

Mathematics describes only a tiny part of life, But Mathematics* Creates our Standard of Living

*e.g., Electricity, Computers, Fluid Dynamics, Optics, Structural Mechanics,

How can we use mathematics to describe biological systems? I believe some biology is Physics 'as usual'

'Guess and Check'

But you have to know which biology!

Ion Channels are the Valves of Cells

Ion Channels are the Main Controllers of Biological Function

Selectivity

Different Ions carry Different Signals

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative (acid) <u>Blue</u> is positive (basic)

Figure of ompF porin by Raimund Dutzler

Hard Spheres

Ion Channels are Biological Devices

Natural nano-valves* for atomic control of biological function

lon channels coordinate contraction of cardiac muscle, allowing the heart to function as a pump

lon channels coordinate contraction in skeletal muscle

lon channels control all electrical activity in cells

lon channels produce signals of the nervous system

lon channels are involved in secretion and absorption in all cells: kidney, intestine, liver, adrenal glands, etc.

lon channels are involved in thousands of diseases and many drugs act on channels

lon channels are proteins whose genes (blueprints) can be manipulated by molecular genetics

lon channels have structures shown by x-ray crystallography in favorable cases

*nearly pico-valves: diameter is 400 – 900 picometers

Thousands of Molecular Biologists Study Channels every day, One protein molecule at a time

This number is not an exaggeration. We have sold >10,000 AxoPatch amplifiers

AxoPatch 200B

lon_channel<u>newsletter</u>

Ion Channel Monthly

If you have been forwarded this newsletter and would like to subscribe for yourself, please <u>click here</u>.

<u>View this email in your browser (or link to it)</u> <u>Share this message with colleagues</u>

Popular publications for March (view most recent)

- 1. Molecular basis of infrared detection by snakes. Nature
- <u>The Angelman Syndrome Protein Ube3A Regulates</u> <u>Synapse Development by Ubiquitinating Arc.</u> Cell
- 3. AMPA receptors--another twist? Science
- 4. <u>Molecular Basis of Calcium Signaling in Lymphocytes:</u> <u>STIM and ORAL</u> Annu Rev Immunol
- Neurological Channelopathies. Annu Rev Neurosci
 New antiarrhythmic drugs for treatment of atrial
- New antiarrhythmic drugs for treatment of atrial <u>fibrillation</u>, Lancet
 A Glial Signal Consisting of Gliamedia and NrCAM
- A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na(+) Channels during the Formation of Nodes of Ranvier. Neuron
- 8. Small Molecule Activators of TRPML3. Chem Biol
- 9. <u>Truncated {beta}-amyloid peptide channels provide an</u> alternative mechanism for Alzheimer's Disease and <u>Down syndrome</u>. *Proc Natl Acad Sci U S A*
- Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci

Targeted Life Science Advertising

Ion Channel

Media Group

Sponsors:

- <u>Bsys</u> Swiss Quality in Ion Channel Services
- <u>Automate Scientific</u> -Electrophysiology Equipment
- <u>Cellectricon</u> Dynaflow: a quantum leap for electrophysiology
- <u>Nanion</u> Automated patch clamp
- <u>Millipore</u> Ion channel cell lines

Sponsorship slots are currently open. Visit our <u>corporate webpage</u> to learn about the most highly targeted life science advertising available.

Why not forward this to your colleagues? Theyfil thank you for ft!

Channel Structure Does Not Change once the channel is open

Typical Raw Single Channel Records

Ca²⁺ Release Channel of Inositol Trisphosphate Receptor: slide and data from Josefina Ramos-Franco. Thanks!

Channels are only Holes Why can't we understand and build them?

Where to start?

Why not compute all the atoms?

Multiscale Issues

more later

Computational Scale	Biological Scale	Ratio
<u>Time</u> 10 ⁻¹⁵ sec	10 ⁻⁴ sec	10 ¹¹
<u>Space</u> 10 ⁻¹¹ m	10⁻⁵ m	10 ⁶
Spatial Resolution	Three Dimensional (10 ⁶) ³	10 ¹⁸
Solute Concentration		10 ¹¹

Biological Scales Occur Together so must be <u>Computed Together</u> This may be impossible in simulations Physicists and Engineers rarely try **Multiscale Issues**

It may not be possible to deal accurately with Ratios of Scales of 10¹¹ 10⁶ 10¹⁸ 10¹²

All at Once

Physicists and Engineers rarely try!

Computational Biology is NOT doing 'Physics as Usual' Why can't we understand and build channels?

Uncalibrated Simulations will not make devices that actually work

Unpopular view because Calibration is Hard Work

particularly for Non-Ideal systems with Correlations, Finite Size effects, and Flows Where do we start? Physics 'As Usual' 'Guess and Check'

Stochastic 'Derivation'

will include biological adaptation of Correlations and Crowded Charge

We start with Langevin equations of <u>charged</u> particles

Opportunity

and Need

Einstein, Smoluchowski, and Langevin ignored charge and therefore do not describe Brownian motion of ions in solutions We use

Theory of Stochastic Processes

to go

from Trajectories to Probabilities

Once we learn to count Trajectories of Brownian Motion of Charge, we can count trajectories of <u>Molecular Dynamics</u>

Schuss, Nadler, Singer, Eisenberg

Langevin Equations

Electric Force from Poisson Equation

<u>Equilibrium</u> Thermodynamics

Configurations Boltzmann Distribution $\lim N, V \to \infty$

<u>Nonequilibrium</u>

Schuss, Nadler, Singer & Eisenberg

Trajectories Fokker Planck Equation Finite OPEN System

From Trajectories to Probabilities Main Result of Theory of Stochastic Processes *Joint* probability density of position and velocity $p(\tilde{x}, \tilde{v}) = \Pr\left\{\left\{x_j, v_j\right\}_{j=1}^{2N}\right\}; \quad N = \text{Number of Particles}$

satisfies a Fokker Planck equation

$$0 = \sum_{j} \mathsf{L}_{j}^{p} p(\tilde{x}, \tilde{v}) + \sum_{j} \mathsf{L}_{j}^{n} p(\tilde{x}, \tilde{v})$$

with Fokker Planck Operator

$$\sum_{j}^{c} p = -v_{j}^{c} \cdot \nabla_{x_{j}^{c}} p + \nabla v_{j}^{c} \cdot \left(\gamma v_{j}^{c} - \frac{f_{j}^{c}}{m_{j}^{c}}\right) p + \nabla \cdot \nabla_{v_{j}^{c}} \frac{\gamma kT}{m_{j}^{c}} p$$

Coordinates are positions and velocities of N particles in 12N dimensional phase space

Conditional PNP

Schuss, Nadler, Singer, Eisenberg

Poisson-Nernst-Planck (PNP)

Semiconductor Equations: **One Dimensional PNP Poisson's Equation Permanent Charge of Protein Dielectric Coefficient** $-\frac{\varepsilon_0}{A(x)}\frac{d}{dx}\left(\varepsilon(x)A(x)\frac{d\phi}{dx}\right) = e\mathbf{P}(x) + e\sum_i z_i \rho_i(x)$ Valence **Proton charge Cross sectional Area Drift-diffusion & Continuity Equation Number Densities** $\frac{dJ_i}{dx} = 0 \qquad -J_i = D_i(x)A(x)\rho_i(x)\frac{d\mu_i}{dx}$ Flux **Diffusion Coefficient** Chemical Potential $\mu_i(x)$ $\mu_{i}(\mathbf{x}) = z_{i}e\phi(\mathbf{x}) + kT\ln\left(\frac{\rho_{i}(\mathbf{x})}{\rho^{*}}\right) + \underbrace{\mu_{i}^{ex}(\mathbf{x})}_{r}$ valence **Thermal Energy** proton charge

19

Counting at low resolution gives <u>'Semiconductor Equations'</u>

Poisson-Nernst-Planck (PNP)

Ions are Points in PNP contains only the Correlations of Means

Gouy-Chapman, (nonlinear) Poisson-Boltzmann, Debye-Hückel, are siblings with similar resolution but at equilibrium, without current or flux of any species Devices do not exist at equilibrium

How do we check the theory?

Compare with Biological Function!

Our task is to Discover & Understand, Control & Improve Biological Function

That means Selectivity

lons are not Ideal Potassium K⁺ ≠ Na⁺ Sodium

21

Heinz Engl, Martin Burger

Channels are Selective Different lons Carry Different Signals through Different Channels ompF porin Na K⁺ 3Å 0.7 nm = Channel Diameter **Diameter matters Diameter is the Only Difference between** ~30 Å K⁺ and Na⁺ Flow time scale is 0.1 msec to 1 min 22

In ideal solutions K⁺ = Na⁺

Figure of ompF porin by Raimund Dutzler

Channels are Selective because Ions are NOT Ideal

Potassium K⁺ ≠ Na⁺ Sodium

3Å

Ideal Electrolytes are Identical

if they have the same charge

Modelers and Mathematicians, Bioengineers: this is reverse engineering

How does the **Channel control Selectivity**?

Inverse Problems

Many answers are possible Central Issue

Which answer is right?

Core Math Problem has actually been solved using methods for the Inverse Problem of a Blast Furnace Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67: 960-989 How does the Channel control Selectivity?

Inverse Problems: many answers possible

Central Issue Which answer is right?

Key is ALWAYS

Large Amount of Data from Many Different Conditions

Goal:

Experiments have built Two Synthetic Calcium Channels

Miedema et al, Biophys J 87: 3137-3147 (2004)

Comparison with Experiments shows Potassium K⁺ ≠ Sodium Na⁺ Must include Biological Adaptation!

Working Hypothesis Biological Adaptation is Crowded lons and Side Chains

Physical basis of function

Active Sites of Proteins are <u>Very Charged</u> 7 charges ~<u>20M net charge</u> = 1.2×10²² cm⁻³

Y SL

Charge Density 22 M

			#AA	MS_A^3	CD_MS+	CD_MS-	CD_MSt	
EC1.Ovidereducts		Average	47.2	1,664.74	7.58	2.82	10.41	
	tases	Median	45.0	1,445.26	6.12	2.49	8.70	
EC2, Transformer		Average	33.8	990.42	13.20	6.63	19.83	
EC2: I ransferases		Median	32.0	842.43	8.18	6.71	14.91	
EC2. Undrolados		Average	24.3	682.88	13.14	13.48	26.62	
EC3: Hydrolases		Median	20.0	404.48	11.59	12.78	23.64	
ECA: Luncos		Average	38.2	1,301.89	13.16	6.60	19.76	
CC4:Lyases		Median	28.0	822.73	10.81	4.88	16.56	
		Average	31.6	1,027.15	24.03	11.30	35.33	
EC5:1somerases		Median	34.0	989.98	9.05	7.76	16.82	
		Average	44.4	1,310.03	9.25	9.93	19.18	
EC6:Ligases		Median	49.0	1,637.98	8.32	7.95	17.89	
								٢
			#AA	MS_A^3	CD_MS+	CD_MS-	CD_MSt	5
-	Total	Average	36.6	1,162.85	13.39	8.46	21.86	Γ
	n= 150	Median	33.0	916.21	8.69	7.23	16.69	

EC#:	Enzyme Commission Number based on chemical reaction catalyzed	
#AA:	Number of residues in the functional pocket	
MS_A^3:	Molecular Surface Area of the Functional Pocket (Units Angstrom^3)	
CD_MS+:	Charge Density (positive)	
CD_MS-:	Charge Density (negative)	
CD MSt:	Total Charge density	

Jimenez-Morales, Liang, Eisenberg

EC2: TRANSFERASES

Average Charged Density: 19.8 Molar

Example: UDP-N-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE (PDB:1UAE)

Functional Pocket Molecular Surface Volume: 1462.40 A³ Density Charge: 19.3 Molar (11.3 M+. 8 M-)

Green: Functional pocket residues

Dille: Dasic = Positive charged = RTR				Decis - Decitiv	Plus
	= RTRTR	jea -	e charge	Dasic = Positin	Diue:

Red: Acid = Negative charged = E + Q

Brown URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE

Jimenez-Morales, Liang, Eisenberg

Working Hypothesis

Biological Adaptation is Crowded lons and Side Chains

Everything interacts

Working Hypothesis

Interactions in Channels come mostly from Finite Size Effects

Chemically Specific Properties come from Diameter and Charge

learned from Doug Henderson, J.-P. Hansen, Stuart Rice, among others... Thanks! Bulk Solutions: Interactions come mostly from *Finite Size Effects*

Chemically Specific Properties

of ions (e.g. activity = free energy per mole) are known to come from interactions of their **Diameter and Charge**

and dielectric 'constant' of ionic solution

Atomic Detail

'Primitive Implicit Solvent Model' Iearned from Doug Henderson, J.-P. Hansen, Stuart Rice, among others... Thanks! Ions in Water are the Liquid of Life They are not ideal solutions

> Everything Interacts with Everything

For Modelers and Mathematicians Tremendous Opportunity for Applied Mathematics Chun Liu's Energetic Variational Principle EnVarA

Variational Principles Deal with Interactions Consistently and Automatically

New Component (or Scale) implies New Field Equations (Euler Lagrange) by Algebra Alone No new Assumptions
Energetic Variational Approach EnVarA

Chun Liu, Rolf Ryham, Yunkyong Hyon, and Bob Eisenberg

Mathematicians and Modelers: two <u>different</u> 'partial' variations written in <u>one framework</u>, using a 'pullback' of the action integral

Variational Analysis of Ionic Solution

EnVarA

EnVarA Dissipation Principle for lons

 c_i number density; $k_B T$ thermal energy; D_i diffusion coefficient; *n* negative; *p* positive; z_i valence

Field Equations with Lennard Jones Spheres

Non-equilibriium variational field theory EnVarA

Nernst Planck Diffusion Equation

for **number density c**, of negative n ions; positive ions are analogous **Diffusion Coefficient** $\frac{\partial c_n}{\partial t} = \nabla \cdot \left[D_n \left\{ \nabla c_n + \frac{c_n}{k_B T} \left(z_n e \nabla \phi - \int \frac{12\varepsilon_{n,n} (a_n + a_n)^{12} (\vec{x} - \vec{y})}{|\vec{x} - \vec{y}|^{14}} c_n (\vec{y}) d\vec{y} \right. \right\} \right]$ Coupling Parameters $-\int \frac{6\varepsilon_{n,p}(a_n+a_p)^{12}(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{14}}c_p(\vec{y})d\vec{y}$ **Thermal Energy** Ion Radi **Number Densities Poisson Equation Dielectric Coefficient** $\nabla \cdot (\varepsilon \nabla \phi) = - \left(\begin{array}{c} \rho_0 + \sum_{i=1}^{N} z_i ec_i & i = n \text{ or } p \\ \uparrow & i = 1 \end{array} \right)$ valence
proton charge

Permanent Charge of Protein

Eisenberg, Hyon, and Liu

Energetic Variational Approach

EnVarA across biological scales: molecules, cells, tissues developed by <u>Chun Liu</u>

with

(1) Hyon, Eisenberg	lons in	<u>Channels</u>	
(2) Bezanilla, Hyon, Eisenberg	Conformation Change of	Voltage Sensor	Multiple
(3) Ryham, Eisenberg, Cohen	Virus fusion to	<u>Cells</u>	Scales
(4) Mori, Eisenberg	Water flow in	<u>Tissues</u>	

creates a new Multiscale Field Theory of Interacting

Components

that allows boundary conditions and flow and deals with lons in solutions self-consistently

Energetic Variational Approach

developed by Chun Liu

Preliminary Results and Provocations

Layering: Classical Interaction Effect

Comparison between PNP-DFT and MC

Nonequilibrium Computations

with Variational Field Theory EnVarA

Binding Curves

Current Voltage Time Curves

Energetic Variational Approach EnVarA

New mechanisms* (e.g., active transport)

can be added

* if they define an energy and its variation Energy defined by simulations or theories or experiments is OK

Full micro/macro treatment is needed for an Atomic Model, with closure, as in liquid crystals

Back to the Calcium Channel

Then, the Sodium Channel

Page 46

Ion 'Binding' in Crowded Channel

Classical Donnan Equilibrium of Ion Exchanger

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Multiscale Analysis at Equilibrium

Solved with Metropolis Monte Carlo

MMC Simulates Location of lons

both the mean and the variance

Produces Equilibrium Distribution of location of lons and 'Side Chains'

MMC yields **Boltzmann Distribution** with correct Energy, Entropy and Free Energy

Other methods

give nearly identical results: Equilibrium Multiscale **MSA** (mean spherical approximation **SPM** (primitive solvent model) **DFT** (density functional theory of fluids), Non-equilibrium Multiscale **DFT-PNP** (Poisson Nernst Planck) **EnVarA**.... (Energy Variational Approach) etc

Metropolis Monte Carlo Simulates Location of Ions

both the mean and the variance

Details:

- 1) Start with Configuration A, with computed energy E_A
- 2) Move an ion to location *B*, with computed energy E_B
- 3) If spheres <u>overlap</u>, $E_B \rightarrow \infty$ and configuration is <u>rejected</u>
- 4) If spheres do <u>not</u> overlap, $E_B \rightarrow 0$ and configuration is <u>accepted</u>
- 5) If $E_B < E_A$: accept new configuration.
- 6) If $E_B > E_A$: accept new configuration with probability $\exp\left[-(E_A E_B)/k_BT\right]$

Key idea

MMC chooses configurations with a Boltzmann probability and weights them evenly instead of choosing them from uniform distribution and then weighting them with $exp(-E/k_BT)$

Wolfgang Nonner

Crowded lons

Ion Diameters 'Pauling' Diameters			
Ca ⁺⁺	1.98 Å		
Na⁺	2.00 Å		
K+	2.66 Å		
'Side Chain' Diameter			
Lysine K	3.00 Å		
D or E	2.80 Å		
Channel Diameter 6 Å			

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Experiments and Calculations done at pH 8 52

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Na, K, Li, Ca, Ba Binding in Calcium Channel

Calcium Channel has been examined in ~35 papers, e.g.,

www.jgp.org

- Nonner, W., D. P. Chen, and B. Eisenberg. 1998. Anomalous Mole Fraction Effect, Electrostatics, and Binding in Ionic Channels. Biophysical Journal 74:2327-2334.
- Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and Selectivity in L-type Ca Channels: a Mean Spherical Approximation. Biophysical Journal 79:1976-1992.
- Nonner, W., D. Gillespie, D. Henderson, and B. Eisenberg. 2001. Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Physical Chemistry B 105:6427-6436.
- Boda, D., W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie. 2008. Volume exclusion in calcium selective channels. Biophys. J.:biophysj.107.122796.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2006. Effect of Protein Dielectric Coefficient on the Ionic Selectivity of a Calcium Channel. Journal of Chemical Physics 125:034901.
- Boda, D., T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. 2004. Monte Carlo simulation study of a system with a dielectric boundary: application to calcium channel selectivity. Molecular Simulation 30:89-96.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2007. The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Physical Review Letters 98:168102.

Most of the papers are available at

ftp://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints

http://www.phys.rush.edu/RSEisenberg/physioeis.html

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

for Biologists: a Word Picture

How does Calcium Selectivity Work? qualitatively

How does it work qualitatively? (for biologists)

Selectivity from Crowded Charges

2 Ca⁺⁺ are less crowded than 4 Na⁺

Ca Channel Filled with Na⁺

(not to scale)

Ca Channel Filled with Ca⁺⁺

(not to scale)

-¹/2

-1/2

-¹/2

 $-\frac{1}{2}$

<u>Channel Protein</u> Glutamate Oxygens = 4e 8 of -½ charge each Volume 0.38 nm³ Dielectric Constant 64 Outside the Filter Bulk Solution NaCl and CaCl₂

_¹/₂

Ca⁺

_¹/₂

 $-\frac{1}{2}$

-¹/₂

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

4 Negative Charges of glutamates of protein

DEMAND 4 Positive Charges nearby

either 4 Na⁺ or 2 Ca⁺⁺

Nonner and Eisenberg 60

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

Simplest Version: MSA

2 Ca⁺⁺ are LESS CROWDED than 4 Na⁺,

Ca⁺⁺ SHIELDS BETTER than Na⁺, so

Protein Prefers Ca⁺⁺ because Ca⁺⁺ is less crowded

Nonner and Eisenberg 61

What does the protein do?

Channel and Contents form a **Self-Organized Structure** with Side Chains at position of Minimum Free Energy Protein Fits the Substrate

"Induced Fit Model of Selectivity"

What does the protein do?

(for biologists)

Certain MEASURES of structure are Powerful DETERMINANTS of Function e.g., Volume, Dielectric Coefficient, etc. Induced Fit Model of Selectivity Atomic Structure is <u>not</u> pre-formed Atomic Structure is an important <u>output</u> of the simulation

What does the protein do?

Protein maintains <u>Mechanical Forces</u>* Volume of Pore Dielectric Coefficient/Boundary Permanent Charge

* Driving force for conformation changes ??

64 **Nonner and Eisenberg**

Binding Sites* are **outputs** of our Calculations

Induced Fit Model of Selectivity

Our model has <u>no</u> preformed structural binding sites but Selectivity is very Specific

*Selectivity is in the Depletion Zone, NOT IN THE BINDING SITE of the DEKA Na Channel

Challenge

from leading biophysicists Walter Stühmer and Stefan Heinemann

Max Planck Institutes, Göttingen, Leipzig

Can a physical theory explain the mutation Calcium Channel into Sodium Channel?

Calcium Channel Sodium Channel

DEKA Sodium Channel has very different properties from Ca channel,

e.g., 'binding' curve, Na⁺ vs Ca⁺⁺ selectivity <u>Na⁺ vs K⁺ selectivity</u>

QUALITATIVELY DIFFERENT Properties from the Calcium Channel

Nothing was changed

from the EEEA Ca channel except the amino acids

Calculated DEKA Na Channel Selects Ca²⁺ vs. Na⁺ and also K⁺ vs. Na⁺

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

We can actually compute the Structures that determine Selectivity
New Miracle??

Can *EnVarA* actually compute the Function of these systems?

How?

How does the DEKA Na Channel Select Na⁺ vs. K⁺?

Calculations and experiments done at pH 8

Na Channel DEKA 6Å

outputs of our

INDUCED FIT

Ion Diameter

1.98 Å

2.00 Å

2.66 Å

3.00 Å

pH 8

2.80 Å

pH 8

Na, K, Li, Cs Binding in Sodium channel

Sensitivity Analysis

What do the Variables do?

What happens if we Vary Diameter and Vary Dielectric Coefficient?

Inverse Problem We <u>discover</u> Orthogonal Control Variables* in simulations of the Na channel, but not the Ca channel.

*These emerge as <u>outputs</u>. They are <u>not inputs</u>.

Control Variables

Selectivity Na⁺ vs K⁺

Selectivity Depends on Structure

Depends STEEPLY on <u>channel diameter</u>

Depends only on channel diameter

Na⁺ vs K⁺ (size) Selectivity (ratio) Depends on Channel Size, not Protein Dielectric Coefficient*

*in DEKA Na Channel

Control Variables Conductance of DEKA Na⁺ channel

Conductance Depends Steeply on Dielectric

Contents of Channel depend only on dielectric

but

Selectivity does not depend on Dielectric Selectivity depends *only* on Structure

*These emerge as <u>outputs</u>. They are <u>not inputs</u>.

Supplementary Material

RyR Channel: Current Voltage Curves

Best Evidence is from the **RyR Receptor**

Gillespie, Meissner, Le Xu, et al, not Bob Eisenberg

- More than 120 combinations of solutions & mutants
- 7 mutants with significant effects fit successfully

The Geometry

Selectivity Filter

- is 10 Å long and 8 Å in diameter
- confines four **D4899** negative amino acids.

Four **E4900** positive amino acids are on lumenal side, overlapping D4899.

Cytosolic distributed charge

D. Gillespie et al., J. Phys. Chem. 109, 15598 (2005).

DFT/PNP vs Monte Carlo Simulations

Nonner, Gillespie, Eisenberg

89

Divalents

Gillespie, Meissner, Le Xu, et al

Gillespie, Meissner, Le Xu, et al

Vaccination against Traditional Models

Traditional Biochemistry and Traditional Molecular Dynamics Assume Ideal Solutions

Ions in Water and Life are NOT ideal

Life Occurs in ~130 mM salt solutions

lons in Water are the Liquid of Life

No gas phase models of traditional channel biochemistry *Liquids are not Gases Rate Constants are Variables*

No discussions of individual trajectories of Structural Biologists Counting and Statistics are essential Computation Starts From Crystal Structure when available but

Crystal Structures can<u>not</u> determine Selectivity because

- 1) Crystal Structures are measured in only one unphysiological solution
- 2) Crystal Structures are not accurate enough
- 3) Crystal Structures do not give entropy

Selectivity

Depends Sensitively on Self-organized Structure and their Flexibility

Induced Structure is Different in Different Solutions

SO

Structure must be Computed!

Rate constants are variables that change dramatically with conditions

Supplementary Material

lons in Water are the Liquid of Life. They are not ideal solutions

Chemically Specific Properties of Ionic Solutions come from Interactions

Molecular Dynamics Force Fields are Calibrated assuming no interactions with concentrations

Force Fields must be REcalibrated in each Biological Solution

Ca²⁺ and Na⁺ Binding Curves

DEEA Calcium Channel

Eisenberg, Hyon, and Liu Page 102

Layering: Classical Interaction Effect

Comparison between PNP-DFT and MC

Nonequilibrium Computations

with Variational Field Theory EnVarA

Binding Curves

Current Voltage Time Curves

Sodium Conductance and Inactivation

in Squid Axon (nerve fiber)

FIGURE 9. Separation of current into components carried by Na and K, from Hodgkin & Huxley (1952*a*, figure 5). A depolarization of 56 mV was applied at t=0; the temperature was 8.5° C. Outward current is shown upwards.

Conventional Explanation: Elaborate Structural Change

 $\begin{array}{c} \frac{4\pi}{\beta} & C_2 \frac{3\alpha x_1}{2\beta v_1} \quad C_3 \frac{2\alpha x_1^{-1}}{3\beta v_1} \quad C_4 \frac{2\alpha x_1}{3\beta v_1} \quad C_5 \\ s \left\| \gamma & s_1 \right\|_{2Y_1} \quad c_4 \left\| \gamma x_1 & s_1 \right\|_{2Y_1} \quad s_7 \left\| \gamma & s_1 \right\|_{2Y_1} \\ C_6 \frac{3\alpha x_1 y_1}{\beta x_1 v_1} \quad C_7 \frac{2\alpha x_1 y_1}{3\beta v_1 v_1} \quad C_9 \frac{\alpha x_1 v_1}{3\beta v_1 v_1} \quad C_9 \\ 2\alpha x_1 \left\| \gamma x_1 & 2\alpha x_1 v_1 \right\|_{2Y_1} \\ C_{10} \frac{2\alpha x_1 v_1}{\beta x_1 v_1} \quad C_{11} \frac{2\alpha x_1 v_1}{2\beta x_1 v_1} \quad C_{12} \\ 3\alpha x_1 v_1 \left\| \gamma x_1 & 3\alpha x_1 v_1 \right\|_{2X_1} \\ C_{10} \frac{2\alpha x_1 v_1}{\beta x_1 v_1} \quad C_{11} \frac{2\alpha x_1 v_1}{2\beta x_1 v_1} \quad C_{12} \\ \frac{\alpha x_1 v_1}{\beta x_1 v_1} \quad C_{13} \frac{\alpha x_1 v_1}{\beta x_1 v_1} \quad C_{14} \\ \frac{\alpha x_1 v_1 v_1}{\beta x_1 v_1} \quad C_{14} \\ \frac{\alpha x_1 v_1 v_1}{\beta x_1 v_1} \quad C_{14} \\ \frac{\alpha x_1 v_1 v_1}{\beta x_1 v_1} \quad C_{14} \\ \frac{\alpha x_1 v_1 v_1}{\beta x_1 v_1} \quad C_{14} \\ \end{array}$

Inactivation is Important

Many diseases produced by changes in details of inactivation.

Energetics of Brain determined by details of inactivation*

Energetics determined by time overlap of Na and K currents

*Alle, Roth, and Geiger. Science (2009) 325:1405-8.

Sodium Conductance and Inactivation Variational Computation in Fixed Structure

Eisenberg, Hyon, and Liu

Energetic Variational Analysis FnVarA Chun Liu, Yunkyong Hyon and Bob Eisenberg **New Interpretations** likely to be Controversial but Quantitative and Testable
Channel Activation and Inactivation 'Ball and Chain' Model

Existing Models are Structural and Mechanical with no quantitative results

Channels are parts of Machines, e.g., Excitation-Contraction Coupling <u>L type Ca Channel</u> <u>RyR ryanodine receptor</u>

Function of **SINGLE isolated** RyR Channels

in Artificial Planar Lipid Bilayers

Gating and Permeation

For Modelers and Mathematicians: This is reverse engineering!

Central Problem How does the channel control Selectivity?

Inverse Problem for Selectivity

Badly posed, <u>many answers are possible</u>, simultaneously over and under determined with noise and systematic error **Core Math Problem has actually been solved** using methods for the **Inverse Problem of a Blast Furnace**

Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67: 960-989

Channels are Selective

Different Types of Channels use Different Types of Ions for Different Information

Energetic Variational Analysis

EnVarA <u>Chun Liu</u>, Yunkyong Hyon and Bob Eisenberg

New Interpretations likely to be Controversial but Quantitative and Testable

Time Dependence is Important

Many diseases produced by inactivation

Energetics of Brain determined by inactivation*

*Energetics determined by time overlap of Na and K currents Alle, Roth, and Geiger. Science (2009) 325:1405-8.

Time Dependent Sodium Conductance

Inactivation in Squid Axon (nerve fiber)

FIGURE 9. Separation of current into components carried by Na and K, from Hodgkin & Huxley (1952*a*, figure 5). A depolarization of 56 mV was applied at t=0; the temperature was 8.5° C. Outward current is shown upwards.

Conventional Explanation: Elaborate Structural Change

Sodium Conductance and Inactivation in Fixed Structure

Variational Computation

Eisenberg, Hyon, and Liu

Multiscale Issues are the key if we want to actually build channels that work

Computational Scale	Biological Scale	Ratio
Time 10 ⁻¹⁵ sec	10 ⁻⁴ sec Action Potential	10 ¹¹
Space 10 ⁻¹¹ m	10 ⁻⁵ m <u>Side Chains of Proteins</u>	10 ⁶
Spatial Resolution	Three Dimensional (10 ⁶) ³	10 ¹⁸
Solute Concentration	10 ⁻¹¹ to 20 Molar	10 ¹²