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By Bob Eisenberg 
It is hard to see big things from up close, in math and science, as 

in the world. Many mathematicians approach biology for interesting 
problems, but sometimes the biggest problems, which offer the 
greatest opportunities, are too close to see. The study of ionic 
solutions as they occur in life is one such problem. 

Biology occurs in saltwater solutions—biological plasmas—that 
evolved from primitive oceans of the earth [2,3]. Biological plasmas 
contain large concentrations of the bio-ions sodium (Na+), potassium 
(K+), and chloride (Cl− ), variable concentrations of Ca2+ and much 
lower concentrations of organic acids and bases of many types. 
Without proper ions, water is lethal to cells and proteins. 

Bio-ions control a wide variety of biological processes. The 
Hodgkin–Huxley equations couple atomic changes in proteins (ion 
channels) and macroscopic flows of ions in nerves. Propagating signals 
called action potentials are the result. Ions, proteins, macroscopic 
flows, and gradients are coupled in many of life’s essential processes. 

Calcium ions and complex organic molecules (e.g., hormones) 
control many processes. Calcium signals organize heart muscle to 
pump blood and prompt cells to release other chemical signals. 
Calcium means one thing in one place, something else in another 
place, rather as voltages in different places in a computer mean quite 
different things. 

We view these bio-ions as nearly hard spheres, with different 
diameters and permanent charge, independent of the local electric 
field, surrounded by water. Because ions are strongly coupled by 
electrical and steric forces, I believe that the mathematics of ionic 
solutions needs to be the mathematics of complex fluids. Ionic 
solutions are not simple fluids. 
 
Chemical/Mathematical Traditions 

Physical chemists and physiologists have studied mixtures of 
bio-ions for more than a century. Early scientists had to cope with 
ionic solutions without mathematical tools that deal with interactions 
consistently. Theoretical chemistry exploited the idea of ideal 
solutions at chemical equilibrium in a most imaginative and powerful 
way. These idealizations allowed the study of atoms even when their 
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existence was still being debated. Experimental measurements 
included current– voltage relations that allow detailed tests of 
theories of ionic solutions. 

The chemical tradition succeeded because it focused on 
idealized systems without interactions. Its paradigm was the infinitely 
dilute, uncharged, perfect gas, without boundary conditions or untidy 
interactions. Chemists have treated ions separately, one type at a 
time, in solutions at equilibrium. Interactions, flows, and boundary 
conditions have not been treated consistently. Without modern 
mathematical and computational methods, the chemical tradition 
achieved remarkable success by restricting its gaze, but the chemical 
tradition deals with idealized simple fluids—and chemical reactions—
as if they occurred without spatial gradients. 

The mathematical tradition used the Poisson–Boltzmann (PB) 
and Poisson– Nernst–Planck (PNP) equations to describe interactions 
of point charges. PB–PNP is widely used even today to model 
transistors and semiconductor devices. It was only natural to hope 
that PB–PNP would do as well with ionic solutions. Mathematicians 
understandably were more interested in solutions of equations than in 
properties of solutions of ions, particularly the messy nonideal 
properties produced by finite-sized? interacting particles. 

PB–PNP succeeds in certain isolated cases—for example, 
those with vanishing concentrations of monovalent ions of one type. 
Although these cases can be significant, natural biological function 
almost always occurs in physiological solutions beyond the reach of 
PB–PNP equations. 

As Torrie and Valleau [10] put it: “It is immediately apparent 
that classical theory [Poisson–Boltzmann] has broken down 
completely. It . . . fails to show [the] qualitative behavior [and] is 
seriously in error for quite low concentrations.” 

PB–PNP theories fail because they treat ions as points. In 
reality, the size, shape, and microdynamics of ions are important in 
almost all solutions. In 1M solutions, ions of diameter 2Å are roughly 
8Å apart. The electric field and entropy of such a system are not those 
of point particles. (For the classical chemical units of number density: 
1M = 1Molar = 6.02 × 1023 particles per liter = 6.02 × 1026 particles 
per cubic meter.) 

The difficulties with PB–PNP theories acquire startling 
importance near DNA, ion channels, or enzymes, and in electrodes of 
batteries, where ions are crowded together in mixtures with divalents 
at number densities higher than 10M. (For comparison, solid NaCl is 
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37M.) Indeed, PB–PNP theories fail most dramatically where ions are 
most important, near structures that use ions to perform macroscopic 
functions. 

Devices—whether ion  channels or enzymes, or batteries—
concentrate ions in some regions (to maximize flow) and deplete them 
in others (to maximize control). A theory must deal seamlessly with 
large ranges of concentration if it is to deal with the devices of 
engineering or biology. 
 
An Army of Mathematicians Is Needed 

A review of the numerical analysis of PB in SIAM Review [11] 
motivated this article, catalyzed by discussions with Chun Liu and Wei 
Cai. Thank you both! Analysis of the PB equations provides the initial 
iterates for the development of numerical procedures needed to solve 
the big problem (with all interactions). Work on PB–PNP sets the stage 
on which the moving dance of biology can be studied, as it is actually 
lived. 

Work on the living problem, however, requires mathematics that 
describes interacting ions in devices. The mathematics can start with 
bio-ions described as hard spheres diffusing in a uniform dielectric. 
Such analysis is beginning. These solutions of bio-ions can be studied 
with the existing theory of complex fluids. More realistic descriptions 
of ions and water can be used later if needed. 

It will take an army of mathematicians to study the ionic solutions 
of physical chemistry and biology as complex fluids. Mathematicians 
will need to learn the experimental traditions of physical chemistry 
and physiology before they can address longstanding unsolved 
problems. They will have to rework their tools to deal with the 
realities of ions in solutions and near channels, proteins, and 
electrodes. I believe that daunting interactions of ions, microelements, 
and the macroscopic world can be handled automatically and 
consistently by the theory of complex fluids. 

Beyond the bio-ions, more components of extra and intra-cellular 
solutions—organic ions, amino acids, even nucleic acids and 
proteins—can be added as microelements as needed. Reduced models 
of some of these components are already known. Organic and 
biochemists have been making reduced models of these components 
and their chemical reactions for 150 years. I suspect that their reduced 
models could be improved by appropriate extensions of the theory of 
inverse problems. Chemical reactions could be treated by the theory 
of complex fluids, as interactions of microelements (reactants), bio-
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ions, and water, involving rearrangements of internal (electronic) 
structures of reactants, according to Schrödinger’s wave equation of 
the electron. 

Simulations are an alternative approach, favored by computer 
scientists. But simulations of biological plasmas present formidable 
challenges: They must deal simultaneously with mixtures and flows 
over some 10 orders of magnitude in size, time, and concentration [3]. 
They must couple atomic-level motions of proteins to macroscopic 
electric fields if they are to compute action potentials of nerves. 
Simulations so far have not included divalents, mixtures, large 
concentrations, flow, or macroscopic boundary conditions. Calibration 
remains in the future. Simulations may eventually reach these goals 
with the help of more powerful computers. Meanwhile, simulations 
can serve as models of microelements in multiscale theories of 
complex fluids. 

But first the community of scientists who know the theory of 
complex fluids will need to study real-world electrolytes. If they limit 
themselves to uncalibrated simulations of tiny systems, to Poisson–
Boltzmann equations and point particles, their work will have limited 
value. It will not apply to most living systems. It will set the stage of 
life, but it will not account for the action on the stage. 
 
Math and Biological Reality 

Biological reality determines mathematical treatment in several 
ways: 

First, real biological solutions are characterized by interactions on 
all scales: Everything interacts with everything else in ionic solutions. 
PB–PNP theories and simulations have not plumbed the biological 
realities of divalents, mixtures, or molar concentrations. The free 
energy of one type of ion depends on the concentration of all other 
types of ions. The thermodynamic driving force for a single ion 
depends not only on the concentration of that ion—as assumed tacitly 
in much of chemistry and biophysics—but rather on all ions present. 
Even in bulk solutions, flow of any one ion depends importantly on all 
other ions. Classical treatments often attribute complexities of the 
ions themselves entirely to enzymes, channels, or chemistry. 

Second, biological reality means that non-equilibrium can be 
easier. Simplifying biological (or engineering) devices can inadvertently 
make them difficult to study. Biological devices (like nerve 
membranes) have evolved to follow simple robust laws in 
physiological conditions, where gradients of concentration and 
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potential are always present to drive flows. Devices at equilibrium, 
without gradients of electrical or electrochemical potential, no longer 
are devices at all. They follow no particular laws and are hard to study, 
analogous to amplifiers, which are hard to study when disconnected 
from power supplies. 

Third, without flows, biological systems are dead. We cannot 
expect dead biological systems, whether corpses or crystals, to be the 
same as live systems. Gradients and flows create the devices and 
machines of engineering. Engineering devices are hardly worth 
studying when their power supplies are turned off and simple device 
laws no longer hold true. 

Finally, mathematics must describe biological reality and 
experiments as they are actually done. Scientists cope with complex 
systems by simplifying the systems and then adding back components 
or fields, one by one. It is difficult to describe the resulting hierarchy of 
systems if each one is considered individually, without interactions, in 
the ideal tradition of chemistry. A hierarchy of inconsistent models is a 
challenge to the scientific process. It is understandable, nearly 
inevitable in such circumstances, that theories of mixtures of 
electrolytes (e.g., equations of state) should include many vaguely 
defined parameters, of little use beyond the conditions in which they 
were measured. 

Scientists have been crippled by their lack of consistent 
mathematics. Different laboratories use different models of the 
system and make different choices of parameters. A recent 
magnificent treatise ([5]: 664 pages and 2406 references) shows how 
difficult it is even to define the properties of a single ion in a system in 
which everything interacts with everything else without a consistent 
mathematics of interactions. Consistency is an enormous help in 
focusing attention, and decreasing distracting discord, as the case has 
been in computational electronics. 
 
A Promising Approach 

Scientists need to replace their idealized noninteracting models of 
ionic solutions with a consistent framework in which everything can 
interact with everything else. Mathematicians working on ionic 
solutions [7,12] are well aware that variational methods allow 
components and fields to be added or subtracted in functionals, from 
which differential equations are derived by the Euler–Lagrange 
process. Mathematicians need to spread their knowledge of 
variational methods to the physical chemists, physiologists, and 
molecular biologists of the world. Mathematicians need to help 
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scientists deal with the solutions of life. I prefer energy variational 
methods because they embody physics. Energy variational methods 
aspire [1,6] to be a natural extension of thermodynamics, joining free 
energy and dissipation functionals, as envisioned by the Nobel prize-
winning physical chemist Lars Onsager (1903–1976) and followers. 
These methods combine [1,4,8,9] the least action principle of 
mechanics with the maximum dissipation principle of Rayleigh, later 
applied by Onsager, including eventual time-dependent relaxation to 
the steady state. The derivation of the Navier–Stokes equations for 
incompressible flow [6] illustrates the approach. 

I hope that an army of mathematicians will take up the challenge 
of applying their tools and skills to biological reality. Mathematicians 
can use consistent theories of complex fluids to allow systematic 
analysis and improvement of models of the plasmas of life. 
Computations needed include current–voltage relations in complex 
mixtures of bio-ions. Theories of complex fluids need to be applied to 
classical unsolved problems of chemistry and biology, involving 
plasmas containing bio-ions, organic compounds, proteins, and nucleic 
acids. Theories of simple fluids are not adequate. 
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