
It may seem that our problem is made more difficult by dealing with a biological system that 
may be complex and unknown. However, biological systems often exploit a single set of 
physical conditions to produce a robust input output relation. In bio-speak, evolution often 
discovers adaptations to produce a given function. Some properties of some important ion 
channels are in this category. In a series of some 40 papers (reviewed in [7], a model and 
approach introduced by Nonner and Eisenberg [32, 33] has been shown to describe the 
selectivity properties of three distinct ion channels of considerable importance, the CaV 
channels that control the heart beat, the NaV channels that produce signaling in the nervous 
system, and the RyR channel that is the final common pathway controlling calcium signaling 
in nearly all cells, including cardiac and skeletal muscle. In the calcium and sodium channels 
a single model with three adjustable parameters, never adjusted in value, can account for the 
quite different selectivity properties in solutions of many monovalent and divalent cations 
over some 6 orders of magnitude of concentration, including mixtures. Crystal radii of ions 
are used and are never changed. The same set of parameter describe the quite different 
properties of sodium channels with selectivity sequence of amino acids DEKA = asp glu lys 
ala and calcium channels with selectivity sequence of amino acids EEEE=glu glu glu glu. 
The sodium vs. potassium selectivity of the DEKA channel arises automatically without 
adjustment of anything in this model, as the result of the depletion of potassium ions in the 
selectivity filter of the channel. The sodium vs. potassium selectivity is in fact set by 
ORTHOGONAL control variables in this model: the diameter of the channel controls the 
selectivity ONLY. (Diameter has no effect on the total ionic content of the channel.) The 
dielectric coefficient of the protein controls the the total ionic content of the channel. (The 
dielectric coefficient has no effect on the selectivity of the channel.) One could hardly 
imagine a simpler or more robust model. The model fits the selectivity properties of both 
types of channels over an enormous range of conditions and so it seems that it captures the 
physics used by evolution (i.e., the adaptation) to create the selectivity of these important 
channels. The RyR channel has been shown mostly by Gillespie et al [2-6, 11-15, 17-19, 40, 
42] to be described by a closely related model. In this case current voltage relations have 
been fit in more than 120 solutions of many types of ions, including mixtures of two and 
three types of ions, and the results of drastic mutations involving removal of all (~17 molar) 
permanent charge have been predicted successfully before the experiments were done. The 
subtle anomalous mole fraction effect was predicted in a range of solutions by Gillespie’s 
analysis before the experiments were done that showed it was there, as predicted within a few 
per cent.  
 Recently, the model introduced by Nonner and Eisenberg has been analyzed [8, 21, 24, 
25, 29, 31] with the powerful methods of variational analysis using the energy variational 
approach introduced by Chun Liu [22, 23, 27, 28, 30, 39, 43], more than anyone else. These 
methods provide a mathematical foundation for the computational extension of the 



Nonner/Eisenberg model and allow easy computation of the full range of current vs. voltage 
vs. time phenomena observed in ion channels [9, 21, 24], without the complexities and 
ambiguities of the more intuitive PNP-DFT [1, 10, 11, 14-16, 20, 26, 34-38, 41] theory used 
earlier.  
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