not compute, after most modifications, so
the mechanism of its computation cannot be studied at all.

Fortunately, these physical objections did not prevent biologists from forging
ahead and doing the experiments anyway. Good experimentalists like to test every-
thing they can, and then deal with the confusion. This strategy often succeeds in
biology, when it would fail in an engineering system, because the design principles
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of biological systems are often quite simple. Biological systems use design princi-
ples chosen by evolution and these adaptations can be simple: biological systems
have to work or they die.

Indeed, an enormous number of site-directed mutations have been made, look-
ing for specific signatures in the amino acid sequence of proteins that determined
important biological function. Many were found. Many results were confusing but
many were not. In a very real sense, these signatures are the genomic adaptation
that form the blueprint for the physical adaptation. We see this in channels, where
the function of many channels is known to be determined by small sequences of
amino acids [9–12, 626–629].

In particular, calcium channels were found to be [457, 474, 479, 501] defined by
their signature sequence of amino acids EEEE Glu-Glu-Glu-Glu. The negatively
charged carboxyl (COO–) side chains of these glutamates are known to extend into
the selectivity filter region of the channel [462]. Two calciums (or four sodiums)
can balance the permanent negative charge of this active site, and so the electric
field is likely to be more or less neutralized inside the channel.

Sodium channels are defined by their signature sequence DEKA Asp-Glu-Lys-
Ala with a very different charge distribution: the net charge is −1 but the DEKA
active site is very “salty”: it has two negatives and one positive (two acidic amino
acids and one basic amino acid). A calcium cannot balance the net permanent
charge of this channel but a combination of anion and cations can. It seems likely
that the permanent charge of DEKA is not neutralized strictly by the contents of
the selectivity filter, and the electric field outside the selectivity filter is of more
importance than in the calcium channel.

C. Mutations of Models

Site-directed mutagenesis is most helpful in comparing sodium and calcium chan-
nels. Amazingly, calcium channels can be mutated into decent sodium channels
and vice versa simply by changing the key amino acids [459, 475, 476]. A sodium
channel can be mutated to give the “titration curve” typical of a calcium channel
[439, 440, 453, 454, 457, 459, 460, 466–472, 474–479, 481, 630–634] although
with reduced selectivity. There are several comprehensive reviews in the literature
[633, 474] that are most useful summaries of the mutation work.

The question then is what happens if the reduced model of the calcium chan-
nel we have just discussed is mutated into a sodium channel? Specifically, what
happens if we switch the EEEE amino acid side chains for DEKA? The answer
is rather remarkable. If the appropriate mutation is made in the active site in the
model, the calcium channel becomes a sodium channel, without changing any
parameters of the model at all [176].

A little historical detail is needed so our latest simulations [176] are in proper
context. The sodium channel DEKA was studied [491] as soon as simulations
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[492, 379] of reduced models reproduced the main features of the calcium channel.
(Previous calculations were done with crude analytical models [182–184].)

The results of the initial simulations [492, 379] were disappointing. Indeed,
the mutation reproduced the switch from Ca2+ to Na+ selectivity, but the other
properties of the DEKA channel were not satisfactorily reproduced. The crucial
biological properties of the Na+ channel were not found in the initial simulations.
It was easy to reproduce the switch in selectivity from Ca2+ to Na+ but it was
not easy to make the simulated Na+ channel selective for Na+ versus K+. This
disappointment was hardly a surprise, since changes in active sites involving such
a large change of charge seemed likely to change the structure and other properties
of the channel.

The real sodium channel is quite selective for Na+ versus K+ and this selectiv-
ity is of the greatest importance for its function [9, 170, 209, 211, 244, 314, 635]
although Na+/K+ selectivity was not found in the simulations. One could have
adjusted parameters, following the traditions of molecular dynamics and quan-
tum chemical calculations of selectivity, or ignored the Na+/K+ issue, but my
colleague Wolfgang Nonner and I felt that would miss the main biological point.
The sodium channel is all about Na+/K+ selectivity, so we decided to estimate the
extra (unsimulated) free energy needed to produce the selectivity [636] that was
not found in the raw simulations. I think it fair to say that Nonner and I felt we
could not solve the problem without knowing an X-ray structure.

We proved to be wrong thanks to the diligent work of our colleagues who were
slowly improving the model of the calcium channel. It turns out that improved
reduced models are able to reproduce all the important properties of both the
calcium and sodium channels, without changing parameters and without knowing
an X-ray structure. Evidently, a switch in the amino acids of the active site is
enough to perform this “miracle” even without changing the model, without even
changing the diameter of the channel, or the dielectric constant of the protein.
This result is quite surprising since it seems hard to imagine such a drastic change
in an active site that preserves the diameter. Nonetheless, the simulation results
fit experimental results on both calcium and sodium channel properties, with the
same parameters, the only change being the amino acid side chains themselves.

The improvement in the model that allowed this to happen was the treatment
of dielectric boundary conditions. An important stumbling block had been the
dielectric boundary condition needed to describe the different mobility of induced
(i.e., polarization) charge inside the channel protein and in the pore of the channel
itself. Guesstimates of the energies [637] produced by this dielectric boundary
condition suggested that it would not dominate the properties of the channel,
simply because the charge induced in the dielectric was smaller and further away
from the ions than many of the charges on the side chains. The calculation itself
was also difficult because the field needs to be computed accurately close to the
dielectric boundary (where the field is very large) and also far away from the
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dielectric boundary (where the field is small but there are many ions). There are
so many ions far away from the channel that the total energy is significant even
though the field itself has much smaller magnitude at that distance.

Rosalind Allen, working with Hansen and coworkers [638], introduced a vari-
ational approach to this problem that showed how to solve this problem. Gillespie
and coworkers [505, 507] substantially improved the Allen algorithm and showed
it was quite accurate when programmed so that it could deal with curved bound-
aries. Much work has been done on this issue [350, 639–641] and more remains to
be done. Computation of the forces produced by polarization charge is a challenge
at all levels of resolution, from macroscopic, to reduced models, to molecular
dynamics, to quantum dynamics.

D. Dielectric Miracle: Na+ Versus K+ Selectivity

When the dielectric boundary condition was applied to the original simulation,
something quite remarkable happened. Even though the dielectric energy did not
dominate the problem, introducing the dielectric boundary had a profound effect
that we did not anticipate: when the dielectric energy was introduced, the same
model with the same parameters accounted for the very different properties of
the calcium and sodium channel in a wide range of solutions and concentrations.
Indeed, substantially all of the selectivity properties of the L-type calcium channel
and the sodium channel were produced by one model, using crystal radii of ions,
that were never changed, and one dielectric constant for the protein and one for
the ionic solution, in a pore of 6 Å diameter.

This result was not anticipated for many reasons. One was that it differed so
dramatically from results using molecular dynamics and quantum dynamics on
the K channel, where artificial radii differing from crystal radii and other “tuning”
[619]—easily justified by the complexity of the system and the ambiguity of the
high-resolution calculations—were needed to produce a reasonable free energy
of binding [42, 186–189, 292, 560, 563, 575, 580, 598, 617–619, 642–645]. It is
not known how well these high-resolution simulations deal with real experimental
results because they are performed with force fields calibrated in ideal solutions
(of zero ionic content) and are actually performed in solutions of one ionic com-
position. The activity of the ions in that one solution is not known. The inability
of molecular and quantum dynamics to calculate selectivity of K channels (in a
variety of realistic solutions) was not a surprise. The difficulties of simulating free
energies of ions in bulk solution with molecular dynamics are well known to us
(see Ref. [224] and others, for example, [116, 118–120, 122, 124–127, 130, 386,
387, 389, 390, 500, 646–653]). It does not seem constructive to go on at length with
this criticism. The fundamental properties of ionic solutions are their free ener-
gies per mole. These cannot be simulated or computed in reasonably concentrated
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solutions or in mixtures at all, according to the leading workers in the field (see
discussion in Refs [118–120, 125, 126, 130, 654]).

What is surprising is that a model as crude as ours could succeed then in com-
puting the binding of ions in two types of channels. Similar models do even better
and can compute current–voltage relations as well in a closely related channel
[180, 301, 381, 438, 496, 498]. Our model does not have any preformed structure
and we thought that details of the crystal structure would be very important. After
all, the general view, from which we were certainly not immune, was that details of
the atomic arrangement of ions and side chains would be important in determining
selectivity and those details could not be determined without X-ray structure.

What is so striking is that the properties computed without knowledge of crystal
structure could do so well [176]. Let us review these results before we seek to
explain them.

1. The calculations were done for an EEEA and DEKA calcium and sodium
channel to keep the model as close to experiments as possible. (Separate work
shows that simulations of EEEE channel have the full selectivity expected
[175].)

2. Crystal diameters were used Ca2+ 1.98 Å, Na+ 2.00 Å, K+ 2.66 Å and side
chains were represented as 2.8 Å spheres (glutamate and aspartate), 3 Å
spheres (lysine), or ignored (alanine). The channel diameter was 6 Å. Note
that the diameter of the channel is about twice that of the ions. The image of
a tight single file is not appropriate. Sodium channels are known not to have
characteristics of single file diffusion [655–657] that are prominent in the
classical analysis of K channels [9, 258, 658] but have historically [9, 258,
349] been used as a presumptive signature of all channels [9], inappropriately
in my view. The dimensions of the channel rather seem to guarantee large
crowding effects between ions and side chains, as well as between ions
and ions, and ions and the rest of the protein. Everything interacts with
everything else. Everything is involved in structures of this type. No one
effect dominates. Single file features of uncharged balls in narrow filled
plastic tubes, that Hodgkin and Keynes [658] had in mind, along with others
[9, 258, 349], are not an appropriate metaphor to analyze ions crowded
into channels moving on timescales of femtoseconds that carry currents on
timescales of micro to milli to seconds to even minutes (in measurements of
unidirectional fluxes).

3. The water dielectric coefficient was around 78 and the protein around 10. It
should clearly be understood that the dielectric coefficient in the pore and
the bulk were the same in these calculations even though most biologists—
including Wolfgang Nonner and I—would expect a different dielectric coef-
ficient in the pore from that in the bath. Computational difficulties are serious
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in such a three dielectric model. Dezs´́o Boda has recently overcome those
and is in the process of writing a series of papers about the resulting effects.
At this stage, it is clear that the conclusions discussed here are reinforced,
not weakened, by his results to date.

4. The main selectivity sequences found in natural channels of monovalent and
divalent cations are computed without changing any parameters for both the
DEEA Ca2+ channel and the DEKA Na+ channel.

5. The qualitative properties of the DEEA binding and the DEKA binding are
correctly simulated by the reduced model.

6. There is no simple physical explanation for the range of binding phenomena.
No simple explanation would be expected because a number of terms are
involved in the binding free energy and these are all of the same approximate
size. Each term varies with concentration of all types of ions, because this
system is highly nonideal. (A characteristic of all nonideal systems is that
everything interacts with everything else, that is, the free energy of any one
component depends on the concentration of every other component, one at
a time, see item 2 above). In a situation like this, one cannot expect to rely
on a simple verbal explanation of the full range of behavior, because all the
terms are about the same size and vary with all conditions [177, 181, 182,
380, 496, 498, 506]. One can compute that behavior, but one must expect to
need to compute, and then understand. This is a familiar reality in applied
mathematics, physics, and physical chemistry. It will become more and more
common, I feel, in computational biology.

Despite the expectation of complexity, however, simple qualitative explanations
are possible for the biologically important selectivity properties of the Ca2+ and
Na+ channel. The selectivity of the calcium channel for Ca2+ versus Na+ has a
simple explanation. (The selectivity of the sodium channel for Na+ versus K+ also
has a simple explanation we will discuss a little later.)

E. Na+ Versus Ca2+ Selectivity in the Calcium Channel

The selectivity of the calcium channel for calcium over sodium is crucial for its
function. If sodium displaces calcium in the calcium channel, the heart would
stop, nerves would not work, death would result. Interestingly, in this case, the
simulations show that only two components dominate the properties of the channel
(of the several possible [182, 184]). Sodium ions are much more crowded in the
EEEE channel than calcium ions and so they are excluded. Four Na+ are needed
to balance the charge and four sodiums occupy about twice the volume of two
calciums. The theory gives a convincing explanation of why our model produces
selectivity of Na+ versus Ca2+. We cannot be sure the channel works this way, but
the model fits a great deal of data, and has a simple physical explanation, so it is
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tempting to conclude that the explanation of the model is also the explanation of
the channel.

The excluded volume term favors calcium over sodium for a simple reason. The
charge of the structural oxygens—the glutamate side chains—pins the contents of
the channel. The net charge of the channel must be close to zero to keep the voltage
from being lethal. (Remember that ∼250 mV is a lethal potential inside a channel.)
So there must be four Na+ in a sodium filled EEEE channel, or two Ca2+. Sodium
and calcium are nearly the same size. It is clearly energetically much more difficult
to crowd four spheres into this space than two, so the number advantage of calcium
is very large.

The electrostatics also play an important role here, as they almost always do
when divalents and monovalents are both involved. Divalent calcium brings two
charges (from its nucleus plus inner shell electrons) to more or less the same
distance from a glutamate as monovalent sodium does. Thus, the electric field
is much smaller when calcium is present. It is much more effectively screened.
This electrostatic shielding term is nearly as large as the excluded volume number
advantage caused by the extra crowding of sodium ions.

The crowding and electrostatic energies are so large that the entropic orien-
tational free energies (corresponding to the details of the crystal structure) are
unimportant. The structural details that so preoccupied me for many years just do
not contribute much energy compared to charges packed into some 300 Å3 at a
number density (in chemical units) of more than 20 M!

Ions this crowded obviously are in a very special environment. The smallest
change in their average location will produce huge changes in crowding (in the
excluded volume energy) and in the size and shape of the electric field and thus in
the electric energy term.

What was not clear for some time was how a reduced model could deal with this
sensitivity. We have already presented the answer. (For the sake of motivation and
clarity, I departed from the historical order of things.) The model is self-organized
and the fit of ions to each other, and to the side chains and to the channel is
determined by a Monte Carlo simulation that automatically adjusts the location so
the ensemble of ions has the free energy (both energy and entropy) of a Boltzmann
distribution [179].

F. Na+ Versus K+ Selectivity in Sodium Channels

The selectivity of the sodium channel for Na+ versus K+ also has a simple expla-
nation. It turns out that the selectivity arises because of the rejection of K+, not
the binding of Na+.

Most scientists who study enzymes, proteins, and channels have assumed that
selectivity arises in binding because enzymatic chemical reactions usually include
a binding step and it seemed natural to include different binding for different
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Figure 7. The number density (concentration) of ions in the selectivity filter of a DEKA (glu-
tamate aspartate lysine alanine) sodium channel. Note the binding sites (i.e., regions of high number
density) are not selective. Remember that the binding sites are the consequence of the forces in the
model. No arbitrary free energies of binding are in the model. These are outputs of the simulation.
Selectivity in this channel between Na+ and K+ arises in the depletion zone.

ions. Indeed, it is hard to find any other explanation of selectivity or specificity
in textbooks or reviews of the biochemistry, channels, or binding enzymes. Our
simulations do not include chemical free energies of binding. All binding in our
models is the result of crowded charges and electric fields.

We were, then, very surprised to find in our simulations that Na+ versus K+ se-
lectivity in the DEKA sodium channel was produced by depletion of K+, not bind-
ing for Na+ (see Fig. 7). Biology seems to have chosen to use simple phenomena
to determine functionally important properties. Na+ ions are rejected by calcium
channels because they collectively occupy too much volume. K+ ions are rejected
by sodium channels because they are excluded from a specific depletion zone.

Indeed, binding sites were found in our results—as OUTPUTS of the
simulation—but these binding sites were not selective. Rather, K+ was altogether
absent from the selectivity filter. The selectivity filter created a depletion zone
without K+.

It is important to reiterate again that binding in our model is an output of
computation. There is no chemical energy involved. Binding in our model is simply
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a concentration of ions beyond that in the baths. The energy for binding comes from
the balance of forces in the model, namely the hard sphere excluded volume effects
and electrostatics. In the computation of these energies, the charges and excluded
volumes of all types of ions interact with the charges and excluded volumes of
all other ions, in a highly nonideal environment that resembles an ionic liquid
more than the ideal gases of most of our educations. Of course, our explanation
of binding may be incomplete. Other forces and energies may well be involved
in other systems. But in the system we compute, no other forces or energies need
be invoked to explain an enormous range of data. Indeed, the fits to data are good
enough that there is not room for other energies. Adding additional energy terms
would most likely disturb the existing fit to actual experimental data.

The depletion zones that produce the selectivity for Na+ versus K+ were a
surprise to me in one sense but not another. I had not anticipated that depletion
would be involved in selectivity, but I had anticipated that biology would use
depletion zones in one way or another. My colleagues and I had spent a great deal of
time in the 1990s [101–104, 114, 164, 165, 178, 183, 264, 296, 297, 299, 321, 323,
347, 373, 381, 637, 659–682] studying the electrostatic properties of ion channels
and their resemblance to semiconductors: the holes of semiconductors resemble
the cations of ionic solutions, and the semielectrons (i.e., the quasiparticles with 1
negative charge) of semiconductors resemble the anions of ionic channels. I thus
knew of the importance of depletion zones in transistors: depletion zones govern
most of the technologically important properties of transistors. And I knew why
depletion zones were so useful: when concentrations of charge carriers are small,
tiny changes in concentration can have huge effects. Thus, gain is easy to produce
and control. On the other hand, in enhancement regions, large changes need to
be made to change concentrations significantly, making gain hard to produce and
harder to control.

I had expected to find biology using depletion zones, and said so in a number
of papers, but I was thinking of electrical properties and not of selectivity. Indeed,
in my work quoted on the Poisson–Nernst–Planck model, I had assumed ions
were points (as were holes and electrons), missing the essential importance of the
finite size of ions in determining all the nonideal behavior of ions in water and
in and near proteins. I was not alone by any means [265, 293, 294, 363, 365–
370, 567, 585, 683–733] and even workers who explicitly compared Brownian
dynamics of finite diameter particles and PNP of point particles [115, 129, 265,
293, 294, 362, 363, 366, 567, 693, 695, 698, 701, 704–706, 710–712, 714, 719,
726, 727, 731, 732] seemed unaware (along with me) of the importance of finite
size in classical treatments of ionic solutions (a few of the references are [117–
120, 125, 129, 227, 384, 385, 388–390, 447, 646, 650, 734–741]) and discrete ion
effects [742]. Indeed, differences between Brownian dynamics simulations and
PNP probably reflect the finite diameter of ions in the simulations rather than any
more sophisticated difficulties in PNP. Thus, I had not anticipated that depletion
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zones caused by the interactions of the electric field and the competition for space
inside a channel were the cause of Na+ selectivity in DEKA sodium channels.

We see, then, that two of the crucial properties of calcium and sodium channels
are produced in quite a simple way. The physics of interactions in these systems is
very complex. Everything interacts with everything else. But biology seems to have
chosen to use simple phenomena to determine functionally important properties.
Na+ is rejected by Ca2+ channels because it occupies too much volume. K+ is
rejected by Na+ channels because they have a specific depletion zone. (So far, we
do not have a simple explanation of how the side chains and other features produce
this depletion zone.)

It turns out that biology has also used simple parameters—diameter and dielec-
tric coefficient—to control some crucial properties of the sodium channel, namely
its contents and its selectivity. This simplification was not expected.

G. Control Parameters

In general, when one is dealing with models of phenomena as complex as selectiv-
ity, particularly when one is using models as reduced as ours, effects of changing
parameters are almost never “clean.” Changing one parameter changes many out-
puts of the model.

Our model had only two parameters, dielectric coefficient and diameter, and
not surprisingly, changing one or the other had complex effects on almost every
property of a EEEE calcium channel.

We were amazed to find quite different behavior in the DEKA sodium channel.
Here changing the diameter of the channel had no effect on the occupancy of the
channel, that is, on the number of ions in the channel. The diameter had a huge
effect on selectivity, that is, on the ratio of Na+ to K+ occupancy, but no effect we
could measure on the total occupancy (Fig. 7).

The dielectric constant (of the protein), on the other hand, had a huge effect on
the occupancy of the channel but no effect on its selectivity (Figs. 8 and 9).

In a nonequilibrium extension of the model, one would expect occupancy to
determine conductance (to a first approximation under most conditions), and ratios
of occupancy to determine selectivity. Thus, it seems that the model has “orthogo-
nal control parameters”: the dielectric coefficient controls conductance; diameter
controls selectivity.

It is as if the genome determines the phenotypes of selectivity and conductance
by controlling the effective dielectric coefficient and effective diameter. We cer-
tainly have not proven this idea, nor is it clear how one would do that. But what is
striking is that these orthogonal control parameters emerge as outputs of the sim-
ulations, when these properties have not been built into the simulation in any way.

It seems obvious that these control properties are more a result of biology than
physics. By this I mean that only in a particular geometry and set of conditions
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would diameter and dielectric coefficient not interact. It seems as if biology has
chosen to use simple strong energies (of crowding and electrostatics) to allow
simple control of the biologically important properties of the sodium channel.

This behavior came as more of a surprise to me than to those of my colleagues
who are practicing engineers. They know that devices are often designed to be
robust and controllable first, and then to have good performance. The sodium
channel behaves as if were designed to have robust and controllable selectivity
and conductance. It is interesting that sodium channels in different locations in
the heart and the brain are “isozymes” (i.e., are closely related proteins) that have
different selectivity and conductance.

IX. REDUCED MODEL OF TRANSPORT THROUGH A CHANNEL

A significant success of reduced models is their ability to deal with nonequilibrium
phenomena involving fluxes and current flow through open channels. Currents
through open channels change as the voltage is changed. Measurements of the
current–voltage relation are particularly revealing (and stressful) tests of models.
It is easy to sweep voltages over a range of energies far wider than the range of
energies that can be changed by changing concentrations and chemical potentials.

Voltages can be easily swept from −150 to +150 mV that is a range of approx-
imately 12× the thermal energy, 12 (kBT/e). It is much more difficult experimen-
tally to change concentrations than to change potentials—the experiment takes
minutes or even hours compared to seconds, and the possibility of wrecking the
experiment is very much larger. In addition, single channel measurements in the
patch clamp with solution changing require special methods [743, 744]: some of
the methods reported in the literature from well known groups are hard to perform,
hard to reproduce, and introduce dramatic noise and artifact. It is rarely possible to
change concentrations more than a factor of 10× without encountering new phe-
nomena irrelevant to the issues at hand: a 10× change in concentration is roughly
a 2× change in thermal energy, 2 (kBT/e). It is far better to change voltage across
channels than concentration when testing models.

The reader should be warned that most of the current–voltage or current–voltage
time recordings in the literature are not directly relevant to the theories described
here. The theories described here are for currents through a single channel protein
molecule of a single type with controlled voltage and concentration across it. Such
measurements are hard to make. Most recordings in the literature are from ensem-
bles of channels, measured in what is often called the “whole cell recording” using
the patch clamp method [133, 136] to measure current from whole cells, not from
single channels. These measurements are of current through the “conductances”
of many channels, perhaps through many chemically different types of channels
that have different structures, functions, and genes.
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Most measurements are ensemble measurements that resemble those made with
the classical “space clamp” of Hodgkin and Huxley [160] and Cole’s laboratory
[249] or with microelectrode measurements from spherical or finite length cells
[191, 193, 250, 251, 254, 745, 746]. Ensemble measurements record currents
from channels that are opening and closing and so they involve both gating and
permeation through an open channel.

The reader should also be warned that ensemble measurements sometimes, or
even often, include currents from many types of channels and so can be nearly
impossible to interpret in a unique way. Before the invention of single channel
recording [133–136, 747], measurements were almost always made from mixtures
of different types of channels.

Measurements of single channels that we analyze with the theories of this paper
have the enormous advantage that they separate properties of gating and open
channel conductance. They also measure current from just one type of channels,
not from a mixture of different types of channels. The reduced models of this paper
are comparable only to measurements of currents from single channel molecules
of one type. Measurements from ensembles almost always involve opening and
closing properties of channels, not described in the theories used here.

Current–voltage measurements have been interpreted with rate models for a
long time [9] starting even before single channel recording. These models are
subject to serious criticisms discussed in this paper, and in the literature for some
time as well [103, 104, 164, 165, 264, 265, 294]. A sufficient reason to reject these
models is their inability to predict currents of more than a few tenths of a picoamp
[103, 104, 164, 165, 264, 265] when friction is included in the formulation of the
prefactors of the rate model, as it must be in a condensed phase [232] like an ion in
a channel [264, 293]. Currents through channels are typically larger than 10 pA.
Theories must fit experimental results as actually recorded in the laboratory, in the
units recorded, not just in normalized units, or reported in ratios.

Physical models have been used to describe current–voltage relations of chan-
nels for some time involving friction, starting with the work of Levitt [717–728], as
far as I know. Permanent charges in the channel protein were introduced [114] with
PNP theory (see historical references that are sampled in Refs [104, 748, 749]).
Three-dimensional versions of PNP theory soon followed [368, 370, 676, 685, 698,
713, 729] although numerical difficulties were not put entirely to rest until spectral
elements were introduced [676] and tested extensively [675] by Hollerbach [637,
675, 677, 678, 750].

Attempts to deal with selectivity with PNP were not very successful [1, 660,
666, 667, 751] because they did not include the finite size of ions. This early work
[1, 666, 667] showed the way to include the excess chemical potential [452, 752].
Finite size effects were introduced later using the excess chemical potential [182,
184, 492]. Recent references to finite size effects can be found in [175–177, 499].
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The most successful treatment of selectivity and current–voltage relations is that
of Dirk Gillespie, working with Gerhard Meissner and his group [181, 753, 754]
and Fill and coworkers [180, 301]. Gillespie has described finite size effects in the
tradition of the density functional theory (DFT) of Rosenfeld [380, 755, 756] (of
molecules in fluids). The DFT of molecules in fluids should not be confused with
the more widely known density functional theory of electrons [757] (in orbitals).
Gillespie has extended Rosenfeld’s DFT to deal with ions [438, 508] and checked
his approach carefully against Monte Carlo simulations of the primitive model
[381, 438, 508, 758]. We [381] and then Gillespie [180, 181, 301, 496, 497] took
the excess free energy computed by DFT and added it into the ideal free energy
of classical PNP (also see [666] that grew from the previous work of Eisenberg
[103, 104] and Chen [752]). Gillespie then developed a DFT+PNP theory that
has proven remarkably successful in dealing with nonequilibrium data from the
ryanodine receptor, as we shall see.

X. REDUCED MODEL OF A “TRANSPORT” CHANNEL THE
RYANODINE RECEPTOR

The ryanodine receptor RyR is the final common pathway for the calcium move-
ment that controls contraction in cardiac and skeletal muscle [759, 760] and has
been extensively investigated for many years [761–763]. We [764] first caught
RyR in action in the electron microscope nearly 30 years ago, along with others
no doubt.

The function of the ryanodine receptor is to transport large amounts of calcium
so it can control the Ca2+ concentration in the cytoplasm of the muscle fiber as
quickly as possible. The calcium is stored in the large “sack” formed by a membrane
called the sarcoplasmic reticulum in muscle fibers. (Indeed, the channel exists in
neurons as Rosenbluth saw long ago [765] and is evident in thousands of papers in
the modern literature. Many other cells use Ca2+ as a controller of function, and the
RyR is expected to exist and control function in all these cell types. Biology uses
the same motif in many places to do many things, just as a computer designer uses
transistors to do many things. The RyR may be involved in Alzheimer’s disease
as well [766]).

The RyR channel is specialized to pass fluxes of calcium and so it is natural
[301] that the channel is not very selective [301] If it passed only calcium ions,
the electrical potential across the channel would rapidly change, the electrical
potential in the sarcoplasmic reticulum would approach the chemical potential
gradient for calcium. The difference between the electrical and chemical gradient
would approach zero, and the flux of Ca2+ would cease. Remember that membrane
systems in intact functioning cells or organelles are not voltage clamped by external
sources or apparatus. Their voltage is free to move and is in fact determined by
the relative conductance of the open channels in their membranes [149, 150]. The
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RyR channel is not only permeable to Ca2+ but also other cations found inside
the cell, most notably K+ and Mg2+ that are in fact in (near) equilibrium across
the sarcoplasmic reticulum membrane and control the potential (for the most part)
independent of calcium flow. The net current flow is small, with K+ and Mg2+
currents in one direction balancing the Ca2+ current in the other direction. It would
be interesting to examine the properties of the fluxes through the RyR system in
the tradition of classical transporters, instead of the tradition of classical channels.
To what extent do the unidirectional fluxes of the RyR system show coupling like
the unidirectional fluxes through antiporters or symporters of classical transporter
theory? Does the RyR system behave differently from a classical transporter? Is
it possible that the RyR channel is (more or less) a transporter in disguise? The
Gillespie and Fill model [301] is a complete description so it can be used to compute
unidirectional fluxes and answer these questions.

Gillespie and Fill [301] have shown with this discussion why the RyR is not a
highly selective calcium channel like the L-type calcium channel discussed previ-
ously. In fact, RyR is so poorly Ca2+ selective that the membrane potential across
the channel is about ∼2 mV, set almost entirely by other ions and maintained by
large K+ and Mg2+ countercurrents. This interplay of selectivity, conductance,
potential and current may seem strange to those not used to it, but this inter-
play has been at the classical heart of electrophysiology, and has been textbook
material [149, 150, 376, 767, 768] since the selective permeability of membranes
was recognized by Hodgkin, Huxley, and Katz [209, 252, 314, 769]. The interplay
determines, for example, the electrical signals [770, 771] produced by different
channels in different membranes [772,773] of skeletal muscle.

Gillespie has constructed a model of the RyR showing how its selectivity might
arise from its known molecular properties. The reader is referred to the main Ref.
[496], including important supplementary information for a complete description
of the model, along with the additional papers on the RyR [180, 181, 497]. For
our purposes, the model channel can be described as a DEDDE (glutamate, aspar-
tate, glutamate, glutamate, aspartate) channel in which the seven nonequilibrium
parameters (the diffusion coefficients for Li+, Na+, K+, Rb+, Cs+, Ca2+, and
Mg2+) were determined by nine data points out of the more than a thousand mea-
sured in more than one hundred solutions. The structural parameters and diffusion
coefficients were never changed in Ref. [496] (see Figs. 10 and 11).

Gillespie’s reduced model fits linear current–voltage curves such as those in
Fig. 10a, measured from a channel bathed in a single electrolyte. Producing straight
lines such as these might be thought trivial, but such is not the case. Straight lines
are in fact difficult to produce when the inherent functions and properties of the
model are nonlinear. Classical barrier models with exponential flux relations cannot
produce linear current–voltage relations when large gradients of concentration are
present [9, 258]. Linear current–voltage relations are found in the open channels
of a wide variety of channels [626–629]. The first clue that classical barrier models
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Figure 10. Current–voltage relations and fit with Gillespie’s DEDDE model. Details discussed
are in text. Figure is redrawn from Figures S1-A and S9-A of supplementary material of Refs [496,
774]. Data was originally published in Ref. [667] and/or [1]. I thank Dirk Gillespie for providing the
data and reading my discussion of his RyR results.
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Figure 11. Current–voltage relations of mutants fit with Gillespie’s DEDDE model. Details are
discussed in text. The mutants are drastic as described in Refs [753, 754] and involve large changes
in the density of permanent charge of the order of 13 M [181]. Nonetheless, the same model with the
same parameters fits the data remarkably well in different solutions. Evidently, not even the diameter
of the channel changes significantly when these drastic mutations occur. Or, more precisely, whatever
structural changes occur with these drastic mutations do not disturb the energetics of the channel as dis-
cussed at length in Ref. [496]. Figure is redrawn from Figures S1A and S9-A of supplementary material
of Ref. [496]. Wild-type data was originally published in Ref. [667] and/or [1], and mutation data in
Ref. [181]. I thank Dirk Gillespie for providing the data and reading my discussion of his RyR results.
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are poor descriptions of channels came from the discrepancy between the curved
behavior of their current–voltage predictions and the (often) linear behavior of
current–voltage curves measured from real single channels.

Current–voltage relations of the RyR are not always linear. When the RyR
channel is placed in mixtures of ions (Fig. 10b), current–voltage relations are
nonlinear. Nothing needs to be changed to fit the very different properties of the
channel in mixed solutions. These nonlinear current–voltage relations are fit with
the same reduced DEDDE model and same parameters that fit the linear current–
voltage relations in solutions of a single electrolyte.

Mutations have been made [753, 754] that change the charge of the RyR selec-
tivity filter a great deal. The permanent charge density is changed by 13 M [181].
Not surprisingly, the current–voltage relations observed change a great deal when
these mutations are made, because the permanent (fixed) charge changes a great
deal (Figs. 10 and 11). Gillespie’s model fits this data quantitatively without chang-
ing its parameters at all despite large changes in the permanent charge density of
the channel. Evidently this change in charge density does not even change the
diameter of the channel very much.

The fit is particularly striking because it has so little error. Remember that a
horizontal displacement of some 12 mV in the graphs corresponds to a fraction of
the thermal energy, about 0.5(kBT/e). Many of the curves shown in supplementary
information of Ref. [496] fit much better than that; a substantial number of points
are within 1 mV, 0.04(kBT/e). This accuracy should be compared to the errors
estimated by the authors of high-resolution models of selectivity [186–188, 601,
603, 617, 619, 775], which are often worse than 2(kBT/e) in one dilute solution. The
errors are not specified in other concentrations or in mixed solutions of different
types of ions at all. (Remember biological function, including that of the RyR
channel occurs only in such mixed solutions.) Errors of 2(kBT/e) would produce
misfits in current–voltage curves even in pure solution so large that the graphs
would probably not be published. Current–voltage relations measured in pure
solutions of one type of ion would not be helpful in understanding the function of
channels that only function in mixed solutions containing many types of ions.

Sensitivities and errors of this sort also occur in nonbiological contexts when
all atom simulations are performed. Computations of the activity coefficients in
a range of solutions have large errors (see Refs [120, 125, 224] and the refer-
ences cited there). The calibrations of simulations called for by numerical analysts
[222]—and users [221] of simulations—are not easy to achieve in practice and
have not yet been achieved [125] in molecular dynamics simulations of ions in
water despite the progress and hard work of many laboratories [116, 120, 122,
124, 126, 127, 130, 387, 648].

The biological channel system has anomalous properties not expected in ideal
solutions, such as the anomalous mole fraction effect. The anomalous mole frac-
tion effect AMFE is a nonlinear nonmonotonic dependence of conductance on
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ionic composition. As one ion type is swapped for another—think [496] 125 mM
NaCl and 125 mM CsCl being changed to 250 mM NaCl or 250 mM CsCl—the
conductance of bulk solution changes monotonically. (In these experiments, the
mole fraction of an ion type is changed but not the total concentration of all ions.
Hence, the name.) The conductance of channels often changes nonmonotonically
in such experiments and this is called anomalous for that reason (see [452]).

Gillespie’s model [180, 181, 496] predicted the anomalous mole fraction effect
of the RyR (before the experiments were done) without invoking any obligatory
frictional interactions (see Fig. S7 of supplementary material to Ref. [496] and
Fig. 1 of Ref. [180], computed before the experiments were done), showing, as
did previous authors [452],—but now with much more work [180, 497, 498]—that
the AMFE has been misinterpreted in the tens or hundreds of types of channels in
which it has been studied [626–629]. The AMFE has been widely, if not universally
used in the 20th century channel literature [9, 258] as an indicator for single file
behavior. This is incorrect. The AMFE can occur in channels without single file
interactions, even in large diameter nonbiological pores [498].

It is important to remind twenty-first century audiences that the criteria, even
definition, of single filing is actually the competitive interaction of unidirectional
fluxes [377, 776], not the AMFE. Unidirectional fluxes are also (understandably)
confusing for people who have not made such measurements. Few measurements
of unidirectional fluxes are made nowadays, and some of the original experiments
[777, 778] cannot be repeated legally within present laws and regulations, at least
in the United States. The AMFE is much easier to understand and measure and
is taught early and often to channel biologists. Thus, it is not easy to question
and has come to replace the unidirectional flux ratio as an operational defini-
tion of a channel. This is unfortunate since the AMFE is not a marker of single
file behavior.

In contrast to the AMFE, unidirectional flux rations are quite robust theoretical
markers of single file behavior at least in diffusion models [779–782]. Competi-
tion in unidirectional fluxes seems to imply frictional interactions on the atomic
scale (although self-consistent theories of unidirectional fluxes have not yet been
investigated, as far as I know). Concomitantly, the definition of transporters is the
cooperative interaction of unidirectional fluxes. In this regard, it is important to re-
member that the classical voltage activated DEKA sodium channel does not show
single file behavior in its unidirectional fluxes—measured with painstaking care
by Rakowski and coworkers [655, 656] in more than a decade of experiments on
the squid axon. AMFE’s are not correlated to selectivity or other behaviors of ion
channels in any simple way.

Gillespie has not yet applied his analysis of the AMFE to the “mixed alkali”
effect of physical chemistry although an outsider like me imagines that the effects
are quite similar, at least in some cases. A fraction of the literature of mixed alkali
effects can be found in Refs [390, 646, 647, 783–789].
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Mixed alkali effects seem likely to arise whenever interactions are strong and
nonlinear. In my view, it will remain difficult to decide between competing physi-
cal explanations [34, 180, 361, 424, 523, 525, 611, 696, 783, 790] of mixed alkali
effects with classical approaches because they do not deal with interactions in a nat-
ural way or (self) consistent way. The variational approach EnVarA discussed later
in this chapter holds more promise in my view because it deals with interactions
consistently without invoking many parameters that are hard to estimate.

XI. CONCLUSIONS AND IMPLICATIONS OF THE CROWDED
CHARGE REDUCED MODEL

It seems clear that the reduced models channels as charged spheres in a small
space are quite successful. These simple models using the simplest kind of physical
chemistry deal with complex biology. It is also clear that this model is successful
for two main reasons: (1) it calculates the energies that biology seems to use to
produce selectivity in these channel types; (2) it calculates a self-organized binding
site, with an induced fit between ions and side chains and vice versa. The approach
of the physicist—“guess and check,” then add complexity—seems to have worked.

The implications of this success seem significant. It provides an alternative
path to the common approach using molecular dynamics, best shown in the huge
literature on the selectivity of the potassium channel already cited. The common
approach tries to compute everything, despite the enormous gaps in scales that
make this so difficult (see Table I). Clearly, more resolution will be needed than
we have used so far, as other channels and other properties of calcium and sodium
channels are computed. All those features of the protein are there for a reason.
The lysine of the DEKA channel does more than just contribute charge in all
likelihood. But as we add resolution, it is important to preserve the features that
make the low-resolution model successful.

It seems that higher resolution models must share the important features of
the reduced model if they are to share this success. Higher resolution models
can deal with calcium channels (for example) only if they compute energies with
similar properties to those computed by the reduced model under the range of
conditions that the calcium channel model succeeds in fitting data. Specifically,
a higher resolution model—applied to the same system of spheres—should give
results nearly the same as the reduced model in a range of concentrations of Ca2+
from 10−7 to 1 M, and a wide range of Na+, K+, and so on, concentrations, and
a range of divalent concentrations as well. Just as importantly, higher resolution
models should be shown to change selectivity when the side chains are changed
from EEEE to DEKA.

So far higher resolution models of molecular dynamics, using elaborate force
fields to describe interatomic forces, have not yet been shown to reproduce the
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results of simple models correctly. If high-resolution simulations do not deal with
the issues known to be important in the laboratory, it is not clear how higher res-
olution simulations can deal with real laboratory results. Higher resolution mod-
els need to include specific concentrations in the bath as inputs. Higher resolu-
tion models must estimate activities of individual ions with reasonable accuracy.
Experimentalists know they must estimate activities reasonably accurately even
to identify the type of channel they are studying. They know that most of the
properties of proteins and channels depend on the concentration of ions. So far
higher resolution models of molecular dynamics, using elaborate force fields to
describe interatomic forces, have not yet been able to deal with a range of ionic
concentrations in mixed solutions. They have not been able to calculate activi-
ties over a range of concentrations or in mixtures, or even in pure solutions of
divalents like CaCl2. Thus, at this stage we believe that high-resolution models of
selectivity are not yet ready to be compared with low-resolution models, or with
experimental data.

Despite all this discussion, it is obvious that higher resolution is needed than
the crude reduced models that we have used so far. More details in the structure are
certainly involved in some functions of the calcium and sodium channels we have
dealt with. More details of the structure may be involved in the main selectivity or
binding properties of other channels and proteins. Molecular dynamics with force
fields is in fact a kind of reduced model, because the parameters of the model are
determined (in large measure) from fits to macroscopic data. The advantage over
the reduced models used here is that they include all atoms. The disadvantage is
that they do not deal with ions very well in pure solutions, let alone in concentrated
mixtures. Perhaps an important difficulty is the choice of macroscopic data. Perhaps
when force fields are calibrated against measurements of the activity of ions they
will do better.

Until higher resolution models are actually calibrated against simpler models, it
will be difficult to compare the two classes of models, however. The tradition of the
physical sciences assumes such calibrations are necessary in most cases. Certainly,
engineers know that calibration is necessary if their devices and machines are to
work or are to improve as complexity is added. Biological scientists perhaps need
to learn here from our physical colleagues.

If the models cannot be compared, science as we know it cannot proceed, in
my view. The scientific method requires us to be able to choose between models,
at least in principle. If we cannot, because our computations are inadequate or our
experiments are incomplete, we should do something else, until our technology
advances to where we can do something useful. The scientific endeavor of “guess
and check” can be viewed as a social process, that is justified if it discovers some-
thing useful, or builds something that works. “Guess and check” cannot converge
to a useful result (to use mathspeak), if check is impossible. If different models
cannot be distinguished, checking them is impossible and science, as I define it,
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does not work. The need for checking and the need for calibration are essential
components of the scientific process I think.

The need for calibration of molecular dynamics thus seems self-evident to some
of us [221, 222, 224]. The issues are not just the force fields, but the numerical
difficulties themselves (which we shall describe later). Work actually comparing
properties of ions in solution with ions in known physical systems is just beginning
[116, 120, 122, 124–127, 130, 387, 500], also see Refs [224, 648, 651]. Extending
this work to deal with experimental reality is a great challenge but certainly one
that can be met as computational size and scientific wisdom increase, hopefully at
comparable rates.

A. What are the Source of Problems with High-Resolution Models?

This chapter is not focused on issues of simulations, but on issues of channels.
Nonetheless, it seems important to summarize the main difficulty in actually using
the high-resolution simulations that are so widely computed today. (References to
high-resolution simulations of K channel selectivity were given previously.) These
simulations seek to compute biological function with atomic resolution. It is clear
that biological function is controlled by individual amino acids and even by side
chains of those amino acids. Computers are growing in power at an exponential
rate. It is natural to try to exploit the growth of computing capability to deal directly
with biological problems.

The main difficulty with this approach are problems of scale. These are
formidable, as summarized in Table I. There is little freedom in the choice of
scales in Table I. The reality of atomic motion is known. The reality of biological
function is known. They both must be computed if atomic detail simulations of
actual biological function are to succeed in their stated goal of being able to deal
with experimental and biological reality.

Timescales are set by the timescale of atomic motion and the timescale of bio-
logical function. The fastest biological function is that of signaling in the nervous
system (if the photon phenomena of vision and photosynthesis are excluded). Sig-
naling occurs in 10−4 s at the fastest. The timescale of atomic motion is set by the
timescales of atomic vibrations that occur around 10−16 s. The ratio of timescales
is 1012.

Spatial scales are more complex. The linear range of dimension starts with the
resolution needed to define side chains 10−11 m and reaches to the size of animals,
say 100 m. Here we are concerned mostly with cellular processes so we choose
a typical cell as our largest scale, say 10−5 m for a mammalian cell. The ratio of
length scales is 107. This spatial scale occurs in three dimensions so the ratio of
volume scales is 1021.

Structures must be resolved with at least 0.1% resolution if side chains are
to be represented in a given protein. Indeed, higher resolution than this would
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be desirable. Thus, spatial resolution in three dimensions requires scale ratios of
109. It turns out that structures of this much detail cannot be handled in easily
available packages of computer software in 2010. Memory bandwidth needs are
enormous, since many bytes are needed to describe each of the billion numbers in
a highly resolved structure. Graphical processing units may be able to deal with
such bandwidths in the near future, with the required double precision arithmetic.

Concentrations must be resolved over an enormous range. Simulations must
deal with concentrations of ∼50 M if they are to deal with ions in active sites
and channels as we have seen. Simulations must also deal with very small
concentrations.

B. Biological Control by Trace Concentrations of Ions

Most biological proteins are controlled by trace concentrations of ions because
biology uses trace concentrations of ions as signals. These trace concentrations
are used as signals to control biological systems just as an accelerator is used
to control the speed of a car. Most intracellular proteins are controlled by 10−7

M Ca2+ concentrations. Experiments show that Ca2+ concentrations outside this
range (by a factor of say 20) produce irreversible changes in many proteins. The
rates of many enzymes and channels are controlled by the actual activity of Ca2+
within this range. Thus, simulations must accurately calculate the activity of Ca2+
in this range. Many proteins are in fact controlled by much smaller concentrations
of hormones, second messengers, cofactors, and so on. The lower limit of con-
centration seems to be around 10−11 M. It should be emphasized that the controls
set by these concentrations are essential to most biological function. Failure of
this control produces many diseases. Simulations must deal with 10−11 M if they
are to deal with many proteins of great practical importance. Thus, the range of
concentrations is 5 × 1012.

The difficulties with small concentrations require a little more discussion. A
10−7 M solution of Ca2+ contains 55 mol of water for each Ca2+ ion. If 103 ions
are needed to estimate properties of Ca2+ properly, 55 × 1010 molecules must be
calculated, or 1.6 × 1012 atoms. If 10−11 M needs to be calculated, 1.6 × 1016

atoms need to be computed. It seems unlikely that calculations of this size will be
practical. They certainly seem unwise. If interactions must be directly computed
between ions, the large numbers repeated multiply, because everything interacts
with everything else. Multiplying numbers of numbers introduces exponentials
and factorial functions to determine the number of states and combinations, as we
remember from elementary statistical mechanics, and the numbers of energy terms
in fully interacting systems quickly exceed astronomical.

We do not try to estimate the resolution needed to compute the electric field.
The electric field used in actual cellular function extends over meters in some long
nerve axons, and includes cellular, and molecular, and even atomic scale fields.
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The ratio of scales is thus those of the spatial scales shown above. What is not
clear is the extent to which periodic boundary conditions, and so on, can deal with
these scale issues of the electric field. For this reason, I do not use these scales
of the electric field in further discussion. What is clear is that the electric field is
dealt with in a very different way in simulations [791, 792] and theories [749, 793–
795] of the properties of semiconductors. There, periodic boundary conditions are
never used. I have speculated too many times [101–104, 164, 165, 178, 296, 297,
673] that periodic boundary conditions could be related to this difference between
ionic and semiconductor calculations, but our attempts to deal with finite size ions
without periodic boundary conditions [225, 524, 681, 796] have not progressed
enough to see if my speculations were right.

It is clear that periodic boundary conditions are a great help, and probably
necessary when dealing with condensed phases of uncharged molecules, or even
reduced models of ionic solutions in which the water is included as particles or
even spheres. The hard sphere neutral particles have interactions that extend over a
moderate range and can be accommodated with sufficient accuracy with the spatial
periods possible today. What is not clear is how to deal with the long-range nature
of the electric field and the need to accommodate Gauss’ law (and the Poisson
equation). Semiconductor simulations involve different potentials at different “far
field” locations because those are the inputs and outputs of the system (correspond-
ing to the electrodes in an electrochemical cell or physiological experiment). And
it is clear that the strength of the electric field is such that one needs to have all the
charge accounted for and consistent with all the forces in the calculation, lest strong
and nasty artifacts result. It is not clear how well the standard periodic boundary
conditions corrected by various Ewald (modern references are [797–803]) or re-
action field [804–807] schemes accommodate these needs. It is not clear how well
the particle mesh methods of the semiconductor community deal with excluded
volume forces.

It might be wise to adopt different schemes for hard sphere, Lennard–Jones,
and van der Waals forces, on the one hand, and coulomb forces on the other. Peri-
odic boundary conditions might do for the hard sphere type interactions. Periodic
boundary conditions for the potential might do well for the screened component of
the electric field at long times after all the charges are screened. Screening occurs
after some nanoseconds. The sum rules then apply [308, 309] and everything is
in the “thermodynamic limit,” with spatially uniform boundary conditions at in-
finity. It is also not clear how to deal with the long time component of potential
needed to deal with far field boundary conditions present even in screened systems
in the “thermodynamic limit” if the systems have finite boundaries. Since that
potential is the potential of the signal in a nerve action potential, or in a classical
telegraph, dealing with it cannot be ignored in molecular dynamics simulations
that seek to compute the properties of nerve or muscle fibers [604]. Computations
of the physiological properties of nerve or muscle fibers must extend millimeters
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(muscle fibers), centimeters (muscle fibers and nerve fibers), even meters (nerve
fibers in large mammals) and last milliseconds (one action potential) to a second
or so (trains of action potentials that initiate contractions for example). All atom
simulations of nerve or muscle physiology must then extend into the (very) far
field in time and space, compared to the femtoseconds and angstroms of atoms
themselves.

What is also not clear is how to deal with the electric potential on the femtosec-
ond timescale of molecular dynamics calculations, before screening is established.
That potential can spread arbitrarily far because it is unscreened by the movement
of mobile charge, that is, ions. Ions take time to move, because of friction. In fact,
that short time electrical potential is simply the solution of a classical dielectric
problem. Potentials in a dielectric can spread arbitrarily far and have intricate prop-
erties that can be made into elaborate machines [220] depending on the details of
the boundary conditions.

C. All the Scales Need to be Dealt with At Once

We return to the length, volume, time, and concentration scales. The difficulty in
dealing with scales shown in Table I is made much worse by the central biolog-
ical reality that all those scales are used at once in a single functioning biolog-
ical system. It is an experimental fact that the current through a single sodium
channel, carried by atoms of Na+, extends to macroscopic scales in time and
space. That current produces nerve function over a range of meters. It is an ex-
perimental fact that the current through a single sodium channel is strongly af-
fected by trace concentrations of Ca2+ and other ions. Heavy metals are toxic
in trace concentrations and this toxicity is of enormous medical importance. It
is also an intensively studied environmental issue taking a significant fraction of
the resources of governmental science agencies like the U.S. Department of En-
ergy. Simulations must deal with these ranges of times, space, and concentration
simultaneously.

It is also clear that simulations must be calibrated over these ranges, as well as
computed over these ranges. Simulations, like other numerical analysis, need cali-
brations to establish their validity. The rigorous tight error bounds of mathematics
are rarely available.

These problems are daunting and if it were necessary to deal with the scales
shown in Table I simultaneously, biological problems would probably be unsolv-
able. I argue, however, that it is not necessary to deal with atomic detail over all
this range of scales. I argue that the set of questions interesting in biology are
limited and are controlled by a limited range of processes and scales. I argue that
analysis of biological systems is fundamentally an engineering analysis of what
actually controls those systems. The scales that evolution uses are what need to be
analyzed, not the range of all possible scales.
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D. Reduced Models Deal with the Range of Scales

I extend now my argument for the need of reduced models. I argue that biology
can be analyzed by a series of reduced models, each with a complexity appropriate
for the biological question being asked, each appropriate for the scale on which
evolution has built that biological function. Each system will require a separate
analysis because each system is likely to have evolved separately. Thus, the scales
used to control nerve signaling clearly extend from atoms to arms, as we have said.
But the scales used to build a hip joint are mostly macroscopic, except perhaps for
the lubrication layers that involve cells, and even smaller structures.

This kind of analysis is fundamentally a type of reverse engineering: we seek
to approach biological systems the way an engineer would approach an unknown
amplifier, doing just enough to find out how it can be controlled, not trying to find
out everything, certainly not trying to deal with it in atomic detail.

Little can be said in general about this approach since each biological system
will need its own analysis, and general principles will be those of evolution as much
as physical chemistry, not appropriate for this paper. There is a general issue that
emerges, however, that needs further discussion. There is a need for a mathematical
framework that can deal with the issues known to be present in the salt solutions
of life.

E. Interacting Ions in Solutions and Channels

The mathematics used to analyze ions in channels must deal with interactions.
Channels were defined for many years by the interactions of (unidirectional) flows
of ions before channel proteins were known as definite molecules [211, 776]. If
the unidirectional fluxes were competing, the flows were said to occur in channels.
If the flows were cooperative, the flows were said to be through transporters.

There is a huge literature precisely defining the words “competing,” “coopera-
tive,” and the phrase “unidirectional flux” that can be reached through Refs [377,
625, 808, 809]. Appendix of Ref. [810] tries to give a precise and comprehensible
definition of unidirectional fluxes useful for physical scientists. Ref. [218] defines
unidirectional fluxes precisely in a stochastic model and shows how their proper-
ties can be exploited in a mathematically exact theory of transport. Singer’s work
[811–813] extends this in important ways. Bass [779–782] shows the importance
of unidirectional fluxes in classical diffusion models of transport. (Ratios of uni-
directional fluxes in self-consistent models of channels have not yet been studied
as far as I know.) In my view, it is important to see how useful these ratios are
in fully self-consistent models and in models with atomistic detail, both with and
without single file behavior of the type envisioned in classical work. These ratios
may be useful definitions of transporters in general if the theory and analysis deal
with the properties of charged channels approximately twice the diameter of ions.
In classical work, attention was focused—understandably enough given the lack
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of computers—on a much simpler system. In the classical literature [9, 238, 258,
349, 377, 658] single file meant the behavior of red and blue balls (without electric
charge of course) in an (uncharged of course) circular cylinder only slightly larger
than the diameter of the balls.

The mathematics used to deal with unidirectional fluxes in the classical mem-
brane and channel literature was that of chemical kinetics, using the law of mass
action with rate constants independent of conditions. This use naturally followed
[113] the use of similar laws throughout biochemistry and enzymology, then and
now [263, 814]. I argue in Appendix A that the law of mass action is fundamentally
incorrect when solutes have charge or size (i.e., in all electrolyte solutions). In that
case, the rate constants must vary with concentration, often dramatically, and vary
with the concentration of every species, and with every boundary condition in the
system. Treating rate constants as necessarily independent of other ions implies
that all solutions are ideal. Solutions in biology are rarely ideal. Solutions of the
concentration found in channels and active sites of enzymes do not resemble ideal
solutions at all. Assuming that ions of some 20–40 M can be described as ideal
solutions that follow the law of mass action (with constant rate constants) is likely
to seriously distort the physics of the system and make progress in understanding
mechanisms nearly impossible.

The analysis of ions in channels is not alone in this difficulty. Despite the work of
generations of physical chemists—Refs [120, 125, 208, 815, 816] provide an entry
into this enormous field of research—ions in solutions can be dealt with only with
difficulty, or not at all, when the solutions are mixtures and highly concentrated. In
those cases, everything interacts with everything else, and analysis that starts with
individual atomic species cannot deal with the interactions without adding bewil-
dering complexity. Even worse, that complexity changes in what seems an arbitrary
way every time a new type of ion is added to the solution. Indeed, the complexity
changes as one varies the concentration of one type of ion over the biological scale
from 10−7 M Ca2+ (inside cells) to 20 M Ca2+ (inside channels). A leading exper-
imentalist Werner Kunz recently said “ . . . it is still a fact that over the last decades,
it was easier to fly to the moon than to describe the free energy of even the simplest
salt solutions beyond a concentration of 0.1 M or so” (p. 10 of Ref. [654]).

Ions in solutions can be analyzed in pure dilute solutions with some success,
as Kunz’ quotation implies, but analysis fails when (1) solutions of one species
are concentrated beyond say 0.1 M for NaCl, (2) divalents are involved like Ca2+,
(3) solutions are mixtures of ions, or (4) flows of any type are involved. Clearly,
concentrated solutions are involved in most cases where ions are important. Clearly,
Ca2+ is involved in much biological function. Clearly, mixtures are involved in
many cases where ions are important, in all cases in biology and many in industry.
Clearly, flows are involved in most cases where ions are important. Clearly, flows
of mixtures of concentrated ions are crucial components of nearly every living
process in animals and plants.
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I have always been puzzled that mathematicians could compute the flow of air
around an airplane, in sub, trans, and supersonic domains, with more or less arbi-
trary accuracy, but cannot yet deal with the flow of Na+Cl− mixed with Ca2+Cl−2 .
Computational fluid dynamics deals quantitatively with problems of much greater
complexity than anything I could imagine in ions in channels.

Ions in biology flow in a narrow range of temperature, by electrodiffusion,
dominated by friction [218, 323, 679, 811–813, 817, 818], without waves or shocks
or complex physical behavior. Shock waves are not involved. Fluid dynamics
covers a much wider range of conditions and phenomena with all the complexity we
see in water waves crashing on the beach and much more (water is incompressible;
fluid dynamics deals successfully with compressible fluids, even with mixtures of
different types of immiscible fluids like liquid crystals). Why could fluid mechanics
succeed when computation of ions in channels, or bulk for that matter, fail (at least
in comparison)?

An approach to the answer seems to have been recently provided by mathemati-
cians working on fluid mechanics. Chun Liu, of Pennsylvania State University, has
developed a variational principle equivalent to the full Navier–Stokes equations,
including dissipation, and has applied it to systems apparently far more complex
than ions in channels. Recently, Chun’s Energy Variational Principle EnVarA has
been applied to ions in channels and solutions [6, 7].

It is certainly premature to review this work, which is just now appearing in print,
but it is appropriate to state the principles involved since they or their equivalent
are likely to be needed to deal with the fundamental properties of ions flowing
in concentrated mixtures in biological and physical systems. Indeed, we argue
in Ref. [6] that “The equations [of this new variational approach] must be tested
against experiments in many applications, and then improved in a mathematically
systematic and physically self-consistent way . . ..”

F. Ionic Solutions as Complex Fluids

The basic principle in a variational analysis of electrolyte solutions is to consider
ionic solutions as (relatively) simple examples of complex fluids [6, 7], using the
theory originally developed for viscoelastic fluids [3, 4, 326, 327, 331–333, 358,
359, 659, 819–828], rather than as complex examples of simple fluids, as in the
classical literature [217, 308, 829–833]. Simple fluids (in their original and ideal
realization) have no interactions. Complex fluids [834–836] and viscoelastic fluids
have complex nonlinear viscosity, large interactions, and subelements across
many scales of size. I argue that ionic solutions always have large interactions
and so should be considered as complex fluids. I argue that it will be constructive
to view the classical literature of finite size [117–120, 125, 129, 227, 384, 385,
388–390, 447, 646, 650, 734–741] and discrete ion effects [742] in this light.
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The physical reason is simple. The fundamental fact of ionic solutions is that
ions come in pairs, that is, in strictly neutral molecular combinations of charged
atoms. One ALWAYS without exception dissolves a strictly neutral salt in water
to make an ionic solution. The salt is neutral to at least one part in 1015 even in
mesoscopic systems. The electric field is so strong that no violation of electrical
neutrality is significant in chemical units (i.e., number density) even in systems
as small as the pore of an ion channel. Yet the electric fields produced by these
fantastically small violations of electroneutrality produce forces as large as diffu-
sion forces. The electric field is strong (see the first paragraph of Feynman’s text
[255]). The electric field guarantees interactions.

The interactions of the electric field are in fact so strong that charges are com-
pletely screened. Any imbalance would lead to huge forces and flows that would
quickly (in the relaxation time of the ionic atmosphere) produce screening. These
screened idealized systems are described by sum rules [308, 309] that apply for
distances longer than a few Debye lengths, a few angstroms in many biological
systems, crudely 3/

√
Is in Å in a useful approximation where ionic strength Is is

in molar units.
Screening [307] of course guarantees that ions are not independent and so should

not be treated as simple fluids, in my opinion. Screening guarantees that ions do
not follow the independence rule of classical electrophysiology [168, 170]. The
independence rules were developed to describe currents that flowed through inde-
pendent conductances in membranes that we now know are distinct and indepen-
dent ion channel proteins. The independence rules were applied to bulk solutions
before the classical authors knew what they quickly later learned of screening and
Debye–Hückel theory. (Historical note: I know this from personal discussions with
the workers involved. Indeed, the independence principle for bulk solutions was
being taught to students in Cambridge UK physiology courses into the twenty-first
century, to my personal knowledge.)

Screening is sometimes thought to make ionic solutions behave essentially
like uncharged systems but this is not the case. Screening takes many picosec-
onds to develop because ions move slowly in response to a change of force.
Ions experience enormous numbers of collisions and thus enormous friction. They
thus respond to a change in force, for example insertion of charge, only after a
time delay.

The time course of the response of a conductive dielectric is in fact described
in textbooks of electricity and magnetism. The time course can be directly seen
from measurements of the time course or frequency dependence of the dielectric
coefficient [433]. Screening is complete only in systems in which boundary condi-
tions and flows are unimportant. If boundary conditions and flows are important,
screening is incomplete, and electrical potentials spread macroscopic distances.
(This is the mode of operation of the classical telegraph, and of electrical properties
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of nerve and muscle fibers [149].) Thus, interactions produced by the electric field
are of great importance in all ionic solutions.

Interactions produced by the finite size of ions are important in these relaxation
phenomena and in everything else, in most solutions. Even in solutions of 100 mM
salt, the effects of the finite size of ions on the free energy per mole of ions are large
(see Fig.3.6 of Ref. [119], Fig. 4.2.1 of Ref. [126], and the general discussions in the
textbooks [118, 119, 125, 126]. Fraenkel [120] has a particularly useful discussion
in a modern context). Theories have had some success in dealing with finite size
effects in pure solutions of ions in systems without flow and boundaries [118, 119,
126, 384, 385, 388, 393, 396, 399], but even there, theories are more ad hoc than
one would like and are not mathematically well enough defined to be extended
easily to new systems or ionic salts.

Interactions among ions of different types are much harder to deal with. Essen-
tially all that can be done is to compile complicated equations of state with large
numbers of parameters that need to be readjusted when conditions are changed or
new components are added to the solutions [207, 208, 815, 816].

Nonequilibrium situations in which flows occur in mixtures of ions are hardly
addressed by present workers on ionic solutions even though a great deal of tech-
nology and most of life are in that category. The flow of mixtures of ions is also
more or less impossible to simulate with present day methods of molecular dy-
namics because of the enormous problems of scale we discuss near Table I.

We are left with a remarkable situation worthy of the quotation from Kunz:
we can send a man to the moon, but we can compute none of the properties of
mixed ionic solutions. Theories of conductance of ionic solutions deal with pure
solutions in a crude way [837–840, 650]. Theories of mixtures [841, 842] do not
do better.

Density Functional theories of mixed ionic solutions have promise. They were
originally developed to deal with the properties of mixtures of uncharged spheres
of finite volume in confined spaces [321, 380, 381, 438, 508, 755, 831, 843–846].
In these situations interactions among spheres and boundaries are crucial. DFT
was later extended to deal with ions and channels. The extension to ions and
channels was arbitrary, although a sensible and natural first step. The extension
did not include the components of conductance produced by distortion of the ionic
atmosphere, and so on, in the Fuoss and Onsager, and Justice treatments of bulk
ionic conductance [393–396, 650, 837, 839, 840], nor did it identically satisfy sum
rules and equivalent applications of Gauss’ law. PNP-DFT—as the extension to
channels was called by us [381]—has done very well in describing current flow
through the ryanodine receptor, a channel in muscle, as shown by Gillespie and
coworkers [180, 181, 301, 496, 497] where distortion of the ionic atmosphere by
current flow is not likely to be a first-order effect. PNP-DFT compares quite well
with Monte Carlo simulations [438] at equilibrium where distortion of the ionic
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atmosphere by current flow does not occur. But PNP-DFT cannot be expected to
deal with systems where distortion of the ionic atmosphere is important [393, 395,
396, 650, 837, 839, 840] because it does not allow current dependent effects on the
shape and size of shielding or thus on the shape and size of the ionic atmosphere.

PNP-DFT cannot be considered a mathematically well-defined or general ap-
proach for all these reasons, despite its evident success in dealing with a specific
ion channel. We details that success later in the paper. PNP-DFT accounts for
a wide variety of the properties of the ryanodine receptor so well that one must
imagine that the ionic atmosphere screening ions in that channel is quite constant
in shape and size.

XII. VARIATIONAL APPROACH

A variational approach designed to deal with strong interactions in complex fluids
is likely to succeed where PNP-DFT fails, as well as where it succeeds [180, 181,
301, 496, 497].

Ionic solutions in fact are a relatively simple complex fluid in some ways,
because in the most important biological cases their microelements are hard spheres
(Na+, K+, Ca2+) or nearly hard spheres (Cl−). Microelements of hard spheres are
likely to produce much simpler behavior than the more complex fluids already
successfully analyzed [3, 4, 26, 327, 331–333, 358, 359, 819–828] by the theory
of complex fluids.

Water in the variational approach is first analyzed as a conductive dielectric.
Later treatments certainly need to be more realistic. Water can often be success-
fully described as a continuum in implicit solvent models of ionic solutions (also
called “the primitive model”) and proteins [118–120, 126, 129, 130, 384, 396,
399, 646, 847].

We use [6, 7, 360, 361] a theory of complex fluids based on the energy variational
approach EnVarA. Liu has actually proved the existence and uniqueness theorems
needed to make this approach mathematics [357]. He has also applied EnVarA
to a variety of complex real systems [4, 326–331, 819, 821, 822]. This theory
of complex fluids has dealt with systems with complex microelements: liquid
crystals, polymeric fluids [834, 835], colloids and suspensions [827, 828], and
electrorheological fluids [4, 328]; magnetohydrodynamics systems [659]; systems
with deformable electrolyte droplets that fission and fuse [3, 827]; and suspensions
of ellipsoids. The theory deals also interfacial properties of these complex mixtures,
such as surface tension and the Marangoni effects of “oil on water” and “tears of
wine” [827, 828, 848, 849]. We try to create a field theory of ionic solutions that uses
only a few fixed parameters to calculate most properties in flow and in traditional
thermodynamic equilibrium, both in bulk and in spatially complex domains like
pores in channel proteins.
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The Energy Variational Principle is

Conservative force︷︸︸︷
δE

δ−→x =

Dissipative force︷ ︸︸ ︷
1

2

δ�

δ−→u (2)

E(primitive phase; t) =
∫

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hydrodynamic
kinetic energy︷ ︸︸ ︷
1
2ρ |�uIP|2 +

Hydrodynamic
potential energy
Equation of state︷︸︸︷

w(ρ)︸ ︷︷ ︸
Macroscopic (hydrodynamic)

+ λ

⎡
⎢⎣ 1

2ε |∇φ|2︸ ︷︷ ︸
Electrostatic

+ kBT (cn log cn + cp log cp)︸ ︷︷ ︸
Entropy

+ ψ (Spheres)︸ ︷︷ ︸
Finite size effect

⎤
⎥⎦

︸ ︷︷ ︸
Microscopic (atomic)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

d�x (3)

The energy E written in Eq. (3) is used to describe finite sized ions in solution.
The energy E is a generalization of thermodynamic energy as used in variational
theory in general. It is not the energy of the first law of thermodynamics. The
electrostatic potential is φ. The concentration of species n is cn, kB is the Boltzmann
constant, and T is the absolute temperature. ψ(solid spheres), w (ρ) , and 1

2ρ|�uIP|2
are the contributions of the solid spheres, the hydrodynamic potential energy, and
the hydrodynamic kinetic energy to the energy function (as defined in Refs [6,
329]). The dissipation � is not hard to derive but is too complex to present in detail
because of the finite size effects. It is described in full in Refs [6, 7, 360]. A recent
article [6] is meant to provide detail for the physical chemistry and biophysical
communities.

The variational principle EnVarA combines the maximum dissipation principle
and least action principle into a force balance law that expands the conserva-
tive conservation laws to include dissipation, using the generalized forces in the
variational formulation of mechanics (p. 19 of Ref [850]; also [851–853]). This
procedure is a modern reworking of Rayleigh’s dissipation principle—Eq. (26) of
Ref [304]—motivated by Onsager’s treatment of dissipation [305, 306]. EnVarA
optimizes both the action functional (integral) of classical mechanics [850, 854,
855] and the dissipation functional [856]. The variation of the action is taken with
respect to the trajectory of particles. The variation of the dissipation is taken with
respect to velocity. Both are written in Eulerian (laboratory) coordinates after the
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appropriate push forward or pull back of variables. The functionals of EnVarA can
include entropy and dissipation as well as potential energy, and can be described in
many forms on many scales from molecular dynamics calculations of atomic mo-
tion, to Monte Carlo simulations [359, 819, 820] to—more practically—continuum
descriptions [332, 827] of ions in water. We use a primitive model [118, 119, 126,
128, 129, 384, 388] of ions in an implicit solvent [400, 402, 404, 407, 417, 419,
429], adopting self-consistent treatments of electrodiffusion [103, 104, 114, 748,
749, 794, 795]—in which the charge on ions helps create their own electric field.
In addition, we introduce the repulsion energy of solid spheres [175–178, 182,
380, 510], using the variational calculus to extend the primitive model to spatially
complex, nonequilibrium time dependent situations, creating a field theory of ionic
solutions.

Energy functional integrals and dissipation functional integrals are written from
specific models of the assumed physics of a multicomponent system, as in Refs [3,
4, 328, 332, 827]. Components of the potential energy and dissipation functions
are chosen so the variational procedure produces the drift diffusion equations of
semiconductor physics [749, 793–795]—sometimes called the Vlasov equations
[857–859]—or the similar biophysical Poisson–Nernst–Planck equations—named
PNP by Ref. [114]—and used by many biophysicists [103, 104, 165, 266, 299,
321, 323, 366, 368, 437, 661, 676, 677, 685, 704, 713, 714, 729] and physical
chemists [104, 129, 447, 748]. The energy of the repulsion of solid spheres can be
included in the energy functionals as Lennard–Jones spheres [4, 332] giving (as
their Euler–Lagrange equations) a generalization of PNP for solid ions. Boundary
conditions tell how energy and matter flow into the system and from phase to phase
and are described by a separate variational treatment of the “interfacial” energy
and dissipation. The resulting partial differential equations are analogous to the
usual Euler–Lagrange equations of variational calculus. They form the boundary
value problems of our field theory of ionic solutions. They are derived by alge-
bra and solved by mathematics—without additional physical approximations—
in spatially complex domains, that produce flow of nonideal mixtures of ions
in solution.

EnVarA does not produce a single boundary value problem or field equation for
ionic solutions. Rather, it produces different field equations for different models
(e.g., of correlations produced by screening or finite size), to be checked by ex-
periment. In the biological and chemical context, EnVarA derives—it does NOT
assume—systems of partial differential equations (i.e., field theories) of multiple
interacting components and scales.

If a new component of energy (or dissipation) is added to a variational principle
like EnVarA, the resulting partial differential equations that form the field theory
of electrolytes—analogous to Euler–Lagrange equations—change. The new field
theory is derived by algebra and involves no further assumptions or parameters.
The new field theory automatically includes all the interactions of the old and new

Also available at http:\\arix.org as arXiv 1009.1786v1 



174 bob eisenberg

components of the energy (and dissipation). This is an enormous advantage of
variational principles and is probably the reason they are used so widely in physics.
I am unaware of any other mathematical approach that forces field equations to be
consistent with each other. The contrast between EnVarA and the usual approach
to mixtures of ionic solutions, with their plethora of coupling coefficients [650,
816, 832, 842, 860, 861], is striking. It is very difficult to determine those coupling
coefficients, and even worse, the coupling coefficients are functions or functionals
that depend on all the other parameters of the system, usually in an unknown way.

The variational principle can be applied to a primitive model of ionic solutions
with a Lennard–Jones treatment of excluded volume, and a self-consistent compu-
tation of the electric field [6, 7] as described in detail in Refs [6, 7]. A regularized
repulsive interaction potential is introduced as

�i,j(|�x − �y|) = εi,j(ai + aj)12

|�x − �y|12 (4)

for the ith and jth ions located at �x and �y with the radii ai, aj , respectively, where
εi,j is an empirically chosen energy constant. Then the contribution of repulsive
potential � to the total (free) energy is

E
repulsion
i,j = 1

2

∫∫
�i,j(|�x − �y|)ci(�x)cj(�y) d�x d�y (5)

where ci, cj are the densities of ith, jth ions, respectively.
For the sake of simplicity in this derivation, we consider a two-ion system with

the charge densities, cn, cp. All derivations and programs have been written for a
multiple ion system, with ions of any charge [6, 7]. Then, the total repulsive energy
is defined by

Erepulsion =
∑

i,j=n,p

E
repulsion
i,j =

∑
i,j=n,p

1
2

∫∫
�i,j(|�x − �y|)ci(�x)cj(�y) d�x d�y (6)

Now we take a variational derivative with respect to each ion, (δErepulsion
/
δci) = 0

to obtain the repulsive energy term and put it into the system of equations. This
leads us to the following Nernst–Planck equations for the charge densities, cn, cp:

∂cn

∂t
= ∇ ·

[
Dn

{
∇cn + cn

kBT

(
zne∇φ −

∫
12εn,n(an + an)12(�x − �y)

|�x − �y|14 cn(�y) d�y

−
∫

6εn,p(an + ap)12(�x − �y)

|�x − �y|14 cp(�y) d�y
)}]

(7)
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∂cp

∂t
= ∇ ·

[
Dp

{
∇cp + cp

kBT

(
zpe∇φ −

∫
12εp,p(ap + ap)12(�x − �y)

|�x − �y|14
cn (�y) d�y

−
∫

6εn,p(an + ap)12(�x − �y)

|�x − �y|14
cn(�y) d�y

)}]
(8)

The details of the derivation of the repulsive terms in the chemical potentials
are presented in Refs [6, 7]. We now have the coupled system including finite size
effects. We call the system a modified PNP system. One advantage of the variational
approach is the fact that the resulting system, the modified PNP, naturally satisfies
the energy dissipation principle, the variational law Eq. (2).

d

dt

∫ {
kBT

∑
i=n,p

ci log ci + 1

2

(
ρ0 +

∑
i=n,p

zieci

)
∇φ +

∑
i,j=n,p

ci

2

∫
�i,jcj d�y

}
d�x

= −
∫ ⎧⎨
⎩∑

i=n,p

DiCi

kBT

∣∣∣∣∣kBT
∇ci

ci

+ zie∇φ −
∑
j=n,p

∇
∫

�̃i,jcjd�y
∣∣∣∣∣

2
⎫⎬
⎭ d�x

(9)

where �̃i,j = 12�i,j for i = j, and �̃i,j = 6�i,j for i /= j.
As we have seen, these variational principles derive field equations that address

(and I believe will probably some day solve) major problems in computational
biology. The field theory EnVarA represents an ionic solution as a mixture of
two fluids [824], a solvent water phase and an ionic phase. The ionic phase is
a primitive model of ionic solutions [116, 118, 119, 126, 129, 384, 385, 862,
863]. It is a compressible plasma made of discrete [742] charged, solid (nearly
hard) spheres. The ionic “primitive phase” is itself a composite of two scales,
a macroscopic compressible fluid and an atomic scale plasma of solid spheres
in a frictional dielectric. Channel proteins are described in EnVarA by primitive
(“reduced”) models similar to those we have discussed at length. Similar models
predicted complex and subtle nonequilibrium properties of the RyR ryanodine
receptor before experiments were done in more than 100 solutions and in seven
mutations, some drastic, removing nearly all permanent charge from the “active
site” of the channel [181, 496].

I believe a variational method is required to deal with real ionic solutions be-
cause ionic solutions are dominated by interactions. Ionic solutions do not re-
semble the ideal simple fluids of traditional theory and the interactions between
their components are not two-body, as assumed by the force fields of modern
molecular dynamics. Indeed, ions like Na+ and K+ have specific properties, and
can be selected by biological systems, because they are nonideal and have highly
correlated behavior. Screening [307] and finite size effects [118, 119, 126, 128,
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388, 389] produce the correlations more than anything else. Solvent effects enter
(mostly) through the dielectric coefficient. Ionic solutions do not resemble a per-
fect gas [352] of noninteracting uncharged particles. Indeed, because of screening
[307–309], the activity (which is a measure of the free energy) of an ionic so-
lution is not an additive function as concentration is changed (Fig. 3.6 of Ref.
[119] and Fig. 4.2.1 of Ref. [126]) and so does not easily fit some definitions of
an extensive quantity (see p. 6 of the book of international standards for physical
chemistry [864]).

Some correlations are included explicitly in our models as forces or energies
that depend on the location of two particles. Other correlations are implicit and
arise automatically as a mathematical consequence of optimizing the functionals
even if the models used in the functionals do not contain explicit interactions of
components. Kirchoff’s current law (that implies perfect correlation in the flux
of electrical charge [865, 866]) arises this way as a consequence of Maxwell’s
equations [282, 867] and does not need to be written separately.

Variational analysis is already an area of active research in modern mathe-
matics. Our methods are also closely related to another exciting area of modern
mathematical research, optimal control. EnVarA produces “optimal” estimates of
the correlations that arise from those interactions [680, 868–870] (p. 42 of Ref.
[853], see p. 11 of Ref. [852]; and criticism [871] of the absence of mathemati-
cal analysis in Biot). All field equations arising from EnVarA optimize both the
dissipation and the action integrals. Inadequate functionals can be corrected (to
some extent) by adjusting effective parameters in the functionals. EnVarA pro-
duces optimal estimates of these parameters, because the mathematics of vari-
ational analysis is almost identical to the mathematics of optimal control. Both
use variational methods that can act on the same functionals. EnVarA becomes
optimal control when the functionals are combined in a more general way than
just adding them, for example, by using Lagrange multipliers or more sophis-
ticated techniques. Inverse methods [321, 525, 526] could be used to provide
estimators [872, 873] of the parameters of EnVarA functionals with least variance
or bias, or other desired characteristics. (This subject is discussed at length in
Ref. [6].)

Effective parameters are needed to deal with ions in electrolytes because of
the enormous range of scales involved (see Table I). Effective parameters come
along with reduced models. Effective parameters have in fact almost always used
to describe complex interactions of ions in electrolyte solutions [117–120, 125,
128–129, 384, 385, 388–390, 393–396, 447, 646, 650, 734–741, 842, 874, 875], for
example, the cross-coupling Onsager coefficients [874–878] or Maxwell–Stefan
coefficients [832, 842].

EnVarA gives the hope that fewer parameters can be used to describe a system
than in models [128] and equations of state [208, 815, 816] of ionic solutions, which
involve many parameters. These parameters change with conditions and are really
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functions or even functionals of all the properties of the system. (It is important
to understand that the parameters of classical models [128] and equations of state
[54, 142, 209] almost always depend on the type and concentration of all ions, not
just the pair of ions that are coupled.)

Of course, the variational approach can only reveal correlations arising from
the physics and components that the functional actually includes. Correlations
arising from other components or physics need other models and will lead to other
differential equations. For example, ionic interactions that arise from changes in
the structure of water would be an example of “other physics,” requiring another
model, if they could not be described comfortably by a change in the diffusion
coefficient of an ion or a change in the dielectric constant of water. Numerical
predictions of EnVarA will be relatively insensitive to the choice of description
(e.g., of pairwise interactions) because the variational process in general produces
the “optimal” result [852, 853, 868–870] for each version of the model. (This is
an important practical advantage of the variational approach: compare the success
of the variational density functional theory of fluids [381, 438, 508, 879] with the
nonvariational mean spherical approximation [116, 118, 119, 126, 384, 385, 393,
395, 396, 486, 862, 863] that uses much the same physics.)

This variational approach can include energies of any type. It has in fact been
used by Liu [ 359, 819, 820] to combine energies of reduced models and energies
computed from simulations. It will be interesting to see how we can apply this
approach to biological systems and how well it deals with the discrete ion effects
[742] of the classical work on the capacitance of double layers, a glimpse of which
can be found in Refs [227, 734–736, 738–741].

A. Scaling in EnVarA

The variational approach deals with issues of scaling in a very different way from
direct simulations. EnVarA has the great advantage of always being consistent.
A model in EnVarA is the statement of energies and dissipation in Eq. (2). Once
that model is chosen, the rest is algebra. The resulting Euler–Lagrange equations
form a well-posed boundary value problem, a field theory of (usually) partial
differential equations and boundary conditions that account for all the behavior
of the system described by the energy and dissipation. The field theory is much
more general than the thermodynamic and statistical mechanical ideas of equilib-
rium and state. It includes flow and interactions of components automatically. If
two of the components of the energy (and/or dissipation) are on different scales,
EnVarA automatically produces Euler–Lagrange equations that combine those
scales self-consistently. This is an enormous advantage compared to other multi-
scale methods.

EnVarA deals with interactions automatically but it does not deal with multiscale
issues nearly as well. I will go through the issues one by one.
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B. Scaling in Space in EnVarA

Spatial scaling and resolution are dealt with in EnVarA without error if the models
of energy and dissipation include all scales at perfect resolution. Of course, that
never happens! What typically happens is that part of the system is known well at
one scale, part at another, and parts of the system are left out. Typically, one part
of the system must be resolved on one scale and the other on another. Applying
EnVarA to these situations is (reasonably) straightforward but the accuracy of the
results can only be assessed after the fact by comparison with experiments. The
basic approach is to write the energy and dissipation of each component of the
model, of each scale, and combine them using Lagrange multiplier(s), or other
penalty functions of optimal control. EnVarA guarantees that interactions will be
dealt with correctly. EnVarA automatically deals with boundary conditions (once
they are described with a model) and flow. These are important features not shared
by many other methods.

But EnVarA cannot deal with phenomena that are not present in the models of the
energy and dissipation and these can be important. For example, if EnVarA uses a
Lennard–Jones description of spheres in a spatially uniform dielectric to describe
an ionic solution, it cannot describe interactions that occur because of spatial
variations in the dielectric properties of water. In general, EnVarA (particularly
when implemented numerically) may not be able to resolve steep phenomena and
gradual phenomena well enough to estimate their interactions correctly. EnVarA
will double count phenomena that are described in more than one component
of a model. For example, if an equation of state is used to deal with the finite
volume of ions (on the macroscopic scale) and Lennard–Jones potentials are used
to deal with the finite volume of ions (on the atomic scale), double counting can
be expected. The Lagrange multipliers (or penalty functions of optimal control)
and variational process minimize the effect of the double counting (by choosing
optimal parameters that minimize the functionals) but the residual effects may be
significant. We are in unknown territory here. We know how to investigate but we
do not know the results of the investigation.

C. Scaling in Time in EnVarA

Time dependence in EnVarA is produced by the dissipation function and so depends
on the accuracy of the model of dissipation. It is obvious that the linear frictional
model used in EnVarA (and in Rayleigh and Onsager’s dissipation principles) is
inadequate. Friction is not proportional to velocity in general. The consequences
of the oversimplified model of dissipation are not known.

One important characteristic of EnVarA arises from its time dependence and is
both a curse and a blessing. The blessing is that EnVarA computes time depen-
dence at all. The curse is that it must compute time dependence starting at time
zero. Steady states only arise from transient computations. This property of the
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Euler–Lagrange equations makes computation less efficient. One must approach
the steady state. One cannot just arrive there.

D. Scaling of Parameters in EnVarA

Parameters arise in EnVarA from the models of energy and dissipation and in
general appear as parameters in the Euler–Lagrange equations that specify the
resulting field problem. Parameters are handled as well or as badly as they are
in other partial differential equations. Analytically, parameters of any scale are
handled “perfectly,” but numerical issues of stiffness and dynamic range can easily
arise and be limiting. Each case must be studied as a separate numerical system
because each case can have quite different qualitative behavior. The numerical
schemes must be adapted to the qualitative behavior.

The very generality of the EnVarA approach causes considerable difficulty. The
behavior of the system with all its interactions is often unknown in initial calcula-
tions. If reduced models with effective parameters are used (as they should be in
early survey calculations), it is hard to know what “region of phase space”—that
is, what qualitative range of behaviors—one is seeing. Dealing with an EnVarA
calculation is much like a survey experiment in biology. You have to determine
what is going on and you have to learn to simplify the calculation or experi-
ment by choosing parameter ranges or setups in which the interesting phenomena
dominate.

For example, computations of current flow through channels using EnVarA
always produce charging phenomena at short times (because such must be present
in any calculation that includes the electric field consistently), flow through the
channel at intermediate times, and accumulation of ions outside the channel as
the flow continues into long times. The charging phenomena and accumulation
are peripheral to one’s initial main interest in the channel itself, but the numerical
procedures must deal with them correctly and efficiently. Experimental scientists
can take years to learn to isolate the phenomena of interest. Numerical analysts
using EnVarA face similar prospects. In this regard, EnVarA adds complexity as
well as power to the present state of the art. One would of course like to add the
power without the complexity but I do not know how to do that.

The power of EnVarA is again a blessing and a curse. It is a blessing be-
cause it forces the theorist to deal with phenomena well known in the labo-
ratory (i.e., the difficulty of actually keeping solutions well stirred at constant
temperature) but often not advertised in experimental papers. The curse is the
difficulty of computation and the efforts needed to isolate important special
cases.

Despite these difficulties—that are described here in vivid detail so we do not
mislead the reader into thinking EnVarA is a magical solution for all problems—
computations with EnVarA are possible for real systems. Many have been done in
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physical systems [3, 4, 328, 659, 827, 828, 834, 835, 848, 849] and a substantial
number have been done with some success in ionic solutions [6, 329].

E. Scaling of the Protein

The above discussion does not deal with the multiscale issues of describing the
protein, whether channel or enzyme. I do not know how to do that in a general way
even for channels, where covalent bond changes and orbital delocalization are not
involved, let alone for enzymes where covalent bond changes are what the system
is all about (see Ref. [113] for a discussion of “channels as enzymes” and Ref.
[102] for a discussion of channels as transistors). Reduced models have been built
in many ways, using quantum mechanics [188], reduced models with water detail
[563, 601, 644], and reduced models with implicit models of water [176–179, 310,
452, 684, 701, 705, 729, 753].

There seems to be no a priori way to choose between the different reduced
models of channel proteins. I would use the fits to experimental data as the test for
such models, although others prefer a more structural approach, arguing (under-
standably enough) that considerable structural detail is needed to deal with water
and side chains of proteins. Each perspective emphasizes what the investigator can
best do.

What seems clear is that each system of proteins will need separate treatment,
with generalizations emerging only after enough special cases are studied. We do
not know at this stage if we are dealing with biological transport systems that are
fundamentally alike (like audio, signal, and power amplifiers), or systems that are
fundamentally different (like analogue and digital integrated circuits).

A variational approach is likely to have an important role in building these mod-
els of transporters and channels. After all, channels and transporters were originally
defined by the interactions of the ions that flow through them. A mathematics that
deals automatically and consistently with the interactions of flows will obviously be
useful. This mathematics can be applied to physical models of reduced complexity,
such as those discussed at length here. It can also be used in principle with mixtures
of physical models and atomic scale simulations (as Liu has done in physical sys-
tems [393, 395, 396]). And it can also be used to combine chemical kinetic models
with physical models and atomic scale simulations. These chemical kinetic models
are widely used to describe covalent bond changes, or even changes in high-energy
hydrogen bonds where orbital delocalization is important, although they should
not be used to describe low-energy hydrogen bonds where orbital delocalization
is much less important [880]. One must be careful in the use of chemical kinetic
models, however, since the law of mass action is difficult to apply for nonideal
solutions. The rate constants of chemical kinetic models must never be assumed
to be constants independent of experimental conditions, lest the kinetic model
contradict established physical laws. These issues are discussed in Appendix A.
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XIII. OUTLOOKS: UNSOLVED PROBLEMS IN PHYSICAL
CHEMISTRY

The Editor of Advances in Chemical Physics, Stuart Rice, suggested that a dis-
cussion of unsolved problems might be worthwhile. It is good he did not ask me
to look to the future, because the future is so often dominated by unforeseeable
chaotic and stochastic events, and thus predictions are always wrong. In particular,
science is often dominated by what is possible. What is possible is often dominated
by technology and funding, and both are wildly unpredictable. Who in 1955 could
have predicted Moore’s law, let alone its continuation for decades? Indeed, Moore
did not [285, 286], thinking in 1965 that exponential growth was about to end then.
Since then there have been some [45 years/(1.5 years per cycle)] = 15 cycles of
doubling of density and speed, an increase of capability by 33,000×, an increase
unprecedented in human history. No scientist predicts the future well, including a
brilliant scientist and humanist like Moore who analyzed the then past history of a
technology he helped to create. Aging scientists like me are particularly hampered
by their necessarily foreshortened view.

Thus, I was glad to be asked to deal with unsolved problems (of the past) rather
than unknowable advances of the future. Indeed, solving unsolved problems in a
mature science like physical chemistry may be important for its future, as Stuart
hinted. Technological advances are crucial for an infant science like computational
biology, and an adolescent science like molecular biology. They may be somewhat
less important for an adult science like physical chemistry.

Scientists understandably can easily overlook—thereby denying—the unsolved
problems of past generations. Scientists, like all people, have enormously strong
mechanisms of denial necessary for their collective survival. Survival would be
threatened by depression, I fear, if we were continually conscious of all we
cannot do.

A. Unsolved Problems in Physical Chemistry of Solutions

From my outsider’s point of view, the unsolved problems in physical chemistry
start with some of the oldest [386, 390, 738, 783].

The unfortunate fact is that Werner Kunz’ remark previously cited (p. 10 of
Ref. [654]) is an understatement. Indeed, it is “ . . . easier to fly to the moon than to
describe the free energy of even the simplest salt solutions beyond a concentration
of 0.1 M . . .” But it is even harder to describe the free energy of mixtures of ions in
biological systems. The descriptions are inadequate at any concentration. Physical
chemistry started by measuring the colligative properties of mixtures of ions (as
I understand it). Mixtures are not understood much better today than they were
many years ago.
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The first unsolved problem then is to use a variational method to (try to) compute
the properties of mixtures of electrolytes, starting with the simplest colligative
properties, moving to equilibrium properties in general and then to nonequilibrium
properties of diffusion and conductance in mixed solutions. The scientific questions
are (1) How successful is the EnVarA theory of primitive solutions? (2) What has
to be added to it to deal with the complexity of concentrated and mixed solutions
of electrolytes?

In practical terms, some who know how to write and integrate variational
models and Euler–Lagrange equations will need to learn to deal with the libraries
of measurements made by physical chemists in the last century. Those libraries
include

1. colligative properties summarized in existing equations of state [208, 783,
815, 816],

2. dielectric properties of homogeneous and inhomogeneous systems measured
in great detail by Barthel [118, 433] and Macdonald [432, 434, 738, 742]
(among many others no doubt) in the last 50 years,

3. activities of ions in innumerable conditions [99, 116, 118–121, 123–
128, 130, 384–386, 388–390, 447, 500, 646–648, 650, 651, 734, 738,
881–883],

4. conductive properties of ions reported in the literature of polarography
[202–204, 884] and electrochemistry in general [129, 448, 784, 884–886],
and

5. measurements of many other types I regrettably do not know enough even
to cite.

One must also deal with the regrettable but understandable fact that large schools
of science have developed using treatments of ionic solutions that more or less
ignore the excess chemical potential of real ionic solutions and thus treat the
solutions as if they are ideal. Many such treatments use the Poisson–Boltzmann or
even the linearized Poisson–Boltzmann equation [120, 127, 375, 391, 400–431]
or simplified extensions [887–889] of them, that do not even seek to fit the data
that Kunz discussed [118, 119, 125, 126, 129, 384, 385, 654]. There is little that
can be said politely here: ignoring the excess chemical potential of ionic solutions
is ignoring the properties of real ionic solutions [118, 119, 121, 122, 124, 126,
128–130, 224, 384–390, 646–651, 738, 742, 881–883].

Thus an important unsolved problem, and future goal for physical chemistry,
should be the use of variational methods to deal with the nonideal properties of
ionic solutions.

Two other unsolved problems need to be mentioned. The RISM (reference
interaction site model) approach to ionic solutions and spatially complex systems
like proteins—championed by the Hirata group [652, 890–892]—deals with a
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number of the issues raised here. Its integration with EnVarA and the advantages
it promises for ions, proteins, and channels remain to be explored.

Wetting and dewetting of small capillaries by water and ionic solutions is a
problem that has received a great deal of attention and we have recently suggested
[893], along with many others [894–915], that the spontaneous openings and clos-
ings of channels might be produced this way. (Note the suggestion is made about
spontaneous gating, not all kinds of gating.) Wetting and dewetting includes inter-
actions of ions, water, and membranes and it seems likely that an EnVarA approach
might be useful. The enormous literature of wetting and dewetting might be well
ordered by a variational approach, particularly one that included phase field meth-
ods to describe membrane phenomena. The reader should note that the extensive
listing of references in Ref. [893], inadvertently omitted many papers of impor-
tance, including those of workers known to me in other contexts, to whom I again
offer apologies.

B. Unsolved Problems in Applied Mathematics

The most immediate problem facing the variational approach is that of dealing with
three spatial dimensions on the scales implied by Table I. Until EnVarA can be
computed quickly in three dimensions, the variational field theory of ionic solutions
will be difficult to compare with established results of Monte Carlo simulations or
experiments.

Numerical issues abound. How should electrostatics be computed efficiently?
Can these be reconciled with the particle mesh methods of computational electron-
ics or the Ewald sum methods of molecular dynamics? Can user-friendly pack-
ages of software be written that will allow experimentalists easy access to the
results of an EnVarA treatment, whether in biophysics and biology, or physical
chemistry?

The variational approach obviously must reach beyond the primitive model of
solutions to include richer descriptions of water as a time (or frequency) dependent
dielectric including its particulate properties. Indeed, the inclusion of energetics
of particles is an important frontier for variational methods. Chun Liu and col-
laborators [359, 819, 820, 825] have already included simulations in an EnVarA
analysis. Can this initial work be extended to include the traditional simulations of
molecular dynamics? Can low-energy [880] or even high-energy hydrogen bonds
be included in a variational treatment? Indeed, how would one include classical
chemical reactions or even quantum chemical energies? Does one deal only with
the energy of such reactions? Or does one include the free energy? If so, how does
one avoid double counting of entropic effects, in the entropy and in finite size
effects? How does one deal with dissipation in a traditional chemical model, let
alone one with a quantum chemical basis?
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C. Unsolved Problems in Molecular Biology and Biophysics

Interactions of ions, water flow, cell volume, and tissue deformation are some of the
classical questions of physiology [376, 625, 916–921]. Indeed, such physiological
questions were an important motivation for early work in irreversible thermody-
namics [875, 922] that linked biophysics and physical chemistry [305, 306, 790,
876, 878, 923–926]. (Aharon Katchalsky told me of this motivation when I first
met him at Harvard in the spring of 1962 and later at an NSF summer workshop in
Boulder in the summer of 1966.) Sadly, this work was less useful than originally
hoped because different forces and fields were combined without a variational
principle, as I learned to my dismay [266] from the Gaussian–Markoff assumption
in DeGroot and Mazur [874] and my later attempt with Schuss [218] to provide a
proper stochastic basis for biological models of flux. I finally realized that even in
the most sophisticated stochastic models we could build [818, 927] (also see [218,
323, 679, 811–813, 817, 818, 928–930]) forces were combined in a way that was
not consistent or unique and could not deal with the correlations introducing by
time varying electric fields or finite diameter of ions, for that matter. For example,
trajectories produced stochastically varying concentrations of charged species but
electrical forces were treated as independent of time. Each combination of forces
and flows was treated in an ad hoc way. Mean field results required coefficients
that were unknown functions or functionals and so different combinations of forces
and fields could not be told apart.

Variational methods like EnVarA seek similar goals to the classical work of
irreversible thermodynamics, but they are always self-consistent and combine the
energies and dissipations of different process with many fewer unknown coef-
ficients. Thus, variational methods can automatically produce (as outputs) the
correlations that arise from the electric field and diameter of ions. Indeed, once
the energies and dissipations are chosen, the field equations combining forces and
flows of different types—are unique.

A variational method may thus be able to deal with the classical physiological
problems that involve coupling of very different kinds of forces and energies, for
example, of water flow and ion flow, of blood flow, including plasma, red blood
cells, and other cell types, including deformation of blood vessel walls. Can EnVarA
be extended to deal with water flow in cells and tissues, including blood flow, urine
production, and so on [361]?

On a smaller scale, interactions of membrane deformation, water flow, and
ionic movement produce biological processes of great importance, from vesicle
formation, to endocytosis, to the fusion of viruses to cells. Indeed, such interactions
are involved in cellular locomotion in general.

In fact, variational methods have already been used to deal with closely related
problems in physical systems, arising in the theory of complex fluids, like oil
droplets in water, or liquid crystals. Phase field methods have been introduced
by Chun Liu and collaborators [3, 824, 825, 827, 931–936] in an extension of
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the EnVarA approach to deal with different phases, including those of immiscible
fluids like oil and water. Chun Liu, Rolf Ryham, and I are working with Fred Cohen
a biophysicist familiar with these systems to see how the phase field approach can
be extended to deal with membrane bound systems like cells and organelles.

An important unanswered question arises: Can phase field methods be extended
to deal with viral and vesicle fusion, or cell motion in general? Can phase field
methods allow computational biology to link the physics of water flow, ionic
movement, membrane deformation with the most biological of processes, flow,
movement, and deformation of cells? Can the classical behavior of single cells like
ameba and paramecia, observed by millions of biologists in microscopes since van
Leeuwenhoek invented the microscope (around 1600), be computed with a physical
model with few arbitrary parameters, using phase field EnVarA inspired methods?

On a more molecular scale, the reduced models and EnVarA need to confront the
literature of binding of ions to proteins, for example, zinc binding proteins [534,
539, 540, 937, 938], thrombin [544, 545, 550, 551], and calmodulin [939–942]
along with many others I know too little to cite.

In each of these cases, it should be possible to make reduced models involving
some specific representation of crowded charges, and the energetics of conforma-
tion change (if need be), and combine them with EnVarA to make a specific field
theory of that binding system. Solving the Euler–Lagrange equations of that field
theory for the appropriate boundary conditions will allow the reduced model to
be checked against experiment in the same spirit that the model of the calcium,
sodium, and ryanodine receptor channel was checked.

D. Unsolved Problems in Channels

There are a number of classical unsolved problems in channel and transport bio-
physics that can be approached by physical chemists. First, the one-dimensional
treatment of EnVarA must be developed and calibrated. No matter how success-
ful mathematicians and numerical analysts are in speeding up three-dimensional
models, one-dimensional models will remain very much faster. One-dimensional
models will be needed to deal with inverse problems of parameter and model
estimation, which is a fancy way to say one-dimensional models will be needed
if we wish to understand and manipulate actual biological systems and experi-
ments. One-dimensional models will remain the natural obvious way to describe
the input–output relations of ion channels and transporters. Just as they have re-
mained the obvious way to describe amplifiers and integrated circuits, even when
full circuit diagrams are available.

Specifically, one must learn to calibrate one-dimensional EnVarA models of
channels to be sure that the steady buildup of ions (just outside the channel) is
a good representation of the particular channel system being studied. The model
is likely to be different for different channels and transporters. Once a model is
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constructed for the EEEE type calcium channel, for example, the results of the
EnVarA calculation need to be checked against experimental results in the steady
state (where the results are least ambiguously interpreted). The same procedure of
constructing a one-dimensional model, calibrating it, checking it against steady-
state data, and refining must be repeated for each type of channel. For example, the
process needs to be repeated for the sodium channels and the ryanodine receptor
discussed at length in this chapter. The process will be more efficient as it is repeated
but it will not give identical results. The sodium channel, the calcium channel, and
the ryanodine receptor have quite different functions. They will mix ionic diffusion
inside and outside the channel in different ways. A three-dimensional calculation
might capture this uniquely, without much individual tailoring or focused attention,
if enough structural detail can be included. But one-dimensional models must be
tailored. There are many different reduced models of transistors taught and used
by engineers, each specialized for a particular purpose.

EnVarA will provide time dependent results beyond the steady-state results.
It will predict transients, including gating currents (for an open channel of one
conformation). The current–voltage and current versus time predictions of EnVarA
need to be compared with “the real thing.” EnVarA will show currents on the full
timescale from atomic motions to the fastest components of gating currents, to
gating currents of the classical slow type, to changes in ionic “conductances” with
time, to accumulation of ions inside channels, to accumulation of ions outside
channels. Each time dependence will vary with the conditions the channel is in.

Each type of channel will need a different model even in three dimensions
because each channel does different things (compare L-type calcium channels
and RyR calcium channels, for example). The physical chemist will despair of
the complexity. The biologist will rejoice. The engineer will understand, because
the diversity of change in currents with time and conditions is what channels and
transporters are all about. They are devices built to make and control those changes
in current, flux, and concentration. Of course, there are many of them, just as there
are many types of transistors, integrated circuits, amplifiers, and so on.

Thus, there is no shortage of other channels on which a similar analysis will be
revealing. One may find surprises concerning the origin of gating, gating currents,
inactivation, slow inactivation, even of the rapid opening and closing of chan-
nels. Some of these phenomena may look very different when viewed through
the self-consistent gaze of a variational treatment. Some may not. Only specific
investigation will tell.

E. Unsolved Problems in Transporters

One of the great unsolved problems in biology is the mechanism of coupling of
fluxes in transporters. Flux coupling is by its very definition a study of interactions.
Much of the early work on nonequilibrium and irreversible thermodynamics was
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motivated by understanding these interactions [875, 922]. So far no mathematics
or physical chemistry has been up to the task [305, 306, 790, 876, 878, 923–926],
in my view, because none of it was automatically self-consistent. It was never clear
when additional coefficients or parameters were justified. A variational approach
always produces consistent Euler–Lagrange equations and deals consistently with
the electric field and with boundary conditions. Specific chemical and physical
models of transporters will then produce specific predictions of the coupling of
macroscopic measurable fluxes. “Guess and check” will soon enough converge
to the proper chemical and physical model, if the properties of the model can be
calculated and compared systematically to experiments.

F. Unsolved Problems in Protein Biology

Another great mystery in biology is the proper representation of the conformational
changes that abound in the protein kingdom. Most workers hope to compute these
directly with all atom simulations or to observe them in some way or other through
structural methods. The range of scales in Table I shows the difficulty in such
computations. The special needs of structural measurements make it quite unlikely
that many conformational changes can be studied in full atomic detail as they are
used in biology.

In my view, what is needed are specific reduced models of the energetics of
computational change, formulated with EnVarA, combining atomic scale particle
representations with the important continuum fields. These can be converted to
specific predictions through their Euler–Lagrange equations. “Guess and check”
will hopefully lead us to useful representations.

Channel gating is another closely related mystery. The sudden opening and
closing of channels is clearly a sudden change in the conformation of forces in the
channel, as is the sudden opening and closing of a semiconductor diode. It may
be a sudden change in the conformation (i.e., location) of atoms of the protein as
well. In some gating systems, one kind of conformation change may dominate, in
others, another. In any case, a specific model of the energetics is needed in which
everything is coupled to everything else. That model will start with structures of
the machine, shown to us by structural biology. These structures are hardly known
today, and then only in a few special channels [274, 943–948]. The parts list is a
little clearer. Perhaps a combination of inspired guesswork, led by insights from
structural biology, and using the careful mathematics of a variational approach
will work here as it has in understanding selectivity in some calcium and sodium
channels. But most channels gate specifically in response to different stimuli. So
one must expect an enormous diversity of gating mechanisms, albeit sharing some
common structural themes, and of course always common physics and chemistry.

In general there are no shortage of unsolved problems in physical chemistry
and biology that involve interactions and can be attacked afresh with variational
methods. Of course, variational methods may not be the only or even the best way

Also available at http:\\arix.org as arXiv 1009.1786v1 



188 bob eisenberg

to deal with these problems. New technologies may provide enormous shortcuts
that make some theory unnecessary. But when interactions dominate, as they seem
to do in the crowded conditions near active sites, electrodes, and in channels, a
theory that deals with interactions first, and always self-consistently, and always
with boundary conditions, and usually with flow, seems necessary. EnVarA is a
first step in that direction. Others will follow, no doubt, but probably along the
same path. The journey of 1000 km will begin with a single step or stumble.
It seems unlikely that the journey can succeed if the steps are angstroms long, of
femtosecond duration, as in atomic scale simulations. Life is too short, the journeys
are too long for that.

XIV. CONCLUSION

It seems that issues of ions in channels remain inextricably bound to issues of ions
in solution, as they have been for more than a century. The biological systems
are much less general than physical systems, because they are built to function
in a specific way in living creatures and plants, according to reasonably robust
input–output relations. These input–output rules provide useful reduced models
of the biological system and can be linked to reduced models of the atomic scale
behavior of ions in channels, at least in some favorable cases.

Interestingly, analysis of the biological system forces physical chemistry to
confront situations that have not been understood. Ions in channels flow in gra-
dients of concentration, electrical, and chemical potential. Ions in channels are at
enormous concentrations. Ions in channels interact with each other.

Theory and simulations must deal with these issues if ions in channels are to be
understood. Indeed, I suspect these issues must be dealt with in many other cases.
I suspect that many of the defining characteristics of devices that use ions occur in
crowded regions that are nothing like ideal solutions.

A variational approach attacks all these issues all at once, but it is in its infancy,
only a few years past conception, and so its success it not yet known. In my
view, the issues of ions crowded in nonideal systems are the essential ones that
must be solved as physical chemistry deals with electrochemical devices, whether
biological or technological. Specifically,

1. theories and simulations of ionic solutions must deal with boundary condi-
tions including spatially nonuniform boundary conditions that produce flow;

2. theories and simulations of ionic solutions must deal with highly concen-
trated solutions because these occur in the nanovalves that control the prop-
erties of biological systems;

3. theories and simulations of ionic solutions must deal with many interacting
components because that is what occurs in biological systems. Theories and
simulations must be self-consistent;
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4. theories and simulations of ionic solutions should allow easy introduction
of new components and physics as these are discovered to be important.

A field theory of ionic solutions has most of these properties. A variational treat-
ment has all of them, in principle, subject to the limitations discussed previously.
Biologists, physical chemists, and mathematicians together need to discover what
else is needed to make a variational theory of ionic solutions as successful and
useful as the variational theories of fluid dynamics.

A. A Full Circle

It seems we have come full circle. We started by using physical chemistry to deal
with biological problems in the particular context of ion channels. We held channels
up for close inspection, and saw the importance of interactions. We looked through
them to see the importance of interactions in general in ionic solutions.

Motivated by the ambiguities of classical treatments—and biological
necessity—we adopted a mathematical variational approach that deals naturally
and automatically with interactions, by algebra alone. Given models of the ener-
gies of components, it produces the partial differential equations that describe the
entire system of interacting components.

We suggest that the variational procedure will be useful in physical chemistry
in general. We hope so, because interacting systems in physical chemistry and in
biology need to be analyzed by powerful—hopefully indisputable—mathematics
if they are to be effectively controlled and used for technological and medical
purposes.

The exponential development of semiconductor technology was catalyzed by
the successful mathematics of semiconductor physics and computational electron-
ics. A similar development of biotechnology will occur if it can find a mathemat-
ics appropriate for computational biology. That mathematics will be a successful
mathematics of physical chemistry. Interactions dominate.

APPENDIX A: MODELS OF CHEMICAL KINETICS AND THE
LAW OF MASS ACTION

The law of mass action is taught early and often in the education of chemists and
biologists. The law is taught as a commandment without derivation or discussion,
as a glance at the textbook literature will show. Commandments taught early in
one’s education have a particular continuing impact on thought processes, as seen
in the history of human behavior, religious, political, and social. They tend to be
forever unquestioned. Commandments have their uses, but in the scientific tradition
it is important that they be questioned just like everything else.

The law of mass action says that the flux of a species over a potential barrier into
a solution of zero concentration (i.e., into an absorbing boundary) is proportional
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to the number density of that species. This “law” is certainly a reasonable initial
working hypothesis. It in fact can be proven to be true—as a matter of mathematics,
not science—for systems of stochastic trajectories of uncharged particles satisfying
Langevin equations with high friction [218, 353].

m
d2

dt2 = force on particle X = β̄
dX (t)

dt
+ ze�′ (x) −

√
2β̄kBT w (A1)

Here β̄ = friction = m
(
kBT
/
D
)

; m = mass; D = diffusion coefficient;
ze�′(x) is the electrical force produced by the electric potential field �(x);√

2β̄kBT w is the Gaussian white noise process that makes the Langevin equation
a stochastic differential equation, with weighting chosen to satisfy the fluctuation
dissipation theorem. Details are in Refs [218, 353] and explanations in Refs
[949–951].

The derivation of Eq. (A1) must use the properties of doubly conditioned tra-
jectories if it is to deal with different concentrations in different locations. It must
use the version of the Langevin equation with a second derivative. The version
used by Einstein with one derivative does not allow two boundary conditions. Two
boundary conditions are needed to account for the diffusion process addressed by
Fick’s law.

The theory [263, 290] needs revision to avoid (misleading if not artifactual)
boundary layers near electrodes [811, 812] that fortunately have only small effects.
The theory can easily be revised to describe the four electrode method widely
used in experiments [447, 448, 884] because that method avoids boundary layers
altogether.

A careful derivation of the law of mass action leads to beautifully simple ex-
pressions. The solutions of the Langevin equation (A1) theory can be rewritten in
an appealingly simple way [164, 165] when concentrations are specified on either
side of the channel, in the high friction limit, but without further approximation. Jk

is the flux of species k. The unidirectional flux is defined precisely in operational
terms in Appendix A [810] and in mathematics in Ref. [218]. Roughly speaking
it is the flux of a tracer into a region with negligible tracer concentration (in the
language of tracer experiments) or the flux into an absorbing boundary (in the
language of stochastic processes).

Jk =

Unidirectional efflux︷ ︸︸ ︷
Ck(L)︸ ︷︷ ︸

Source
concentration

(
Dk

l

)
︸ ︷︷ ︸
Diffusion
velocity

Prob{L|R}︸ ︷︷ ︸
Conditional
probability

−

Unidirectional infflux︷ ︸︸ ︷
Ck(R)

(
Dk

l

)
↑

Channel
length

Prob{L|R} (A2)
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or

Jk =

Unidirectional efflux
Jout︷ ︸︸ ︷

l · kf CkLeft −

Unidirectional infflux
Jin︷ ︸︸ ︷

l · kbCk(Right) (A3)

Here

kf ≡ Jout

Ck (Left)
= k {Right |Left } = Dk

l2
Prob {Right |Left } = Dk

l2

exp(zkFVtrans/RT )

(1/l)
∫ l

0
exp(zkFφ(ζ)/RT )dζ

kb ≡ Jin

Ck (Right)
= k {Left |Right } = Dk

l2
Prob {Left |Right } Dk

l2

1

(1/l)
∫ l

0
exp(zkFφ(ζ)/RT )dζ

(A4)

R is the gas constant, F is Faraday’s constant, T is the absolute temperature,
Vtrans is the electrical potential across the channel, left minus right. Note the typo
in Eq. (14) of Ref. [28] corrected here.

These equations can be written exactly as a chemical reaction in the usual mass
action form, without further approximation,

Left
kf−→←−
kb

Right (A5)

where

Jk =

Unidirectional efflux
Jout︷ ︸︸ ︷

l · kf · Ck(Left) −

Unidirectional infflux
Jin︷ ︸︸ ︷

l · kb · Ck(Right) (A6)

This looks like a beautiful and clear result. A diffusion model can be written
(nearly) exactly as a chemical reaction. But it is highly misleading.

Rate Constants Vary

The difficulty is in the properties of the rate constant. The rate constant is nearly
always treated as a constant independent of concentration, for example, for ad-
mirable reasons. Experimentalists, or young scientists learning the law for the first
time, fear that allowing the rate constant to vary will introduce a “fudge factor” that
“lets them fit anything.” They wish to avoid such arbitrary behavior and so in the
name of good science, they make the rate constant constant, as the name implies.

What is rarely realized, however, is that making a rate constant constant directly
contradicts physical facts of great importance. Consider the situation of interest
in this paper, concentrated solutions of ions, flowing through channels, from one
mixed solution to another.
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The rate constant in such a system obviously must depend on the concentrations
of each species. Any property of the solutions on either side of the channel depends
on the concentration of each and every species of ions. This is the fundamental
property of nonideal solutions described in many textbooks of physical chemistry
for many years [118, 119, 125, 126, 128, 217, 384–386, 388–390, 447, 448, 503,
646, 784, 884, 885, 952]. Only in ideal solutions of uncharged particles at infinite
dilution are properties independent of concentration. Only in ideal solutions does
the free energy of one ion depend only on the concentration of that type of ion.
In real solutions and mixtures, everything interacts with everything else and all
rate constants are variables depending on all concentrations. In particular, the
conditional probabilities that appear in the law of mass action depend on the
concentration of every ion. If those concentrations are changed, the rate constant
must vary.

Indeed, even in dilute (say 1 mM) solutions of Na+Cl−, rate constants are
variable. The properties of such solutions are described decently by the Debye–
Hückel model of shielding and screening. In that model, ions are not ideal. Their
electrochemical potential has a crucial term that varies as the square root of ionic
strength. Indeed, in any system of mobile charge, screening of this sort is a crucial,
if not dominant determinant of physical behavior [307]. Thus, whenever mobile
charges are present, rate constants will vary with ionic strength, and with all the
variables that determine ionic strength. The rate constant will not be constant.

As is discussed several times in the text, most ionic solutions do not follow
the Debye–Hückel theory and have much more complex behavior. Their behavior
deviates from the law of mass action in a profound way.

Rate Constants are not Constant in Crowded Conditions

Experimental conditions can be found, of course, in which the rate constant is
constant, and those are just the conditions established in experiments designed
to test the law of mass action or to use it to describe classical enzyme kinetics.
But those conditions are remarkably far from the conditions in which the kinetic
models are used, at least in ion channels, and probably in enzymes, and other
applications in physical chemistry. In ion channels, ions flow from mixed solutions,
with nonideal properties, through regions of enormous concentration in which
everything interacts with everything else, under the influence of large densities
of charge and enormous electric fields, in systems so crowded that everything
competes for the same tiny volume. Conditions of this sort are present not just to
make our theories and simulations difficult. These special conditions are present in
channels so a tiny valve can control macroscopic flows. One can expect crowded
conditions whenever ions in small structures are used to control large flows.

Crowded conditions of this sort characterize any valve. Any valve uses small
forces in small regions to control large flows in big regions. The nanovalves of
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life are no exception. Extreme conditions of crowding are present in ion channels
because they are the conditions that allow a few atoms to control macroscopic flows
of current. Extreme conditions allow robust and sensitive control of macroscopic
biology by a few atoms of a protein.

Ion channels are an extreme system. They are as small as they can be, given the
particulate nature of matter. Ion channels are atomic valves that allow a handful of
atoms to control macroscopic flows of current, and thus macroscopic properties of
cells, tissues, animals, and life. They do this by working at the extremes of forces
as well as sizes. They have enormous densities of ions crowded into tiny spaces
with huge electric and chemical fields and forces of excluded volume. I believe ion
channels will prove to be extraordinarily strong and often rigid proteins (although
I hasten to say this is an idea unproven and even untested as of now, as far as I
know).

Traditional chemical theories are designed for the opposite extreme, for the
case of dilute noninteracting solutions that are hardly ionic. Traditional chemical
theories fail altogether when used with rate constants that are constants to describe
systems that are wildly nonideal.

Mathematics must Deal with Interactions

In my view, many proteins, like channels, must be analyzed with a mathematics that
deals naturally with the real properties of ions, that allows everything to interact
with everything else. The mathematics should deal with interactions in a natural
way. Interactions should be at the core of the mathematics. They should not require
ad hominem (or worse ad hominiculum) arguments that are different for each type
of interaction. The mathematics should not start with ideal fluids. It cannot use
the law of mass action with constant constants. Of course, not all interactions
occur everywhere. Interactions that are not important in a particular system can be
ignored, as PNP-DFT ignores some interactions and yet succeeds magnificently
with the ryanodine receptor. Of course, it is much safer for the mathematics to
include insignificant interactions than it is to ignore them a priori, if the numerical
and computational complexities can be handled.

I suspect that most enzymes will use crowded ions to control flows of substrates
to products, as channels use crowded ions to control flows from “substrates” (i.e.,
ions outside the cell) to “products” (i.e., ions inside the cell).

The analogy between channels and enzymes [113] has deep evolutionary ori-
gins, I suspect, since life before membranes must have used electrostatics to “con-
fine” its crucial molecules.

It is clear that life existed for millions or billions of years before cells were
invented. Precellular life was probably an RNA universe. That RNA cell free
universe was devoured and encompassed by today’s cellular-based organisms.
Today, cells use their membranes to confine the “expensive” macromolecules that
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allow life to reproduce. These macromolecules of nucleic acids—RNA and DNA—
and proteins are for that very real reason the essential components of life.

The crucial macromolecules of life must be confined close together if they are
to function. Membranes of cells and organelles provide that confinement today.
The question is what provided that confinement in life before cells existed?

I propose that the electric charge of nucleic acids and their surrounding electric
field was the main confining agent before membranes took on that role. The density
of mobile charge within a Debye length of RNA is ∼10 M.

I propose that the confinement motif of precellular life was then used inside
proteins in their active sites. The same motif would be repeated in binding proteins,
enzymes, and channels inside and on the boundaries of cells, and so on and so forth,
in my fanciful view of life’s evolution.

In this view, enzymes, like channels and proteins, use confined ions to force
everything to interact with everything else. Those interactions are central to the
functioning of some channels, as we have seen. I suspect those interactions of
crowded charges will prove to be central to the function of binding proteins, and
enzymes as well.

If everything interacts with everything else in a way important for function,
the mathematics used to describe everything must deal naturally with interactions.
In that case, a variational approach like EnVarA becomes the natural mathemat-
ics of physiological function, as it is the natural mathematics of interaction. The
mathematics should deal with interactions. It should not start with noninteract-
ing particles of perfect fluids. It should not start with perfect fluids and perturb
them because interactions dominate. They are not perturbations. The mathematics
cannot use the law of mass action with constant constants.

On a larger scale, we know that most biological systems (of organelles, cells,
and tissues, even organs) involve water flows, mechanical forces, membrane, and
cellular movements [625], along with the ionic flows discussed in this paper. I
suspect all these flows interact with each other. If they do, I know they must be an-
alyzed with a mathematics built for interactions, like a variational approach [361].
In that case, a variational approach like EnVarA becomes the natural mathematics
of organ function, as it is the natural mathematics of channel function, and per-
haps enzyme function as well. A variational approach is needed when interactions
dominate.

In electrochemistry it is clear that ions near electrodes determine many of the
characteristic properties of electrochemical systems. These crowded environments
are crucial to the function of electrochemical systems and to many other properties
of ionic systems used in chemical engineering, I suspect. The crowded environ-
ment guarantees that everything talks to everything else. In that case, a variational
approach like EnVarA is the natural mathematics of electrochemical function, as
it is the natural mathematics of many biological functions. Wherever in physi-
cal science or engineering ions are concentrated, ions interact and a variational
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approach is needed, in my view. A variational approach unites physical and bio-
logical science whenever ions are concentrated and often that is where they are
most important.
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