

Mathematics describes only a little of Daily Life

But Mathematics* Creates our Standard of Living

*e.g., Electricity, Computers, Fluid Dynamics, Optics, Structural Mechanics,

Mathematics Creates our Standard of Living

Mathematics replaces Trial and Error with Computation

*a a Electricity Computers Eluid Dynamics Option Structural Machanics

How can we use mathematics to describe biological systems?

I believe some biology is Physics 'as usual' 'Guess and Check'

But you have to know which biology!

Ion Channels are the Valves of Cells

Ion Channels are the Main Controllers of Biological Function

Selectivity

Different lons carry Different Signals

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative (acid) <u>Blue</u> is positive (basic)

Figure of ompF porin by Raimund Dutzler

Hard Spheres

Ion Channels are Biological Devices

Natural nano-valves* for atomic control of biological function

<u>lon channels</u> coordinate contraction of cardiac muscle, allowing the heart to function as a pump

lon channels coordinate contraction in skeletal muscle

lon channels control all electrical activity in cells

lon channels produce signals of the nervous system

lon channels are involved in secretion and absorption in all cells: kidney, intestine, liver, adrenal glands, etc.

lon channels are involved in thousands of diseases and many drugs act on channels

lon channels are proteins whose genes (blueprints) can be manipulated by molecular genetics

Ion channels have structures shown by x-ray crystallography in favorable cases

*nearly pico-valves: diameter is 400 – 900 picometers

Thousands of **Molecular Biologists Study Channels** every day, One protein molecule at a time

This number is not an exaggeration. We have sold >10,000 AxoPatch amplifiers

AxoPatch 200B

lon channel newsletter

Ion Channel Monthly Targeted Life Science

If you have been forwarded this newsletter and would like to subscribe for yourself, please click here.

View this email in your browser (or link to it) Share this message with colleagues

Popular publications for March (view most recent)

- 1. Molecular basis of infrared detection by snakes. Nature
- 2. The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc. Cell
- 3. AMPA receptors--another twist? Science
- 4. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAL Annu Rev Immunol
- Neurological Channelopathies. Annu Rev Neurosci 5.
- New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 7. A Glial Signal Consisting of Gliomedin and NrCAM
- Clusters Axonal Na(+) Channels during the Formation of Nodes of Ranvier, Neuron
- 8 Small Molecule Activators of TRPML3. Chem Biol
- 9 Truncated {beta}-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome. Proc Natl Acad Sci U S A
- 10. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci

Sponsors:

Advertising

Ion Channel

Media Group

- Bsys Swiss Quality in Ion Channel Services
- Automate Scientific -Electrophysiology Equipment
- Cellectricon Dynaflow: a quantum leap for electrophysiology
- Nanion Automated patch clamp
- Millipore Ion channel cell lines

Sponsorship slots are currently open. Visit our corporate webpage to learn about the most highly targeted life science advertising available.

Why not forward this to your colleagues? They'll thank you for it!

Channel Structure Does Not Change once the channel is open

Typical Raw Single Channel Records

Ca²⁺ Release Channel of Inositol Trisphosphate Receptor: slide and data from Josefina Ramos-Franco. Thanks!

Channels are only Holes Why can't we understand and build them?

Where to start?

Why not compute all the atoms?

Multi-Scale Issues

Journal of Physical Chemistry C (2010)114:20719, invited review

Computational Scale	Biological Scale	Ratio
<u>Time</u> 10 ⁻¹⁵ sec	10 ⁻⁴ sec	10 ¹¹
<u>Space</u> 10 ⁻¹¹ m	10 ⁻⁵ m	10 ⁶
Spatial Resolution	Three Dimensional > $(10^4)^3$	>10 ¹²
Solute Concentration	10 ⁻¹¹ to 10 ¹ M	10 ¹²

Biological Scales Occur Together in Physiological Function so must be <u>Computed Together</u> This may be impossible in simulations Physicists and Engineers rarely try Why can't we understand and build channels?

Uncalibrated Simulations will not make devices that actually work

Calibration is Hard Work

particularly for Non-Ideal systems

with

Interactions

correlations, steric repulsion, flows

Non-ideal Properties have been MEASURED

with great accuracy for some 70 years in hundreds of papers and tens of books >139,175 Data Points on-line IVC-SEP Technical University of Denmark http://www.cere.dtu.dk/Expertise/Data_Bank.aspx "It is still a fact that over the last decades,

it was easier to fly to the moon

than to describe the

free energy of even the simplest salt solutions

beyond a concentration of 0.1M or so." Kunz, W. "Specific Ion Effects" World Scientific Singapore, 2009; p. 11.

Compilations of Specific Ion Effects

1. >139,175 Data Points on-line IVC-SEP Technical University of Denmark http://www.cere.dtu.dk/Expertise/Data_Bank.aspx

2. Pytkowicz, R.M., Activity Coefficients in Electrolyte Solutions. Vol. 1. 1979, Boca Raton FL USA: CRC. 288.

- 3. Zemaitis, J.F., Jr., D.M. Clark, M. Rafal, and N.C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics. 1986, New York: Design Institute for Physical Property Data, American Institute of Chemical Engineers
- 4. Kontogeorgis, G.M. and G.K. Folas, *Models for Electrolyte Systems. Thermodynamic Models for Industrial Applications. 2009: John Wiley & Sons, Ltd. 461-523.*

Life occurs in Interacting Solutions

Force Fields are Calibrated **Ignoring Interactions** with ions

but

Chemically Specific Properties come from Interactions in Ionic Solutions

Ideal Ions are Identical

if they have the same charge

in ideal solutions

 $K^+ = Na^+$

But in the real world

Calibration is Hard Work

Force Fields must be RE-calibrated in each Biological Solution to verify Equilibrium Potentials (chemical potentials)

Fitting Real Experiments requires Accurate Chemical Potentials in mixtures like Ringer Solution that contain Ca²⁺

Channels are Identified by Equilibrium Potentials

Where do we start? Physics 'As Usual' 'Guess and Check'

start with Stochastic Derivation

Later becomes a Guess

when we include biological adaptation of Correlations and Crowded Charge

We start with Langevin equations of charged particles

Simplest stochastic trajectories are Brownian Motion of <u>Charged</u> Particles

Opportunity

and Need

Einstein, Smoluchowski, and Langevin ignored charge and therefore do not describe Brownian motion of ions in solutions We use

Theory of Stochastic Processes

to go

from Trajectories to Probabilities

Once we learn to count Trajectories of Brownian Motion of Charge, we can count trajectories of <u>Molecular Dynamics</u>

15

Langevin Equations

Schuss, Nadler, Singer, Eisenberg

<u>Equilibrium</u> Thermodynamics

Configurations Boltzmann Distribution $\lim N, V \rightarrow \infty$

<u>Nonequilibrium</u>

Schuss, Nadler, Singer & Eisenberg

Trajectories Fokker Planck Equation Finite OPEN System

From Trajectories to Probabilities

Sum the trajectories

Sum satisfies Fokker-Planck equation

$$0 = \sum_{j} \mathcal{L}_{j}^{p} p(\tilde{x}, \tilde{v}) + \sum_{j} \mathcal{L}_{j}^{n} p(\tilde{x}, \tilde{v})$$

Main Result of Theory of Stochastic Processes

 $p(\tilde{x}, \tilde{v}) = \Pr\left\{\left\{x, v\right\}_{j=1}^{2N}\right\} = Joint$ probability density of position and velocity

with Fokker Planck Operator

$$\boldsymbol{\mathcal{L}}_{j}^{c}p = -v_{j}^{c}\cdot\nabla_{\!\!\!x_{j}^{c}} p + \nabla v_{j}^{c}\cdot\left(\gamma v_{j}^{c} - f_{j}^{c} \left/m_{j}^{c}\right)p + \nabla \cdot\nabla_{\!\!\!v_{j}^{c}} \frac{\gamma kT}{m_{j}^{c}}p$$

Coordinates are positions and velocities of N particles in 12N dimensional phase space

19

Schuss, Nadler, Singer, Eisenberg

Conditional PNP

Derived by Summing Trajectories and evaluating Marginal Probability

Schuss, Nadler, Singer, Eisenberg 20

Everything Interacts

Theory of Stochastic Processes and Thermodynamics

Closures

do not deal easily

with strong interactions

because

Strong Interactions are not Perturbations

Usual Stochastic Processes and Law of Mass Action are not good enough so we 'Guess and Check'

Everything Interacts

Strong Interactions are not Perturbations

so we Guess and Check

'Theory of Stochastic Processes' and 'Law of Mass Action' are <u>not</u> enough

22

Poisson-Nernst-Planck (PNP)

Devices obey 'Semiconductor Equations'

Devices (nearly always) require Flow

Devices do not exist at equilibrium

Poisson-Nernst-Planck *PNP*

PNP at Zero Flow (chemical equilibrium) gives Gouy-Chapman, <u>nonlinear</u> Poisson-Boltzmann, <u>linearized</u> (!) Debye-Hückel

Ions at low resolution become Points in PNP PNP contains only Correlations of Means

How do we Check?

start with

Robust Biological Function Selectivity

How do we check the theory?

Compare with Biological Function!

Our task is to Discover & Understand Biological Function

Inverse Problem

Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67: 960-989

Selectivity

Potassium K⁺ ≠ Na⁺ Sodium

lons are not Ideal

27

Heinz Engl, Martin Burger

implies the

Existence of Robust Multiscale Models

Biology Tells us there is a Simple Model of Selectivity and other vital functions

Channels are Selective

Different Ions Carry Different Signals through Different Channels

Diameter matters

In ideal solutions K⁺ = Na⁺

ompF porin

Figure of ompF porin by Raimund Dutzler

Channels are Selective

Different Types of Channels use Different Types of Ions for Different Information

Channels are Selective because Diameter Matters Ions are NOT Ideal

Potassium K⁺ ≠ Na⁺ Sodium

3Å

Ideal Ions are Identical

if they have the same charge

In ideal solutions K⁺ = Na⁺

Modelers and Mathematicians, Bioengineers: this is reverse engineering

<u>How does the</u> Channel control Selectivity?

Inverse Problem

Many answers are possible Central Issue

Which answer is right?

Core Math Problem has actually been solved using Tikhonov Regularization as in the Inverse Problem of a Blast Furnace

Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67: 960-989

How does the Channel control Selectivity?

Inverse Problems: many answers possible

Central Issue Which answer is right?

Key is ALWAYS Large Amount of Data from Many Different Conditions

Burger, Eisenberg and Engl (2007) SIAM J Applied Math 67: 960-989 33

Goal:

Experiments have built Two Synthetic Calcium Channels

built by Henk Miedema, Wim Meijberg of BioMade Corp.,Groningen, Netherlands 35 Miedema et al, Biophys J 87: 3137–3147 (2004)

How do we Model? Physics 'As Usual' 'Guess and Check'

start with

Biological Adaptation 'Crowded Charges'
Working Hypothesis

Biological Adaptation is <u>Crowded Ions</u> and <u>Crowded Side Chains</u>

Physical basis of function

Active Sites of Proteins are <u>Very Charged</u> 7 charges $\sim 20M$ net charge = 1.2×10^{22} cm⁻³

Charge Density 22 M

			#AA	MS_A^3	CD_MS+	CD_MS-	CD_MSt	
FC1. Ovidereduct		Average	47.2	1,664.74	7.58	2.82	10.41	
ECTOXIdoreductas	ases	Median	45.0	1,445.26	6.12	2.49	8.70	
EC2:Transferases		Average	33.8	990.42	13.20	6.63	19.83	
	>	Median	32.0	842.43	8.18	6.71	14.91	
EC3:Hydrolases		Average	24.3	682.88	13.14	13.48	26.62	
		Median	20.0	404.48	11.59	12.78	23.64	
EC4:Lyases		Average	38.2	1,301.89	13.16	6.60	19.76	
		Median	28.0	822.73	10.81	4.88	16.56	
EC5:Isomerases		Average	31.6	1,027.15	24.03	11.30	35.33	
		Median	34.0	989.98	9.05	7.76	16.82	
EC6:Ligases		Average	44.4	1,310.03	9.25	9.93	19.18	
		Median	49.0	1,637.98	8.32	7.95	17.89	
								٢
			#AA	MS_A^3	CD_MS+	CD_MS-	CD_MSt	5
	Total	Average	36.6	1,162.85	13.39	8.46	21.86	
	n= 150	Median	33.0	916.21	8.69	7.23	16.69	

- **EC#:** Enzyme Commission Number based on chemical reaction catalyzed
- **#AA:** Number of residues in the functional pocket
- **MS_A^3:** Molecular Surface Area of the Functional Pocket (Units Angstrom³)
- **CD_MS+:** Charge Density (positive)
- **CD_MS-:** Charge Density (negative)
- **CD_MSt:** Total Charge density

Jimenez-Morales, Liang, Eisenberg

EC2: TRANSFERASES

Average Charged Density: 19.8 Molar

Example: UDP-*N*-ACETYLGLUCOSAMINE ENOLPYRUVYL TRANSFERASE (PDB:1UAE)

Functional Pocket Molecular Surface Volume: 1462.40 A³

Density Charge: 19.3 Molar (11.3 M+. 8 M-)

reen: Functional pocket residuesIue: Basic = Probably Positive charged = R+K+Hed: Acid = Probably Negative charged = E + Qrown URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE

Jimenez-Morales, Liang, Eisenberg

EC3: HYDROLASES

Average Acid/Base Density: 26.6 Molar

Example: ALPHA-GALACTOSIDASE (PDB:1UAS)

Functional Pocket Molecular Surface Volume:

Density Charge: 52.2 Molar (11.6 M+. 40.6 M-)

Green: Functional pocket residues Acid = Probably Negative charged = E + Q

Brown ALPHA D-GALACTOSE

Jimenez-Morales, Liang, Eisenberg

Ions in Water are the Liquid of Life They are not ideal solutions

> Everything Interacts with Everything

For Modelers and Mathematicians Tremendous Opportunity for Applied Mathematics Chun Liu's Energetic Variational Principle EnVarA Working Hypothesis

Biological Adaptation is Crowded lons and Side Chains

Everything interacts

'law' of mass action assumes nothing interacts

Everything Interacts

Mathematics of Chemistry must deal Naturally with Interactions

Law of Mass Action does not!

'Law' of mass action assumes nothing interacts So this is a great opportunity for new mathematics and applications! FI SEVIER

Editors:

DAVID CLARY

MITCHIO OKUMURA

VILLY SUNDSTRÖM Frontiers Editor:

RICHARD SAYKALLY

ume 511, issues 1-3, 26 July 2011

CHEMICAL PHYSICS LETTERS

Frontier research in molecular sciences, materials and biological systems

Revise the 'Law' of Mass Action to include Interactions

$$L_{eft} \xleftarrow{k_f}{k_b} R_{ight}$$

Frontiers Article Eisenberg, p. 1-6, this issue

www.elsevier.com/locate/cplett

10.1016/j.cplett.2011.05

Great Opportunity for New Mathematics and Its Applications

Variational Approach EnVarA

Conservative

Dissipative

ISSN 0009-261

Energetic Variational Analysis

EnVarA being developed by <u>Chun Liu</u> Yunkyong Hyon and Bob Eisenberg

creates a

Field Theory of Ionic Solutions

that allows boundary conditions and flow and deals with Interactions of Components Self-consistently **Central Result of Physical Chemistry**

Electrolytes in a solution are a Highly Compressible Plasma of Interacting Spherical Particles

although the Liquid

itself is Incompressible

Debye-Hückel and Poisson-Nernst-Planck *PNP* cannot describe these interactions of spheres

Learned from Douglas Henderson, J.-P. Hansen, and Stuart Rice...Thanks!

Variational Principles Deal with Interactions Consistently and Automatically

New Component (or Scale) implies New Field Equations (Euler Lagrange) by Algebra Alone No new Assumptions

Energetic Variational Approach EnVarA

Chun Liu, Rolf Ryham, Yunkyong Hyon, and Bob Eisenberg

Mathematicians and Modelers: two <u>different</u> 'partial' variations written in <u>one framework</u>, using a 'pullback' of the action integral

Variational Analysis of Ionic Solution

EnVarA

EnVarA **Dissipation Principle for Ions**

 c_i number density; $k_B T$ thermal energy; D_i diffusion coefficient; *n* negative; *p* positive; z_i valence

Field Equations with Lennard Jones Spheres

Non-equilibriium variational field theory EnVarA

Nernst Planck Diffusion Equation for **number density c**_n of negative n ions; positive ions are analogous **Diffusion Coefficient** $\frac{\partial c_n}{\partial t} = \nabla \cdot \left[D_n \left\{ \nabla c_n + \frac{c_n}{k_B T} \left(z_n e \nabla \phi - \frac{12\varepsilon_{n,n} (a_n + a_n)^{12} (\vec{x} - \vec{y})}{|\vec{x} - \vec{y}|^{14}} c_n (\vec{y}) d\vec{y} \right. \right]$ Thermal Energy $-\int \frac{6\varepsilon_{n,p}(a_n + a_p)^{12}(\vec{x} - \vec{y})}{|\vec{x} - \vec{y}|^{14}} c_p(\vec{y}) d\vec{y}$ Coupling Parameters Ion Radi **Number Densities Poisson Equation Dielectric Coefficient** $\nabla \cdot (\varepsilon \nabla \phi) = - \left(\rho_0 + \sum_{i=1}^N z_i e c_i \right)$ i = n or pproton charge **Permanent Charge of Protein** Page 52

Eisenberg, Hyon, and Liu

Energetic Variational Approach

EnVarA across biological scales: molecules, cells, tissues developed by <u>Chun Liu</u>

with

(1) Hyon, Eisenberg	lons in	<u>Channels</u>	
(2) Bezanilla, Hyon, Eisenberg	Conformation Change of	Voltage Sensor	Multiple
(3) Ryham, Eisenberg, Cohen	Virus fusion to	<u>Cells</u>	Scales
(4) Mori, Eisenberg	Water flow in	<u>Tissues</u>	

creates a new

Multiscale Field Theory of Interacting Components

that allows boundary conditions and flow and deals with lons in solutions self-consistently

Energetic Variational Analysis FnVarA Chun Liu, Yunkyong Hyon and Bob Eisenberg **New Interpretations** likely to be Controversial but Quantitative and Testable

Energetic Variational Approach

developed by Chun Liu

Preliminary Results demonstrate Feasibility for Classical Unsolved Problems

Layering: Classical Interaction Effect

Comparison between PNP-DFT and MC

Nonequilibrium Computations

with Variational Field Theory EnVarA

Binding Curves

Current Voltage Time Curves

Energetic Variational Approach EnVarA

New mechanisms* (e.g., active transport) can be added

* if they define an energy and its variation Energy defined by simulations or theories or experiments is OK

Full micro/macro treatment is needed for an Atomic Model, with closure, as in liquid crystals

back to the

Calcium Channel

then

Sodium Channel

Page 59

Ion 'Binding' in Crowded Channel

Classical Donnan Equilibrium of Ion Exchanger

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Multiscale Analysis at Equilibrium

Solved with Metropolis Monte Carlo

MMC Simulates Location of Ions

both the mean and the variance

Produces Equilibrium Distribution of location of lons and 'Side Chains'

MMC yields **Boltzmann Distribution** with correct Energy, Entropy and Free Energy

Other methods

give nearly identical results: Equilibrium Multiscale MSA (mean spherical approximation SPM (primitive solvent model) DFT (density functional theory of fluids), <u>Non-equilibrium Multiscale</u> DFT-PNP (Poisson Nernst Planck) EnVarA.... (Energy Variational Approach) *etc*

Metropolis Monte Carlo Simulates Location of Ions

both the mean and the variance

Details:

- 1) Start with Configuration A, with computed energy E_A
- 2) Move an ion to location *B*, with computed energy E_B
- 3) If spheres overlap, $E_B \rightarrow \infty$ and configuration is rejected
- 4) If spheres do <u>not</u> overlap, $E_B \rightarrow 0$ and configuration is <u>accepted</u>
- 5) If $E_B < E_A$: accept new configuration.
- 6) If $E_B > E_A$: accept new configuration with probability $\exp\left[-(E_A E_B)/k_BT\right]$

Key idea

MMC chooses configurations with a Boltzmann probability and weights them evenly instead of choosing them from uniform distribution and then weighting them with $exp(-E/k_BT)$

Wolfgang Nonner

'Side Chains' are Spheres Free to move inside channel

Crowded lons

Ion Diameters 'Pauling' Diameters				
Ca++	1.98 Å			
Na+	2.00 Å			
K+	2.66 Å			
'Side Chain' Diameter				
Lysine K	3.00 Å			
D or E	2.80 Å			
Channel Diameter 6 Å				

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Experiments and Calculations done at pH 8 65

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Na, K, Li, Ca, Ba Binding in Calcium Channel

Calcium Channel has been examined in ~35 papers, e.g.,

- Nonner, W., D. P. Chen, and B. Eisenberg. 1998. Anomalous Mole Fraction Effect, Electrostatics, and Binding in Ionic Channels. Biophysical Journal 74:2327-2334.
- Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and Selectivity in L-type Ca Channels: a Mean Spherical Approximation. Biophysical Journal 79:1976-1992.
- Nonner, W., D. Gillespie, D. Henderson, and B. Eisenberg. 2001. Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Physical Chemistry B 105:6427-6436.
- Boda, D., W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie. 2008. Volume exclusion in calcium selective channels. Biophys. J.:biophysj.107.122796.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2006. Effect of Protein Dielectric Coefficient on the Ionic Selectivity of a Calcium Channel. Journal of Chemical Physics 125:034901.
- Boda, D., T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. 2004. Monte Carlo simulation study of a system with a dielectric boundary: application to calcium channel selectivity. Molecular Simulation 30:89-96.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2007. The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Physical Review Letters 98:168102.

Most of the papers are available at

ftp://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints

http://www.phys.rush.edu/RSEisenberg/physioeis.html

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

Challenge

from leading biophysicists Walter Stühmer and Stefan Heinemann

Max Planck Institutes, Göttingen, Leipzig

Explain the Mutation Calcium Channel into Sodium Channel

Calcium Channel Sodium Channel **DEKA Sodium Channel** has very different properties from Ca channel,

> e.g., 'binding' curve, Na⁺ vs Ca⁺⁺ selectivity <u>Na⁺ vs K⁺ selectivity</u>

QUALITATIVELY DIFFERENT Properties from the Calcium Channel

Nothing was changed

from the EEEA Ca channel except the amino acids

> Calculated DEKA Na Channel Selects Ca²⁺ vs. Na⁺ and also K⁺ vs. Na⁺

We can actually compute the Structures that determine Selectivity

New Miracle??

Can *EnVarA* actually compute the Function of these systems?

Supplementary Material

How does the Channel Select?

Usually Complex Answers*

How does DEKA Na Channel Select Na⁺ vs. K⁺?

* Gillespie, D., Energetics of divalent selectivity in the ryanodine receptor. Biophys J (2008). 94: p. 1169-1184
* Boda, et al, Analyzing free-energy by Widom's particle insertion method. J Chem Phys (2011) 134: p. 055102-14 Amazingly simple, not complex

Size Selectivity is in the Depletion Zone Na⁺ vs. K⁺ Occupancy **Binding Sites** NOT SELECTIVE 0.4 [Molar] 0.3 [NaCl] = 50 mM [KCI] = 50 mMpH 8 Concentration **Selectivity Filter** 0.2 K⁺ Na 0.1 **Na Selectivity** because 0 K⁺ in Depletion Zone 0 -10 10 -15 -5 5 15 **Depletion Zone** of the DEKA Na Channel, 6 Å

Boda, et al

81

*Binding Sites are outputs of our **INDUCED FIT** Model of Selectivity, not structural inputs [NaCI] = [KCI] = 50 mMIon Diameter Ca++ 1.98 Å 2.00 Å Na⁺ 2.66 Å **K**+ 'Side Chain' Diameter 3.00 Å NH⁺₄ Lys or K pH 8 2.80 Å **O**^{1/2-} D or E pH 8 Na Channel DEKA 6 Å

Amazingly simple, not complex **Control Variables** Conductance of DEKA Na⁺ channel

Selectivity Depends Steeply on Diameter

Selectivity depends only on diameter

*	Orthogona	al:	
Selectivity	depends	only	on Structure
Conductance	depends	only	on Contents
Conductance	depends	not	on Structure
Selectivity	depends	not	on Dielectric

Boda, et al

Na⁺ vs K⁺ (size) Selectivity (ratio) Depends on Channel Size, not Protein Dielectric Coefficient*

Control Variables Conductance of DEKA Na⁺ channel

Conductance Depends Steeply on Dielectric

Contents of Channel depend only on dielectric

*Orthogonal:					
Selectivity	depends	only	on Structure		
Conductance	depends	only	on Contents		
Conductance	depends	not	on Structure		
Selectivity	depends	not	on Dielectric		

Boda, et al

Boda, et al

 $\mathcal{E}_{solvent} = 80$

*These emerge as <u>outputs</u>. They are <u>not inputs</u>.

What does the protein do?

Channel and Contents form a Self-Organized Structure with Side Chains at position of Minimum Free Energy Protein Fits the Substrate

"Induced Fit Model of Selectivity"

What does the protein do?

(for biologists)

Certain MEASURES of structure are Powerful DETERMINANTS of Function e.g., Volume, Dielectric Coefficient, etc. Induced Fit Model of Selectivity Atomic Structure is <u>not</u> pre-formed Atomic Structure is an important <u>output</u> of the simulation

What does the protein do?

Protein maintains <u>Mechanical Forces</u>* Volume of Pore Dielectric Coefficient/Boundary Permanent Charge

* Driving force for conformation changes ??

90 **Nonner and Eisenberg**

for Biologists: a Word Picture

How does Calcium Selectivity Work? qualitatively

How does it work qualitatively? (for biologists)

Selectivity from Crowded Charges

2 Ca⁺⁺ are less crowded than 4 Na⁺

Ca Channel Filled with Na⁺

(not to scale)

Ca Channel Filled with Ca⁺⁺

-¹/₂

-¹/2

 $-\frac{1}{2}$

Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ Na⁺ $-\frac{1}{2}$ $-\frac{1}{2}$

> <u>Channel Protein</u> Glutamate Oxygens = 4e 8 of -½ charge each Volume 0.38 nm³ Dielectric Constant 64

Outside the Filter Bulk Solution NaCl and CaCl₂

_¹/₂

Ca⁺

-¹/₂

 $-\frac{1}{2}$

-¹/₂

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

4 Negative Charges of glutamates of protein

DEMAND 4 Positive Charges nearby

either 4 Na⁺ or 2 Ca⁺⁺

Nonner and Eisenberg 94

Ionic Selectivity in Protein Channels Crowded Charge Mechanism

Simplest Version: MSA

2 Ca⁺⁺ are LESS CROWDED than 4 Na⁺,

Ca++ SHIELDS BETTER than Na+, so

Protein Prefers Ca⁺⁺ because Ca⁺⁺ is less crowded

Nonner and Eisenberg 95

Binding Sites* are **outputs** of our Calculations

Induced Fit Model of Selectivity

Our model has <u>no</u> preformed structural binding sites but Selectivity is very Specific

*Selectivity is in the Depletion Zone, NOT IN THE BINDING SITE of the DEKA Na Channel

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

Supplementary Material

RyR Channel: Current Voltage Curves

Best Evidence is from the **RyR Receptor**

Gillespie, Meissner, Le Xu, et al, not Bob Eisenberg

- More than 120 combinations of solutions & mutants
- 7 mutants with significant effects fit successfully

The Geometry

Selectivity Filter

- is 10 Å long and 8 Å in diameter
- confines four **D4899** negative amino acids.

Four **E4900** positive amino acids are on lumenal side, overlapping D4899.

Cytosolic distributed charge

D. Gillespie et al., J. Phys. Chem. 109, 15598 (2005).

DFT/PNP vs Monte Carlo Simulations

Nonner, Gillespie, Eisenberg

102

Divalents

Gillespie, Meissner, Le Xu, et al

Gillespie, Meissner, Le Xu, et al

Vaccination against Traditional Models

Traditional Biochemistry and Traditional Molecular Dynamics Assume Ideal Solutions

Ions in Water and Life are NOT ideal

Life Occurs in ~130 mM salt solutions

lons in Water are the Liquid of Life
No gas phase models of traditional channel biochemistry *Liquids are not Gases Rate Constants are Variables*

No discussions of individual trajectories of Structural Biologists Counting and Statistics are essential Computation Starts From Crystal Structure when available but

Crystal Structures cannot determine Selectivity because

- 1) Crystal Structures are measured in only one unphysiological solution
- 2) Crystal Structures are not accurate enough
- 3) Crystal Structures do not give entropy

Selectivity

Depends Sensitively on Self-organized Structure and their Flexibility

Induced Structure is Different in Different Solutions

SO

Structure must be Computed!

Rate constants are variables that change dramatically with conditions

James Clerk Maxwell

"I carefully abstain from asking molecules where they start...

avoiding all personal enquiries which would only get me into trouble."

slightly reworded from Royal Society of London, 1879, Archives no. 188 In Maxwell on Heat and Statistical Mechanics, Garber, Brush and Everitt, 1995