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ABSTIACT Syncytial tissues consist of many cells whose intracellular spaces are electrically 
coupled one to another. Such tissues typically include narrow, tortuous extracellular space 
and often have specialized membranes at their outer surface. We derive differential equa­
tions to describe the potentials induced when a sinusoidal or steady current is applied to 
the intracellular space with a microelectrodc. We derive solutions for spherical prepara­
tions with isotropic properties or with a panicular anisotropy in effective extracellular and 
intracellular resistivities. Solutions are presented in an approximate form with a simple 
physical interpretation. The leading term in the intracellular potential describes an ••iso­
potcntial'' ccll in which there is no spatial variation of intracellular potential. The lead­
ing term in the extracellular potential, and thus the potential across the inner membranes, 
varies with radial position, even at zero frequency. The next term of the potentials d~ 
scribes the direct effects of the point source of current and, for the parameters given here, 
adS as a series resistance producing a large local potential drop essentially independent 
of frequency. A lumped equivalent circuit describes the .. low frequency .. behavior of the 
syncytium. and a distributed circuit gives a reasonably accurate general description. 
Graphs of the spatial variation and frequency dependence of intracellular, extracellular, 
and transmembrane potential are given. The response to sinusoidal currents is used to cal­
culate numerically the response to a step function of current. 

INTRODUCTION 

The electrical properties of cells and tissues are commonly measured by applying current 
to the cytoplasm with a microelectrode and recording the potential produced. The prop­
erties measured in this manner are properties of the entire preparation and are not simple 
measures of the properties of the components of the cell or tissue. In general. the observed 
electrical properties will depend on the paths of current flow, on the amount and structure 
of the membranes, and on the amount and structure of the intra- and e:uraceHular spaces. 
The procedure for determining the electrical properties of the individual structures is fairly 
well known (Jacket al., 1975; Chandler and Schneider. 1976; Eisenberg et al.. 1977): a circuit 
model of the preparation is constructed using the observed morphology of the preparation; 
the relation between the applied current and observed potential is derived for that model; 
the parameters of the model are determined by fitting the predictions of the theory to e."t­
perimcntal data; finally, the model is tested against experimental data measured under a 
variety of conditions. 

Although this procedure is well precedented in the C:lSC of preparations consisting of 
isolated cells. even with complex arrangements of membranes. it has not been widely used 
to analyze multicellular syncytia (see, however. Schoenberg et al.. 1975; Eisenberg and Rae, 
1976). Such multicellular preparations include two compartments: an intracellular com-
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parunent consisting of the cytoplasm of the cells and the junctions between cells and an 
extracellular compartment consisting of the extracellular space which infiltrates the tissue. 
Inasmuch as many important tissues are multicellular syncytia (lens of the eye: Rae, 1978; 
fat tissue: Sheridan, 1971; cultured cardiac cells: de Haan and Fozzard, 1975; natural cardiac 
tissues: Weidmann, 1966; liver: Haylett and Jenkinson, 1972; pancreas: Matthews and 
Sakamoto, 1975; salivary glands: Petersen, 1974; smooth muscle: Bennett, 1972; epithelia: 
Fromter, 1972}, it seems worthwhile to attempt a systematic analysis of their electrical 
properties. 

An analysis has been started by a number of workers (see Discussion). The present work 
was begun in collaboration with Dr. A. Peskoff, who has subsequently analyzed an expan­
sion of the exact solution of a time-dependent version of this problem (Peskoff, I 978a). 

This paper develops an analysis (Eisenberg et al., 1978) of the electrical properties of 
spherical tissues or cells with a pervading extracellular space. We begin with a general 
statement of the structure of such preparations and present a derivation of differential 
equations which in an approximate sense (analyz...-d in detail in a later paper) describe the 
spread of potential within the cells, within the extracellular space, and across the membranes 
of the preparation. A systematic procedure for solving these equations is developed, in 
which the general problem is broken into a series of physically well-defined problems, each 
usually easier to solve than the original problem. Solutions (usually in closed form) are 
given to each problem. and the solutions are presented graphically. The fit of these solu­
tions to experimental data taken from the lens of the eye is presented in an accompanying 
paper (Mathias et al., 1979). 

The analysis is presented in two parts. The first part presents the material of greatest 
relevance to experimental results, namely, a derivation of the differential equation~ the 
physical meaning 9f the so!utio~ graphs of the properties of the solution~ a lumped 
equivalent circuit which represents the low frequency (long-time) properties of the solution. 
and finally a distributed equivalent circuit which has quite general- validity. Second, there 
is a Methods section in which the solution of the equations (using perturbation theory) is 
outlined, and in which the solutions are presented in detail. Our attention is focused on the 
linear properties of tissues with spherical geometry. but the method of analysis is expected 
to apply to tissues and cells of other geometry. In the presence of nonlinearities. for exam­
ple. voltage-dependent conductances in the membranes. the formal mathematical analysis 
breaks down. but there is every reason to expect that the qualitative properties of the analy­
sis will not change because they arc based on equivalent circuits with a physical meaning of 
their own, independent of their mathematical derivation. 

GLOSSARY 

Symbols used in the text are shown with uniu, definitions., and with reference to an equation using 
or defining them. Boidfac:e symbols are used to indicate dimensionless quantities derived from 
dimensional quantities shown in italics. the normalization proc:edure being defined in and near Eqs. 
~and 26. Vector quantities are indicated by a superscript arrow. 

a Radius of the preparation. Eq. 15. (an) 
C0 Defined in Eq. 46. (dimensionless) 
C 1 See Eqs. 47. 51. and 52. (dimensionless) 
C., Specific capacitance of the inner membranes. Eq. 8. (F jcm2) 
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Specific capacitance of the surface membrane. Eq. 12. (F jcm2) 

Element of the surface identified below the integral sign. It is a vector of length dS 
pointing outwards from the surface. Eq. l. (em2) 

Specific conductance of the inner membranes. Eq. 8. (mhojem2) 

Specific conductance of the surface membrane. Eq. 12. (mhofcm2) 

Modified spherical Bessel function defined in Eq. 54. (dimensionless) 
Modified Bessel function of the first kind (Morse and Feshbach, 1953). Eq. 54. 
(dimensionless) 
Amount of current applied to the preparation. Eq. 1. (A) 
Equal to y"'::T, Eq. 13. (dimensionless) 
Current flux in the extracellular medium. Eq. 1. (Ajcm2) 

Thcxcomponent of the current flux .I;. Eq. 3. (Ajcm2) 

Current flux in the intracellular medium. Eq. 1. (Afcm2) 

Current flux across the inner membranes, outward current being positive. Eq. 2. 
(A/cm2) 

Angular component of the Laplacian defined in Eq. 62. (dimensionless) 
Set of positive integers~ starting with either m • 0 or m - I, as indicted. Eq. 68. 
(dimensionless) 
Set of positive integers, starting with either n • 0 or n • l, as indic:1ted. Eq. 37. 
(dimensionless) 
Legendre polynomial (Morse and Feshbach, 1953). Eq. 53. (dimensionless) 
Radial coordinate at which potential is measured. Eq. 13. (em) 
Vector location at which potential is computed. the observation point. Eq. 7. (em) 
Radial coordinate of the sourc:. Eq. 13. (em) 
Vector location of the source. Eq. 7. (em) 
General position vectors. Eq. 55. (dimensionless) 
(a) In the isotropic case the effective resistivity of the extracellular medium. Eq. 7. 
(b) In the anisotropic: case the effective radial resistivity of the extracellular medium. 
Eq. 67. (ohm ·em) 
(a) In the isotropic case the effective resistivity of the intracellular medium. Eq. 7. 
(b) In the anisotropic case the effective radial resistivity of the intracellular medium. 
Eq. 67. (ohm ·em) 
Component of the effective intracellular resistivity produced by the junctions be­
tween cells. Eq. 7. (ohm ·em) 
Component of U} 11 independent of frequency, or membrane properties. Eqs. 20 and 
47. (ohm) 
Surface of the extracellular medium on the face of the volume element _\ V. Eq. l. 
(Sec Fig. l.) (cm2) 

Ratio of the surface Sr to the surface of the face of the volume element .lV. 
It is marked with a direction, e.g. (S,/Sr)z, in the anisotropic case. Eq. 3. 
(dimensionless) 
Surface of the intr3cellular medium on the fac:: of the volume element AV. Eq. I. 
(Sec Fig. 1.) (cm2) 

Surface of all the membranes within the volume element .lV. Eq. :. (See Fig. 1.) 
(cm2) 

Sun"ace of inner membrane in a unit volume of tissue. It is best to trct S,./ V r as 
a single parameter. Eq. 9. (lfcm) 
... Dominant" component of U~. Eq. 21. (volt) 
Component of U,, the first order correction term. Eq. 21. (v9lt) 
Set of extracellular ·•potentials" used to approximate U,. Eq. 38. (dimensionless) 
Average extracellular potential within a volume element. Eq. 5. (V) 
Average intracellular potential within a volume element. Eq. 7. (V) 
Angular average of the potential U}1>, defined in Eq. 63. (V) 
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U;(r, R, fJ;jw) 
U;o'(Jw) 

v: 11 (r. R~ 8;jw) 
u:"'(r:R) 
Yr(jw) 

Component of if,1
J which varies with angular location, defined in Eq. 64. (V) 

"Dominant" (isopotential) component of U1• Eq. 13. (V) 
Component of U;. the first order corr~J.on. Eq. 13. (V) 
Set of intracellular .. potentials" used to approximate U1• Eq. 37. (dimensionless) 
Specific admittance of the inner membranes when distributed along the exuac:Uular 
resistance. Eq. 16. (mhojcm2) 

Specific admittance of the inner membranes. Eq. 8. (mhojcm2) 

Specific admittance of the surface membrane. Eq. 12. (mhojcm2) 

Greek Symbols 

'Y 
o(r- R) 

I( 

" 

Ratio of the effective extracellular resistivity in the radial direction to that in the 
angular direction. Eq. 59. (dimensionless) 
Ratio of the effective intr3cellular resistivity in the radial direction to that in the 
angular direction. Eq. 58. (dimensionless) 
Complex propagation constant. Eq. 17. (ljcm) 
Vector Dirac delta function for a source at location R. Ea. 27 writes O(r- R) in 
terms of its scalar components. in spherical coordinates with ~al symmetry. (ljcm1) 

Volume element of preparation, containing a representative sample of intra- and 
extracellular medium. illustrated in Fig. 1. Eq. 4. (c:m3) · 

Length in the x direction of the volume element AV. Eq. 3 and Fig. 1. (em) 
Length in they direction of the volume element AV. Eq. 3 and Fig. 1. (em) 
Length in the: direction of the volume element AV. Eq. 3 and Fig. 1. (em) 
Laplacian. The Laplacian is written explicitly in spherical coordinates with axial 
symmetry in Eqs. 58 and 62. (ljem2 in dimensional equations; unitlc:ss in dimen­
sionless equations) 
Equals R;/(R; + Rr>· Eq. 14. (dimensionless) 
Angular separation of source point and observation point. It is the ••tatitude .. of one 
point. if the latitude of the other point is taken as zero. Eq. 13. (radians or deg) 
Se: Eq. 26. (dimensionless) 
Se: Eq. 69. (dimensionless) 
Conductivity of the solution filling the extracellular space within the preparation. 
Eq. S. (mhojcm) • 
Conductivity of the solution filling the intrac:llular space within the preparation. 
Eq. 7. (mho/em) 
Isotropic tortuosity factors for the intra- and extracellular media. respectively. 
Eq. 7. (dimensionless) 
Tortuosity factor for the extracellular space, in the x direction. Eq. 5. (dimension­
less) 
Component of l.-~ 11 • Eq. 19. (V) 
Angular frequency. Eq. 8. (radjs) 

RESULTS 

Heuristic Derivaiion 

Consider a tissue with a pervading extracellular space (Fig. 1). in contact with the sur­
rounding bathing solution. Current is applied to the intracellular compartment through 
a microelectrode. The current must flow to the collecting (indifferent) electrode in the 
bath outside the tissue. It can flow through the intracellular space, across the membrane 
bounding the outside of the tissue, and to the bath electrode. Special properties conferred 
by the impedance of the couplings between cells will be subsumed into the effective prop­
erties of the cytoplasm. Or it can flow through the intracellular space. across the ''inner" 
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membranes which separate the cytoplasm from the extracellular space~ through the extra­
cellular space, and out to the bath electrode. We consider the case where both flows of 
current are important and where the potentials induced within the cytoplasm and within 
the extracellular spac: are both significan~ this case being the most general. 

Consider a volume element A V much larger than a single cell of the tissue (Fig. 1 ). The 
current leaving the surface of that volume element can be written as the sum of the current 
leaving the surface of each medium (the intracellular medium is labeled with subscript i and 
the extracellular space with subscript e). 

JJ J- ·dS- JJ - -_ { /0 , if source is within AV 
• + · J, -ds o ·r · ·d v • , 1 source 1s outs1 e Q. 

s. s, 
( 1) 

where the currents arc represented by the current flux vectors J; and J;. The surface in­
tegrals are taken over the surface defined under each integral sign. S, is the surface of the 
extraeellular medium on the face of the volume element; Sj is defined analogously (Fig. 1). 
the symbol dSis written to mean ii dS where dS is an element of the surface over which the 
integral is performed and iiis a vector normal to the surface of unit length. 

F1ouu 1 A spheric:al syncytium. The main figun: emphasizes the spheric:1l nature of the prepara­
tion and defines the locations of the source (namdy. R) and of the point at which potential is measured. 
the observation point (r. 8). The gap junctions. which allow current to flow from the interior of any one 
ceil to the interior of another, are not shown in the figure. One ins~t illustrates the special nature of the 
surfaa: membr:mc and the relationship of the extracellular spa<:e to the e."ttc:ior bathing solution. The 
other in.ut defines a volume element cut from the preparation. si is the area of the intracc:!lular 
medium lying on the fao: of the cube. and S, is the corresponding area of extrac:iluiar medium. The 
surface of inner membrane (with areaS,.) is not shown in this inset because it lies within the volume 
element: the iMft only illustrates fac::s of the element. The co-ordinates used to locate and define the 
volume element are Cartesian. for the sake of simplicity. The conversion to spheriCll coordinates is 
straightforward (Morse and Feshbach. 1953). 

EISENBERG ET ."-1.. EI~ctrical ProJNnies of Spherical Syncytia 155 



The sum of the currents leaving the extracellular space can also be derived from flux in­
tegrals because the inner membranes S., and the surfaceS~ together form a closed bound­
ary about the extracellular space in ~ V. (But the surface S,. of all the membranes within 
the volume element does not coincide with the surfaces on the faces of the volume element.) 
If the current source is not located within the extracellular space, 

f f J;. ciS - j f J;.. dS - o (2) 
s~ s .. 

where J;, describes the current flux across the internal membranes. 
We proceed to derive equations describing a .. smeared" (that is, average) representation 

of the potential within the intracellular and extracellular compartments of the tissue. We 
have explored four methods to derive such equations: (a} A rigorous but lengthy method 
by which the problem of potential spread in narrow invaginations is solved from first prin­
ciples; 1 (b) a method by which the flux integrals in Eqs. 1 and 1 are convened into volume 
integrals using the divergence theorem and Ohm's law is then applied. This derivation suf­
fered from ambiguities concerning the relationship of the specific and effective conductivi­
ties, particularly in the presence of anisotropies. See derivations of this type in Barr and 
Jakobbson (1976) and Peskoff (l978a): (c) a method by which the integrals are converted 
into the integral definition of the divergence oper:~tor (Schey, 1973), using the mean value 
theorem applied to an arbitrarily small volume of tissue. This derivation suffered from the 
consideration of an infinitesimal volume element which still contains both intra- and extra­
cellular media: (d) a method by which the integrals are evaluated for a small piece of tis­
sue, large enough to include a number of cells. in which the assumption is made that the 
flux (i.e., the potential) does not vary too steeply across any face of the piece of tissue (see 
Eq. 4 ). This latter form of the derivation seems most successful to us and is presented here. 

Consider the first surface integral in Eq. I. This integral consists of six surface integrals, 
each being the surface integral over one face of the volume element. We will evaluate the 
integrals on the x + ! .lx and x - ! ~ surfaces; the generalization to the other surfaces 
is straightforward. The integrals on the surfaces are evaluated approximately in terms of 
the area of the surface and the value of the integrand at the middle of the face. This pro­
cedure is correct provided the flux does not vary too steeply across the face of the volume 
element, there being no error if the volume element shrinks to zero size (see Schey, 1973, 
p. 38; and Morse and Feshbach. 1953, p. 35, for an evaluation of the error in general). Be­
cause we are restricted to a volume element large enough to include a representative sample 
of the intracellular and extracellular medium. the procedure is correct provided the flux docs 
not vary too steeply in a distance of several cells. 

For example, the x component of the flux integral for the surface of the extracellular space 
will then be 

S~[ J~ .. '(x + tuj2.y. z) - J! .. l(x - ~jZ,y, z)] 

• .ly.iz(S~/Sr)[J!z>(x + ~xj2,y,:) - J!zl(x - ~j2,y,z)J, (3) 

1 Barcilon, V., R. S. Eisenberg. and R. T. Mathias. Microscopic and macro5CX)J'ic description of the dec:tric:al 
properties of syncytial tissues. Manuscript in preparation. 
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the right-hand side of Eq. 3 is written in terms of Sr. the total surface of each x face 
of the volume element, which is Ay ~- Introducing the volume element AV • .l.l:' .;ly .1:~ 

we recognize a finite difference approximation to the partial derivative. 

AV. (S /S ) J~-'>(x + Ax(2.y, z) - J~-'l(x - a."Cj2.y, =) ,...... .l V. (S /S ) oJ~x> ( 4) 
·' T X Ax - , T s ax . 

The surface ratio is marked with an x direction to allow the anisotropic C:tse. 
Ohm's law can now be introduced in the form 

J(xl aU~ 
a -<T T --

1 . , u ox ' (5) 

where t~, is the conductivity of the extracellular space (mho/em); U, is the average potential 
in the extracellular space within the volume element; and the ''tortuosity factor" ru is 
introduced to take into account the branching and wiggling of the extracellular space. The 
tortuosity factor has been evaluated by Mathias et al. ( 1977) for planar branching networks 
of tubules in terms of e."tperimentally measured morphometric parameters (see also Eisenberg 
et al., 1977, and Mathias et al.. 1979). 

Introduction of Ohm's law gives the e.<tpression for this component of the flux integral in 
terms of the potential. 

(6) 

·It is important to note that only one assumption has been used to introduce the smeared 
representation: the spatial variation of potential within a representative volume element is 
assumed to be sufficiently linear that spatial derivatives may be approximated by finite dif­
ferences. In contrast to some of the other derivations mentioned previously, no discussion 
of ·an infinitesimal volume element is necessary and the morphometric parameters S,/ Sr 
and V,J V r are not confused. 

The above treatment can be applied to each of the components of the surface integrals in 
Eq. I. We write the result only for the isotropic case used in our later analysis. The aniso­
tropic case is considered in Appendix II. 

( 7) 

where the effective resistivitiesRt • R1 + 1/I(SdSr)Tjt~d andR~- 1/i(S~/Sr)-r,a,l are 
used for ease of notation. The delta function appears on the right·hand side as an approxi· 
mation to 10 / AV for small ~ V. 1i is the location of the source; ris the point at which po­
tential is measured. 

The second integral in Eq. 2 is now to be evaluated. It c:1n be written in terms of the 
potential across the membrane and the membrane admittance Y,. =- G, + jwC,., where 
the admittance and membrane conductance G .. have units (mho/em.:), the membrane 
capacitance C, has units (faradjcm2),j - v=T, and the angular frequency w (radfs) is 2:T 
the frequency in hertz. 
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J f T..·dS- J Jl<u,- U,) Y.dS. (8) 
s,. s., 

If we approximate the potentials by their value at the center of the volume element, this 
becomes 

(S.,/Vr)[U,(r)- U"(r)] Y .. ·~V • f J J,.·df. 
s. 

(9) 

where S.,f Vr is the surface of membrane per unit volume of tissue. Then, Eq. 2 becomes 

(10) 

which can be combined with Eq. 7 to give 

\1 2 U,- R1(S./Vr) Y.(U;- U")- -IoR,o(r- R). ( 11) 

The equations describing the spread of potential are made complete by the statement of the 
flow of current at the outer surface of the tissue. Current can leave the intracellular medium 
through the outer membrane of admittance Y, • G, + jwC, where the admittance and the 
membrane conductance have units reciprocal ohms per square centimeter and the membrane 
capacitance has units farads per square centimeter. There is no barrier to current flow at 
the outer edge of the extracellular space. Th~ we have the boundary conditions, discussed 
later in the paper, 

.l au, + Y u. - o} 
R, ar I I on, - a. 

u,- 0 
(12) 

Although the formulation W!ed above seems to imply the existence of two potentials, U1 

and U"' at the same location, which would be rather puzzling. the derivation presented 
shows that such is not really the case. We will not be surprised, therefore, that a complete 
treatment of the spread of potential in the two media (see footnote 1) will give similar re­
sults for the partial differential equations but a distinctly different boundary condition. 

Solutions 

The solution to the problems posed in Eqs. I 0, II, and 12 has been determined using the 
techniques of perturbation theory, which have proven fruitful in related physiological prob­
lems (Barcilon et al., 1971; Pcskoff and Eisenberg. 1975). The reader is referred to the 
Methods section for the details of our solution. Here we are concerned with those aspects 

of the solution which arc of immediate use in describing a spherical syncytium. 
The potential within the intracellular medium is written neglecting terms of order E2 

(see Table I for value of E). 

U1(r, R. fJ; jw) • Y/1'Uw) .+ EU/1(r, R, 8;jw) (13) 

where 

E - R;/(Rt + R,). (14) 
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TABLE I 

ELECTRICAL AND MORPHOLOGICAL PARAMETERS 
OF LENS OF THE FROG EYE• 

G, • 2.14·10-'mhofan2 

C, • 9.15 p.Fjcm2 

R1 • 62Sohm ·em 
S,fYr·6·l03cm-1 

Derived parameters• 

'Y(OC) - 1/880 ~ 
&(DC) •0.93 

f- 0.013 

•DatafromMathiascul..l979. 

G, - 4.38 • to-7 mhojcm2 

C, •0.19p.Fjcm2 

R~ • 48.5 kohm ·em 
Q- 0.16cm 

I 'Y(tOO Hz> I • l/26 ~ 
I &(tOO HZl! -0.79 

The first term UlfJ)Uw) describes the isopotential component of the intracellular poten­
tial, the component independent of spatial lo~tion. but dependent on membrane properties. 
and therefore frequency. This term describes the potential produced by current ftow through 
a parallel combination of two admittances. Y,( jw) and Y,.( jw), where Y,( jw) is the admit· 
tance of the surface membrane. a resistor and capacitor in parallel, and Y~(jw) is the ad­
mittance of the inner membranes when distributed along the extracellular resistance. 

The first term of the intracellular potential is determined in the Methods section: 

Ct{''Uw) • lo/4ra 2( Y, + Y,.) 

where Y1(jw) has been defined ncar Eq. 12 and 

Y,.(jw) • [ -r/(R, + R~)](coth -ya - lj7a) 

with a • radius of spherical preparation 

(15) 

(16) 

(17) 

Note that 'Y(jw) is. at zero frequency, the reciprocal of a length constant as u.;ually defined. 
The physical nature of the distributed admittance Y,.{jw) is of some general interest 

because it is analogous to the distributed admittance that arises in other physiological 
contexts. for example. the distributed admittance of the tubular system of skeletal muscle 
fibers. Y,.(jw) is the ratio of the total current flowing out of the e.'ttracellular space to the 
potential across the surfac: membrane. This current fiow equals the integral or sum of the 
currents flowing across the inner membranes. 

If the extracellular and intracellular resistances were negligible. -ya - 0 and the potential 
across the inner membranes would be spatially uniform and would equal the potential across 
the surface membrane. In general. however. -ya is not near zero and the potential across 
the inner mc.'"Ilbranes is not spatially uniform, even though the intracellular potential is. 
Rather, there is substantial variation in the transmembrane potential because of the radial 
variation of the extraceHular potential. arising from the long path length and high effective 
resistance of the extraceHular medium. 

The second term for the intraceHular potential. E r.J;Il(r. R, fJ, jw), is numerically quite sig-
nificant even at moderate frequencies and so cannot be neglected in our analysis. lt is written 
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as the sum of two kinds of terms: (a) a frequency-independent term Rx(r, R, 8), 2 which acts 
as a series resistance independent of membrane propenics but depending on position, posi­
tion of the source, and internal resistance; and (b) frequency-dependent terms which depend 
on membrane properties (and therefore frequency}, the radial location of source and obser­
vation point. but not on angular separation: 

~1>(r,R,6,jw) • 1/l(R,jw} + 1/l(r,jw}- 2rl;0)Uw} + loRs(r,R,8}, (18) 

where 

(19) 

R ( R Ll) R; + R~ {~'2 + R
2 

2rR 6)-•12 , r, 'u • 4 2 - 2 cos 
1ra a a 

( 
2R2 .,rR ~ -112 

+ 1 + r a 4 - -a 2 cos 8) - 2 + log~ 2 

(20) 

The potential within the extracellular medium is written. neglecting terms of order f.: 

(see Table I), 

U,(r, R, 8; jw} • U!0l(r, jVJ) + f U!H(r, R, 8; jw), 

where, as is shown in the Methods 5e(.."tion, 

(21) 

(22) 

Note that the first term of the extracellular potential is not spatially unifo~ but varies 
only with radial location of the observation point. The radial variation of potential in the 
extracellular medium occurs because the current driven by the spatially uniform intracellu­
lar potential must flow through a large distributed extracellular resistance. The current flow 
in the extracellular space that produces U}0l is essentially the same current that flows 
through the admittance Y, defined in the expr~ion for Y;0

). The second term U~ll for the 
extracellular potential is sufficiently unwieldy to be relegated to the Methods section. 

Graphic Results 

It is of some practical interest to examine the spatial distribution of intracellular and extra­
cellular potential computed under conditions of experimental relevance. The frequency 
dependence of the intracellular potential has been measured with a particular set of electrode 
locations (Mathias et al., 1979) for the lens of the ey~ but not yet for other spherical syncytia 

2Thc appearance of Rr in the ex~n for R 1 is misleading because the contribution of R s to the total obser\ted po­
tcttiaJ is 10 R1 (Rt/(R1 + R~)). Thus. the contribution of the R1 term to the observed potential is independent of 
the extrac:cllular resistivity. 
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like spherical preparations of cardiac muscle. Thus, the parameter values used must of 
necessity be those of the lens (Table I). On the other hand, there is little reason to believe 
that the qualitative electrical properties will differ when the parameters of other syncytia­
with small extracellular space-are used. although undoubtedly the natural frequency and 
other quantitative behavior will differ. 

First. consider the spatial variation of intracellular and extracellular potential when 
sinusoidal or steady current is applied in the center of the preparation. Fig. 2 shows this 
variation, intracellular potential on the left and extracellular potential on the right. Each 
panel is computed at the frequency indicated; the dashed lines indicate the first component 
of potential, namely, U1fJI or U~O>; the solid lines indicate the .. total" potential U1 - CJ10l + 
e l/11

> or U~ - U~0' + e u~n, if I pA of current were applied. In the sinusoidal case the po­
tential is described by a complex number. The real part of the potential is plotted because 
the real part describes the amplitude of a sinusoidal voltage at some definite time, whereas 
the magnitude of the complex potential does not describe such a physical voltage. 

The curves in Fig. 2 also illustrate the spatial variation of the real part of the ''input" 
impedance or ''input" resistance (at zero frequency) at different frequencies for the current 
electrode locations shown. In the uppermost panels, computed for zero frequency, the effect 
of the point source is clearly seen in the intracellular potential, producing a singularity at 
r - 0 and dominating the potential for a substantial region around the center of the prepara­
tion. The isopotential component of intracellular potential is dominant away from the point 
source, as expected. The extracellular potential under these conditions shows hardly a trace 
of the point source. It is essentially the response of the extracellular medium to the iso­
potential component of the intracellular potential. Such is the case because the values of the 
resistance of the internal membranes in the lens are high enough to insulate the extracellular 
medium from the effects of the singularity in the intracellular potential. The inner mem­
branes, however, are not perfect insulators; indeed. it is the current that crosses those inner 
membranes which produces the extracellular potential shown in the graph. Note that the 
amplitude of the extracellular potential is comparable to that of the intracellular potential; 
thus, the voltage across the inner membranes-the difference of the intracellular and extra­
cellular potentials-varies quite significantly across the preparation, even at zero fre­
quency. The lower panels in the figure show similar plots of the spatial variation of po­
tential at higher frequencies. Note that as frequency increases. the spatially uniform com­
ponent of potential decreases. This is because the admittance of the membranes becomes 
primarily capacitive and is therefore increasing linearly with frequency. A component of 
intracellular potential directly produced by the point source does not change with frequency. 
as expected from the frequency independence of the series resistance component of up>. 
The fact that U~'> itself is fairly independent of the frequency implies that, for the parameters 
of the lens, the series resistance term dominates the other components of up>. The effect 
of frequency on the extracellular potential is more interesting. First, note that the extra­
cellular potential becomes larger compared to the intracellular potential. This is to be ex­
pected bec:luse one component of the intracellular admittance is produced by the surface 
capacitance. The comparable component of the extracellular admittance arises from a dis­
tributed admittance in which almost all the (inner) membranes are in series with a portion of 
the extracellular resistance. Furthermore, the effect of the point source on the extracellular 
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FIGURE 2 The spatial variation of po\entiaJ. The graphs illustrate the real part of the peak voltage in­
duced by a sinusoidal current of I ~A (peak) applied with a point soura: to the center of the preparation. 
The ordinate can also be read as the real part of the impedanc:: (or. at DC, input reSistance) in units of 
kilo-ohms. The solid line desaibcs the "total" potentials U1 or Ur, the dashed lines indicate u}0) or 
l-1°1• The left·hand panels illustrate the spatial variation of intracdlular potential. at the frequencies in­
dicated in each panel. The right panels illustrate the radial variation of extrac:llular potential. The figuza 
~computed using Eqs. 13-22 and 51 with parameter values specified in Table I and on the figure it· 
!elf. The dependence on frequency is subject to uncertainties desc:ribcd in th~ Discussion. 
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resistance becomes quite marked as frequency increases. Indeed, at 100Hz the extracellular 
potential is quite close to the intracellular potential in most of the preparation. At 100 Hz 
the admittance of the inner membranes has increased enough so that they no longer shield 
the extracellular medium from the effects of the point source in the intracellular medium. 

Fig. 3 illustrates that moving the point source away from the center of the preparation has 
no marked effect on the qualitative properties of the intracellular potential. The two panels 
show that the spatial dependence and frequency dependence of the several components are 
similar to those already seen. 

The dependence of the intracellular potential on frequency is also of considerable interest 
because it is that dependence which is determined in experimental measurements of im· 
pedance. Fig. 4 shows the dependence of the magnitude and phase of the impedance on 
frequency for two locations of the electrodes; note that in these cases both electrodes are 
just under the surface of the preparation, as is often the case experimentally {Eisenberg 
and Rae. 19i6). Calculations with one electrode in the center give qualitatively similar 
results, but with smaller values of the series resistance~ as would be expected from Fig. 2. 
It is interesting to note that the dependence of magnitude of the impedance on frequency is 
qualitatively similar to that of a simple parallel circuit of a resistor and capacitor. The 
dependence of the phase angle is quite different, however, illustrating the greater sensitivity 
of the phase function to the properties of an electrical model. 

The theory developed here allows the estimation of the response of the preparation to a 
step function of current. The impedance Uti /0 is multiplied by the Fourier transform 
of an ••on-then-ofr step of current. and the inverse Fourier transform is approximated by 
a numerical discrete inverse Fourier transform {Brigham. 19i4). The intracellular voltage 
after the onset of current is shown in Fig. 5. These results illustrate the step response pro­
duced by the first two terms of the perturbation expansion. They cannot be rigorously 
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FrGliU 3 The spati.aJ variation of intrac:lluJar potentia!. The graphs iUu.strate the re:d part of the peak 
voltqe induc:d by a sinusoidal current of 1 IIA (pc:lk) applied with a point source to a location half· 
way between the c:nter and edge of the preparation. The ordinate can also be read as the reaJ part of 
the impedana: (or. at DC. the input resistance) in units of kilo-ohms. The figures were computed using 
Eqs. 13-20 with parameters spcc:ificd in Table I and on the figure itsdf. The solid lines describe the 
.. total" potential U1 and the dashed line the component oi potential C/;0). The dependence on fre­
quency is subject to uncertainties described in the Discussion. 
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FJGliJlE 4 The frequency dependence of the approximate solution. The pands illustrate the frequency 
dependence of the total intracellular impedance f./;/ /0 (solid line) and the series resistance R1 (dashed 
line). The location of the point source and the point at which potential is measured is shown on cad1 
pand. The left-hand panels illustrate the magnitude of the impedance and the right-hand panels illus­
trate the phase angle of the impedance. The: dependence on frequency is subject to unc:rtaintics de­
scribed in the Discussion. 

equated with the step response of the preparation, although in an analogous case that equal­
ity has been shown (Peskoffand Eisenberg, 1975). 

Summary of Results anti Approximate Representation as Circuits 

The electrical properties of a spherical syncytia that are of most interest physiologically can 
be summarized by Eq. 23: 

U,/lo • [Ij4ra 2(Ys + f,)] + eR1 (r.R.8) 

+ {e/41ra2
( YJ + Y,)]((a/sinh -ya)(sinh -yrfr + sinh -yRJ R)-2l. (23) 

where Ys and Y, are defined in Fig. 6 and Eq. 16, -r is defined in Eq. 17, tis defined in Eq. 
14, and Rs(r, R, 8) is defined in Eq. 20. In the case that the length constant is much greater 
than the radius of the preparation ( -ya - 0), a simple lumped circui~ usually called (some­
what loosely) the .. low frequency approximation, .. can be written (Fig. 6). In the case that 
the rightmost term of Eq. 23 is negligibl~ a more accurate approximate circuit can be 
written as well (Fig. 6). 

The accuracy of the equivalent circuit representations depends, of course, on the value 
of E. In the case of the lens of the frog eye. the last term in Eq. 23 is negligibl~ so the 
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FtGtJJtl5 The step function response. The response predicted from Eq. 13 to a step function of cur­
n:nt is shown for two different loc:1tions. Note the ''jump .. in potential at close electrode 5q):uations. 
the exponential time-course of the siow rise in potential and the equality of the slow component of po­
tential at diifemtt positions. These propenies. predicted by the model and illustrated here. have been 
found experimentally by Eisenberg and Rae ( 1976). in the tens of the frog eye. within the uncertainties 
desc:ibed in the Discussion. 

distributed approximation is quite an accurate representation; in other preparations, for 
example, spherical preparations of cardiac muscle, the parameters have not been measured 
to determine the accuracy of the approximations. In any case, however, the circuits are 
likely to yield physical insight which may be difficult to gain directly from the mathematical 
expressions. 

Both of these circuits include the series resistance eR1 which reflects the effects of the 
flow of current near the point source. If both electrodes are just under the surface of the 
preparation (r • R • a), then an expression for eRs is 

<R, • 4~~ [sin 
1
812 

- 2 - log. I( sin 8/2)( I + sin 8/2)11: for r a R a a (24) 

which for sufficiently small angular separation becomes 

R 
eR - --1

- for fJ - O· r ,. R - a. 
s 27ad ' 

If one electrode is just under the surface, i.e. (a - r)ja is small. and the other electrode 
is near the center of the preparation (i.e. Rja is small). then we have another approximate 
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FIGUilE 6 Circuit approximations to the e!ecuical model. The left-hand circuit is a circuit approxima­
tion valid when -ya is smalL The series resistance is defined precisely in Eq. 20 and approximated for 
special cases in and near Eq. 24. The distributed circuit approximation is mon: accurate (for parameters 
defined in Table l) over the physiological range of frequencies, subject to the una:naintics desc:ribed in 
the Discussion. 

expression for R, 

f.R, ~ R; (a - r + JR cos s) for a 
{

!...::...! « 1 

4ra a a R 
- « 1 a 

where terms of order (R/a) 2, (a - r)2 fa 2, and R(a - r)fa 2 have been neglected. 

METHODS 

Expansions 

The solution to the problems posed by Eqs. 10. 11. and 12 is determined by first writing the problems 
in normalized form to isolate the dimensionless parameters of the system and to determine their 
sizes. We use the dimensionless variables. shown in bold face type. 

(25) 
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(26) 

with the length sc:Ue set by the natural .. Iength .. 1/"Y defined previously (Eq. 17). 
The nonnalized equations are written in terms of the dimensionless spatial variables r • "Y' and 

R • -yR. The laplacian V 2 jn dimensionless coordinates equals the laplacian in dimensional co­
ordinates divided by -y2 ; o('r- R) - "Y2o(7- R). The differential equations then become .. 

V 2U, - t(U, - U ,) - -ec5(7- R) • -ec5(r - R)c5(0)/(2rr 2 sin 0), 

au, u } - + «f 1 • 0 
ar on r - ""fa. 

U ,(""fa) • 0 

(27) 

(28) 

(29) 

(30) 

The usc of a complex number to represent a dimensionless length may seem somewhat nonphysi­
cal The definition of such a complex length scale is natural in the theory of transmission lines. 
where the use of the propagation constant leads to much physical insight. In our case. because 
the equations are linear, both the length sc:Ues and the cell size (and all other distances) are multi· 
plied by the same complex number. Thus. the statement r • ..,a means that the dimensional location 
, -a. 

The definitions of the length scale 1/'Y and the small parameter t both differ from those used in 
problems describing single spherical cells. The length scale chosen here depends on the electrical 
properties of the membranes and preparation. not on its size. The small parameter isolated here 
depends on the effective resistivities of the intracellular and e.'ttracellular media (that is. on the resis­
tivities, the morphometric parameters, and the connectivity of these media and on the resistance of 
the junctions between cells), but not on the properties of the membranes. Thus, our t does not 
vary as the admittance of the membrane changes. neither because of nonlinearities in the membrane 
capacitance or conductance nor because of frequency dependence introduced by the membrane 
capacitance. This choice of parameters was motivated by experience with related electrical pro~ 
lerns describing networks like on~imensional cables. The choice was confirmed by the solution of 
a simplified form of our problem with the current source in the center of the preparation. which 
showed that the first three terms of the perturbation e.'tpansion are the entire e.'tact solution. Per· 
haps the usc of such parameters. particularly of an electrical instead of a geometrical length scale. 
would simplify other problems (Peskoff et al. 1976). Typical values of the parameters t, c, and 1/"Y 
are given in Table I, based on the mC3Sured properties of the lens of the eye (Mathias et al .• 1979). 
Values for another spherical syncytium-of cultured cardiac cells-are unfortunately not available. 

The next step in the analysis is to construct an expansion in the small parameter. The expansion 
will proceed in integral powers of t, because the coupling between terms in the Eqs. 27-30 in· 
sures that terms in the expansion multiplied by fractional powers of f would be identically zero. 
Furthermo~ the expansions for U1 and U, must start with the same order or no consistent (i.e .• 
well posed) set of problems can be derived. The definition of the .. input" or normalizing resistance 
(R, + R,)-y is somewhat more arbitrary; other definitions le:1d to expansions of the normalized po­
tentials which appear at first blush to be of different form, but which become identical when written 
in dimensional form. 

The resulting expansions are 

u,rr. R; e) - U~0,(f. R) + eU)0,(f. R) + .. . 

U.(f~R;t)- U~0'(f,R) + tU~n(r,R) + .. . 

( 31) 

(32) 

Sequences of problems are determined by substituting these expansions into the differential equa· 
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tions and boundary conditions and collecting terms of the same power in e. The collection procedure 
is an easier way of perfonning a systematic limit process in which the case of e- 0 is considered to 
determine the first problems U~0' and U~0>. Tnese potentials are then subtracted from the equations 
which describe the total potential and the case of E -0 is again considered. giving the problems U~l) 
and U!11 for the first order correction. Repetition of this process generates all the higher order terms. 

The first of the sequence of problems is, for the intracellular medium, 

and for the extracellular medium, 

V 2U!0' • 0 

aU 101 
.:..::.L • 0 on r • "'fO or 

U ~0' - 0 on r • "'fO. 

The next problems are then. for the intracellular medium, 

V' 2U!1
' • -o(r - R) + U~0~ - U!0' 

auu> 
.:.::...L. • -«Ul01

; on r • "'{a. ar 
and for the extracellular medium, 

VlU!I) - U!H • Ulo' - U~o, - U~~~ 

U!ll - 0; on r • -ya. 

(33) 

(34) 

(35) 

(36) 

The assignment of the delta function to tht second order approximation (the order e problem) 
might appear strange because an infinitely large .. function" then appears in a problem specifying 
a correction term. However. the appearance of the delta function in the u~o problem is neither arbi­
trary nor fortuitous: assignment of the delta function to another order problem leads either to in­
consistencies (if the assignment is to the order zero problem) ,or to trivial restatements of the present 
expansions (if the assignment is to order two or higher problems). 

Finally, the problems for the higher order potentials are. for the intracellular case. 

(37) 

and for the extracellular~ 

v:u!•) - U!•l • Ut•-n - U!•-n - Uj., 

U!•> • 0; on r • -ra 
n ~ 1. (38) 

In the derivation of the problems « is assumed to be order 1. as is the physiological case. and as is 
required if the perturbation expansion is to be useful. 

We would like to proceed to solve these problems one at a time. taking the problem for the intra­
cellular medium before that of the extracellular medium. However. it is clear that the problems 
stated are not well posed (that is. do not have a unique solution). because a constant could be added 
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to each of the potentials in Eqs. 33, 35, and 37 and still be a solution. Ulu1 will in fact be specified by 
the requirement that the problem for U~l) be consistent, namely, that the total current leaving the 
preparation (the surface integral of the radial derivative of the potential) equal the current leaving 
the source. Integrating the equation for U}1l gives, with dV as the volume element, 

fff vzu~n dV • -1 + fff (Ulo> - U~Ol) dV. (39) 

Application of the divergence theorem (Schey, 1973) and the boundary condition gives the integral 
COnstraint which SpecifiCS the problem for U~O) 

(40) 

Similar integration and treatment of the higher order problems give the integral constraint for the 
problem for Ul"', n ~ 1 

( 41) 

These integral constraints., together with the statement of the problems. Eqs. 33-38, now specify 
the sequence of approximations U~0>, Ul' 1, ••• and U~01, U~1 1, •••• 

Another version of the integral constraints can be derived by integration of the differential equa­
tions which specify U ~~~) and substitution from Eq. 40 or 41: 

" f f UlOl dS - f J o~r~ol dS • I 
..n- sun-

" f I (Ulll-l) - Ul"1
) dS + 

sllff.:e 
ff au( .. , 

--::-!- dS - 0; or 
Slll'face 

(42) 

(43) 

n ~ 2. (44) 

Although these forms of the integral constraints are not needed in a minimal specification of the 
problems for the intracellular and extracellular potentials. they (together with the other forms of 
the constraints) are helpful in understanding the relationship of the current ftows across the surface 
membrane. the inner membranes. and out of the extracellular space. Examination of Eqs. 40 and 41 
shows that current ftow across the surface membrane in a problem of order n appears in its entirety 
as current ftow across the inner membranes in the problem of the same order n. Examination of Eqs. 
42-44, however, shows that current flow out of the extracellular space in a problem of order n is pro­
duced by surface membrane current (or equivalently, inner membrane current) of two different 
orders. Thus. there is a coupling between current ftows in the different orders of approltimation~ all 
the current flows do not balance in a set of problems of a single order. Finally, examination of the 
integral constraints shows that the source term appears explicitly only in the constraints derived 
from the n • 0. 1 problems. This property of the constraints probably is related to the termina­
tion of the exact solution in just three terms for the case where R • 0. 

Solutions 

Consider the problem defining u~O). The absence of a driving force (an inhomogeneous 
term on the right-hand side) for the differential equation and boundary condition implies 
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that u~O) is spatially uniform. described by the constant u~O) - Co. Note dtat the ··con­
stant .. C0 can, and does in fact, depend on membrane properties and therefore frequency. 

The problem for U!01 is easily solved because the driving force (the right-hand side) is 
spherically symmetric. making U!0> a function only of r. The resulting ordinary differential 
equation has the solution 

U!O> • Co [1 - !! ~inh r ]· 
r smh -ya 

(45) 

Substitution of the expression for U!0> into the integral constraint (Eq. 40) allows determi­
nation ofU~0>: 

(46) 

We next turn to the problem for U~ll with the understanding that determination of the 
solution will require consideration of the integral constraint (Eq. 41) and thus the problem 
for U!n. It saves considerable labor to separate the potential into pans. Note that R,. un­
like the other components of U, in Eq. 18, is defined as a resistance (in units of ohms). Its 
dimensionless counterpart is defined as R, - R,f-y(R, + R.). 

u~l) - R,(r, R, 8) + 1/i(r) + 1/i(R) + c I' (47) 

where 1/I(R) and C 1 are constants in the sense that they are independent ofr and e. The ap­
pearance of 1/I{R) is guaranteed by the reciprocity theorem proven in Appendix I. The con­
stant C 1 is chosen later to Satisfy the integral constraint. The specification of these prob­
lems is somewhat arbitrary. The integral constraint on R, was chosen to make the problem 
identical with that solved in Barcilon et al. (1971). The boundary value fA..-ya) • C0 was 
chosen for simplicity; we knew that any value was acceptable because it would simply be 
accomi'!lodated by a different value of C 1• In retr~ it would seem better to have de­
fined a boundary value so that C, would have been zero. In that case 1/1(•1• the nth-order 
generalization of ,P. would have been just -U!•-n, and the structure of the solutions 
would have been clearer. 

V' 2R, - -o(r- i) 

aR, - 1 2 on r - ..,a ar- 4r("'(a) 

JJ R,dS • 0 
surface 

(48) 

and 

(49) 
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The dimensional form of R1 (r, R) is given in Eq. 20. The form has been derived by Bar­
cilon et al. (1971, Eq. 26)3 and is discussed in Sobolev (1964, p. 297) and Kellogg (1929, 
p. 247). 

The functional form of Y, is easy to determine because C 1 is independent of location and 
U~0) depends only on r, not B. The Laplacian in Eq. 49 then becomes an ordinary differen­
tial operator and the solution of Eq. 49 is easily found to be (see Eq. 19) 

y,(r) - c - u~O) - c ("'(Q) ( ~inh r \ 0 0 r smh "Ya/ (50) 

The remaining constant C 1 must now be chosen from the integral constraint (Eq. 43), 
which involves the functional form for u~l). That form is considerably simplified. how­
ever, as C 1 is independent of R. Then~ we need only consider the case of R - 0. 

We now turn to the problem for u~n with R- 0. The Laplacian again becomes an or­
dinary differential operator. and the solution can be easily found: 

um(r, 0) - (c + c . "'(Q - _1_) (• - sinh r . ya ) 
• 

1 0 smh -ya 4r"'(a r smh -ya 

+ _1_ (t - e-'- ~inh r [1 - e-~]\. (51) 
4rr smh .,a ') 

Application of the integral constraint (Eq. 43) shows, after a certain amount of algebraic 
manipulation involving repeated use of Eq. 46. that 

C 1 • -2Co. (52) 

This component of the extracellular potential has also been determined in general and 
shown to s:ltisfy the integral constraint for all values ofR. 

U~ll(r, R, 8) • R 1 (r, R, 8) + [C 1 + ~(R)]{l - ~(r)/C0 ] 

__ 1 ~ 2m + I R"' i ... (r) p ( B) 
4 £- ( )•+ I . ( ) 111 COS r ,.. 1 m -ya z,.. "'(a 

+_I t (-1)"'(2m + l)i.,.(R)i,..(r) ri_:W( 1 (~a) - 1] P,.(cos 8) 
4r ,..0 L z,. "'(a • 

exp (- 17 - R I ) 
4r lr- R I 

(53) 

where P ,..(cos 8) is a Legendre polynomial and the modified spherical Bessel functions i,.. 
are defined in terms of the more conventional modified Bessel functions 1,.. 112 : 

i,..(r) • v'fi /,... 1r.(r) 

and where lr- R I - (r + Rz- 2rR cos 8) 1':. 

(54) 

l-tnc: rc:u::ler should be aware that the dimensionlcs spatial variables of Barel on et al. are not identiC:ll to those: used 
here. 
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DISCUSSION 

Hiszorica/ Commenzs 

The spread of potential in two interdigitating media has been considered in two different 
biological contexts: the context of skeletal muscle, with its T ·system which invaginates the 
cylindrical fiber, and the context of syncytia, with its pervading extracellular space. The 
analysis of syncytia, particularly of spherical shape, has either assumed a discrete network 
(see references in Purves, 1976) or assumed that current can flow into the extracellular 
medium in every small region of the syncytium. Shaw ( 1964) derived a partial differential 
equation of the Klein·Gordon form (i.e., the form of our Eq. II if U, • 0) from this physie 
cal consideration. Adrian (personal communication, ca. 1969), Jacket al. (1975, Chap. 5); 
and Purves (1976) solved this equation with various boundary conditions (not equivalent to 
ours) in various special cases. This work did not deal explicitly with the s...-parate intra­
cellular and extracellular potentials, but rather tried to analyze the transmembrane po­
tential Ut- U,, assuming it equaled the intracellular potential U;. Such an analysis is in­
appropriate when U, - 0. 

Recently, a more explicit approach, involving the potential in both the extracellular and 
intracellular media has been used (Barr and Jakobsson, 1976; Peskoff, 1978a). The former 
paper uses rather different boundary conditions; the latter paper presents an exact solution 
of a time domain version of the problem defined here. The exact solution has obvious 
advantages; the advantages of a perturbation approach have been discussed at length 
(Peskoff and Eisenberg, 1973). Briefly, the perturbation approach permits construction of a 
systematic computable set of physical approximations, which permits construction of an 
equivalent circuit representation, and which permits easy generalization to related problems 
of more complex geometry or electrical behavior. The disadvantage of a perturbation ap­
proach lies in the possibility of nonuniformities in the convergence of the resulting expan­
sion. Such non uniformities occur, in the same manner. in expansions of the exact solution 
in a small parameter (as used by Peskoff, 1978a. b). 

The analysis of skeletal muscle with T -system has been done in a more physical, less 
rigorous way. Falk and Fatt (1964) proposed that the main effect of the T-system was to 
provide an alternative path by which current could leave the sarcoplasm; the T -system did 
not interfere with the longitudinal current flow, rather it simply added an admittance in 
parallel with that of the surface membrane. This admittance was calculated with a radial 
and .. inside-out .. version of cable theory in which the potential in the extracellular medium 
(the lumen of the T-system) was taken to be radialJy symmetrical, the potential in the 
intracellular medium (the sarcoplasm) being radially uniform. Although most plausible, 
the great advantage of this approach was the simplicity of the resul~ not the rigor of its 
derivation: the approach allows the description of the T-system without seriously com­
plicating the one-dimensional description of the cylindrical muscle fiber. 

The work presented here can be view~ as a synthesis of the previous work on syncytia 
and on the T-system of skeletal muscle. On the one hand, the potentials are described by 
a pair of coupled Klein-Gordon equation~ on the other hand, the perturbation analysis 
establishes (instead of assuming) a set of approximations equivalent to those customarily 
used in skeletal muscle. 
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Mathematical Approximations 

Certain features of the analysis require funher comments. The derivation presented is 
reasonably precise, sharing many of the difficulties that any derivation of a smoothed 
representation of a fundamentally discrete (i.e. quantitized) system must have. We expect 
the derivation, and therefore probably the results, to break down when the discrete prop­
erties of the preparation are important. For example, if one were recording with two 
microelectrodes within one of the cells which make up the preparation (or with a single 
microelectrode with circuitry to compensate for the electrode impedance), one would ex­
pect the theory to be inadequate because the internal resistivity of a single cell would deter­
mine the flow of intracellular current near the electrode(s), not the effective resistivity of the 
entire preparation. Indeed, in this particular situation even the precise pattern of connec­
tions between cells might be significant. Similarly, we expect the theory to be of restricted 
use at frequencies (or under conditions or at times) for which the decrement of potential is 
St=? compared to cell size. For example, when 1/"Y approaches a cell size in magnitude, one 
expects the equations describing the preparation to change qualitatively. In the case of the 
lens such would be the case around 500 Hz. and it may seem surprising that experimental 
results (Mathias et al., 1979) do not show more dramatic deviations from the theory at those 
frequencies. However, in a somewhat analogous situation (the tubular system of frog 
muscle), Mathias et al. ( 1977) have shown that the discrete properties of their system have 
a more quantitative than qualitative effect in an equivalent frequency range. Indeed, in the 
case of the T-system it proved possible to incorporate the effects of the discrete nature in a 
surprisingly simple way. We can hope that a similar generalization will be possible here, at 
least for the dominant terms Ul01 and U ~o), or the general term with the current electrode in 
the center of the preparation. In those situations there may well be enough congruence be­
tween the symmetry of the electric field 3nd the preparation to allow analysis of the discrete 
effects. • 

It is difficult to state with precision the mathematic:1l range of validity of the analysis, 
as it is difficult to state -the precise rarige of validity of any e:tpansion involving a number 
of independent parameters, which C:l11 combine in a large number of ways. Different com­
binations of parameters in our problem can, for example, represent (in an approximate 
sense) everything from an infinite resistive solid to a single spherical cell with a purely 
capacitive outer membrane, each having, of course, different behavior as a function of fre­
quency. Physically, it is clear that the approximations used here (which are summarized in 
the circuits in Fig. 6) have a wide range of validity. Mathematically, it is clear that the re­
quirements of small t and small Jtt are met. at least for the lens. In the lens a - 1 only at 
frequencies of the order of l MHz. There is also no doubt, however, that the solution has 
frequency dependence in addition to that just described; for example, the direct effects of 
the point source of current cannot be described simply by a series resistance at all fre­
quencies. Further discussion of the range of validity of our approximation requires, how­
ever, an explicit analysis of the frequency dependence of the exact solution of the system of 
partial differential equations, which analysis is not yet available. We can be sure now that 
the solutions are ••tow'' frequency approximations. But we cannot precisely define low 
frequency .. 

The restriction to .. low'' frequencies has certain consequences for the interpretation of 
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the step function response given in Fig. 5. The curves shown are computed from the first 
two terms in the perturbation expansion; they cannot rigorously be equated with the re­
sponse of the original set of equations to a step current. In a somewhat analogous case, 
however, Peskoff and Eisenberg (1975) showed that the transient response so predicted was 
the appropriate approximation to the exact transient response. in the range of times of 
physiological interest. 

Szruczural and Physiological Assumprions 

The goal of this paper is to represent a syncytial tissue consisting of electrically coupled 
cells and a pervading extracellular space by an electrical model, an electrical model simple 
enough to understand in physical terms and realistic enough to use in physiological situa­
tions. Tne panicular tissue we have had in mind is the lens of the eye, although spherical 
preparations of cultured cardiac muscle are probably just as well described by-the model. 
The lens of the eye undoubtedly has certain structural features and perhaps certain bio­
physical properties which have been simplified away in our analysis. For example, (a) the 
resistance of the couplings between cells has been treated as pan of the internal resistivity 
of the cells; (b) only the outermost membrane of the outermost cell layer has been allowed 
to have different properties from the internal membranes; that is, no systematic radial 
gradient of membrane properties has been permitted; (c) the anterior layer of cuboidal 
epithelium has not been included; (d) the anisotropy permitted is of a limited type which 
may not adequately des..--ribe the anisotropy expected from the structure of the lens. 

The first simplification, the precise description of the resistive contribution of the gap 
junctions (particularly, to nonuniform or anisotropic properties), will require mapping of 
the locations of those junctions, a nontrivial task. It seems safe. however, to conclude that 
the junctions will contribute only resistive (not capacitive} properties at the frequencies 
of interest here. It is possible to estimate the natural frequency of the gap junction (the 
frequency at which the capacitive properties become important) from measurements and 
some elementary considerations. The effective resistivity R; due to both gap junctions and 
cytoplasm is some 625 ohm ·em (Table I and Eq. 7). As the actual cytoplasmic resistivity is 
at least i of this figure. this effective resistivity is produced primarily by the series resistance 
of 1/(2.4 x 10-c) gap junctions, because the size of a lens fiber (in the radial direction) 
is some 2.4 ,u.m. Thus, the membrane resistance of the gap junctions, if they occupied the 
entire fiber membrane, would be about 0.15 ohm • cm2, giving a natural frequency, in con­
junction with a double thickness of membrane (capacitance about 0.5 p.F jcm2), of 2 MHz. 
Of course, this is a lower bound. Only a pan of the fiber membrane is involved in gap junc­
tions. because most of the membrane (and capacitance) separates the intra- and extracellular 
media. Although direct measurements of the area of gap junction membrane are not avail­
able. an estimate of the natural frequency of a single junction can be made from structural 
studies of other preparations. Fig. 11 of Makowski et al. ( 1977) shows about a 1-nm diam­
eter .. hole" associated with an 8.5-nm hexagon of lipid bilayer, the hole being about 12 nm 
long. If the actual resistivity of the cytoplasm is some 200 ohm ·em. one can estimate the 
impedance of one gap junction to be 1011 ohm in parallel with a capacitance of about 3 x 
t0-19 F, giving a natural frequency of S MHz. 

Another troublesome aspect of this analysis concerns the meaning of the boundary con­
dition. It seems likely to us that the parameters in the boundary condition represent the 
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composite properties of membranes in the outermost layer of lens fibe~ a layer of size 
corresponding to the volume element shown in Fig. 1. In that case it would be incorrect to 
interpret the ••surface" properties as those of a single membrane; the correct physiological 
interpretation would require a more precise mathematical analysis of the meaning of the 
boundary condition than is currently available. 

There is no doubt that future work is needed to test and extend this model; in particular, 
to find which of the listed approximations and simplifications limit the applicability of the 
model to the real situation. The ability of the model to describe rather complex electrical 
properties is quite good (Mathias et al., 1979), however, and leads us to expect that in a 
general sense the model will remain useful. Indeed, one can even hope that models of this 
general type will be useful to describe the variety of syncytial tissues, of different geometry 
and function, which seem to use electrical current in their natural function. 

A recent analysis of a cylindrical syncytium (Peskoff, 1978b) begins this process by 
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FIGtJU 7 The spatial variation of transmembrane potential within the lens, a spherical syncytium. 
Each panel illustrates (solid line) the spatiaJ variation of ~e potential U1 - Ur• the potential across the 
inner mc:mbr.ules of the syncytium. The potential across the surfac: membrane (dashed line). which 
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· membrane. even at DC. The parameterS used in the calculation are given in Table I and on the figure 
itself. Eqs. 13-ll and S 1 were used in the calc:-.1lation. rne dependence of frequency is subject to uncer· 
tainties described in the Discussion. 
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describing the transverse tubular system of a skeletal muscle fiber as an isotropic system of 
inner membranes and tubules. The structure of the transverse tubular system in skeletal 
muscle is highly anisotropic, however, and all other analyses, following Falk and Fatt (1964), 
have neglected longitudinal current in transverse tubules. Such longitudinal currents have 
also been neglected in the analysis of the clefts of cardiac Purkinje fibers (Schoenberg et al., 
1975). Recently, Mathias (1978) has analyzed the current ftow in a circuit model of the 
helicoidal tubular system of skeletal muscle. The analysis showed that longitudinal current 
in the tubular system was quite negligible. Thus, an analysis of the cylindrical syncytium 
must deal with a highly anisotropic extracellular medium, perhaps profitably using the 
approach of Appendix II. 

Implications: Lens and CarditJc Muscl~ 

The implications of this model for the function of the lens arc discussed in a paper (Mathias 
et al., 1979) devoted to the confrontation of the model with experimental reality. One im­
plication of the model for spherical preparations of cardiac muscle is shown in Fig. 7. This 
figure illustrates the spatial variation of membrane potential expected in a spherical prep­
aration with the current electrode at its center. The solid line describes U; - U,, from 
Eqs. 13 and 21. 1he dashed line describes the potential across the outer membrane 
U1(r • a; R • 0). which is very close to U~0> for the parameters given in Table I. Note that 

even at DC there is poor spatial uniformity of potential; at higher frequencies there are 
essentially no regions of the inner membranes of the same potential as the surface mem­
brane. This figure has been computed for the lens, with its very long time constant of a 
second. However, similar situations are likely in other spherical preparations at frequencies 
that bear the same relation to the time constant of that preparation. It certainly seems a 
remote possibility that other spherical preparati'lns will be ••space clamped'' (i.e. have uni­
form potentials across all membranes) at times comparable to their time constant. Thus, 
voltage clamp experiments of spherical syncytia must be interpreted without assuming such 
space clamped conditions. 

APPENDIX I 

Proof of Reciprocity 

The proof of reciprocity for our system of equations uses the techniques developed to prove reci­
procity for l..aplace·s equation or the Helmhol~equation (Morse and Feshb~ 1953, p. 808). We 
first write Eq. 21 twice, once with a sourc:c at R0 and once with a source at R 1 • The equation for 
the source at R0 is multiplied by U1{rl R1) and the equation with the source at R, is multiplied by 
U1('fl· R0 ). 

4 The multiplied equations are subtracted and integrated to give 

"The solidus ( I ) is used to separate the location of the sour= (to the right) from the point at which potential is 
measured (to tbe left). 
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Application of Green's theorem {Morse and Feshbach, 1953, p. 803) and substitution from Eq. 28 
give another expression for the difference of potentials: 

U,(R, I Ro) - U,(Ro I R,) 

- JJ {u,rrl R,) au,~: R.> - u,(71 R.> aw~; R,l} dS ...,._ 

The boundary conditions (Eqs. 29 and 3Q) ensure that e:~ch integral is equal to zero for all values of 
f, independent of the spatial location of the sources. Then, we have the result 

(57) 

Because R 1 and R0 can describe any location. the theorem is proved. The use of Green's theorem 
has "integrated out" the dependence on the original observation point r and replaced it with one 
of the original source locations. The procedure of successive limits, defined near Eq. 32. shows that 
reciprocity is satisfied individually by each component U~"1 of the total intracellular potential. 

APPENDIX II 

The Anisotropic Case 

Our analysis can be extended without too much difficulty to the anisotropic case in which the ef­
f~cti~ resistivities R1 and R, arc allowed to have one pair of values in the radial direction and another 
pair of values in the angular directions perpendicular to the radial direction. This situation is likely 
to occur in spherically symmetrical biological preparations. for example. a smoothed representation 
of the lens of the eye. or in the overly examined A/lium cepa. 

We represent the angular component of the Laplacian by L2• fJ1 is the ratio of the effective intra­
ceUular resistivity in the radial direction (now called R1) to the effective intracellular resistivity in the 
angular direction. {3, is the ratio of the effective extracellular resistivity in the radial direction (now 
called R,) to the effective extracellular resistivity in the angular direction. The dimensionless version 
of the differential equations and boundary conditions is then 

(

02
, + ~ !. + IJ, L2) U, - f(U, - U,) • -fo(r- R) 

ar· r ar r 2 

(~ + ~ !_ + 11: L 2) U, + (1 - f)(U, - U,) • 0 ar· r ar r· 

au, u o} -+ n ;• 
ar on r- -ya 

u,- 0 

(58) 

(59) 

(60) 

( 61) 

where the structure has been assumed to be axially symmetric. independent of longitude and where 

Lz 1 a (. d a) 
- sin tJ atJ sm u otJ • (62) 

Substitution of the expansions {Eqs. 29 and 30) into the differential equations shows that the prob-
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lems defining U}0> and U~0> are unchanged by the inclusion of anisotropy, the meaning of the vari­
ables R1 and R, simply being restricted in the anisotropic case to the effective radial resistance. The 
problem defining U/1) is changed but in a surprisingly simple manner. IfU;(r) is defined as the angu­
lar average ofU}H (r, 8) the numerical superscripts being suppressed for simplicity, we have 

1 (" U, - 2 Jo UU)(r. 8). sin 8 d8 (63) 

up) - U,{r) + U,(r. 8). (64) 

Problems can then be wrincn for the symmetric (i.e. the radial) and angular parts ofU}n 

{

a2U, + ~ aut • ..::.!_o(r _ R) + u~o, _ u~o) 
Of2 r Of 4rr2 I 

au. 
-· - -«U(O) on r - ..,a Or I I 

(65) 

(66) 

The radial problem can be solved directly or compared with problems previously solved (Eq. 47) to 
give the resul~ in dimensional form, 

U, • ~(r) + \1-(R) + c, + lo(R~; R,) tR + r ;LR - r I -1l (67) 

The last term of the right-hand side of Eq. 67 is the angular average of R, (see footnote 2). '/t( ·) is de­
fined in Eq. 19. The constant C1 can be shown to equal -2Co by separating the anisotropic intracel­
lular and extracellular potentials into angular and radial parts and applying the integration proce­
dure previously dc::sc:ribed (see Eq. 43). 

The angular component of the dimensional potential L1n can be determined by standard methods: 

fj~l) • lo(Rt + R,) t 2n + 1 (rR)" 
' 4ra •-• 2P + 1 au 

[ 1 + • + ( 2a )21>••] P .. (cos 8) 
• R+r+IR-rl 

(68) 

where 

11- -! + <!> v4n(n + 1)13, + 1. (69) 

The isotropic case occurs when e, - 1 and so, - n. In that case 0,, written as Ulll - n), can be 
written in closed form. using Eq. 20 to express the closed form of R,: 

loR,_ l0(R~: R,) [R + r ~rR - rl _ ;J . O,(• • n). (70) 
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Computation of the angular component D; using the expansion, Eq. 68, should be e3Sier (i.e. require 
fewer terms) if the singular behavior of the corresponding isotropic component is removed from the 
sum. That is to say, the left-hand side of Eq. 70 should be subtracted from the left-hand side of 
Eq. 68, and the right-hand side of Eq. 70 should be subtracted from the right-hand side of Eq. 68. 
In "the subtraction of the two equations, the closed form (Eq. 20) of R,, but the expanded form of 
U1 (from Eq. 68 with 11 • n)~ is used. To avoid numerical ill conditioning on the right-hand side. one 
should perform the subtraction within the brackets of the summand. before multiplication by the 
l..qendre polynomial and before summation. 

There are several noteworthy properties of the solution for the anisotropic case. FltSt, the fre· 
quency-independent tcnns are the only terms influenced by the angular resistivity. Thus, the effectS 
of the angular resistivity are confined to the easily measured series resistance term. Second. the 
series resistance term is modified in the presence of anisotropy in a straightforward manner. The 
radial component of the series resistance depends only on the radial resistivity, whereas the an­
gular component depends on both resistivities. Thus, experiments like those of Mathias et al., 
1979, in which there is no angular component of potential because the current electrode is in the 
center of the preparation, will measure the radial component of the effective intracellular resis­
tivity. On the other hand. experiments made with electrodes just under the outer surface of the 
preparation (e.g. Eisenberg and Rae, 1976) will measure a composite resistivity. 

The anisotropy, which might be observed in syncytial preparations, seems more likely to arise 
from the structure of the preparations than from the specific properties of the intra- or extracellular 
solutions. Thus. the surface to surface ratios, the tortuosity factors, or the distribution of junctions 
between cells (all of which help determine the effective resistivities in Eq. 7), seem to us the most likely 
causes of anisotropy in syncytial preparations. 
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