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Abstract 
 
 

Conservation of current and conservation of charge are nearly the same thing: when enough is 
known about charge movement, conservation of current can be derived from conservation of 
charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal 
dielectrics by theories that conserve charge. But charge movement in real materials like 
semiconductors or ionic solutions is never ideal; indeed, charge often is moved by forces like 
diffusion, convection, or even heat flow, and it varies a great deal (by a factor of 40 times) in the 
time domain of importance in important systems. The flow of charge in semiconductors allow our 
modern digital technology. The flow of charge in ionic solutions are involved in most of 
electrochemistry and battery technology. Life occurs in ionic solutions within and outside 
biological cells. In these systems, conservation of current remains true, even though derivations 
involve unrealistic ideal dielectric coefficients. We present an apparently universal derivation of 
conservation of current and advocate using that conservation law explicitly as a distinct part of 
theories and calculations of charge movement in complex fluids and environments. Classical 
models using ordinary differential equations rarely satisfy conservation of current, including the 
chemical kinetic models implementing the law of mass action and Markov models. These models 
must be amended if they are to conserve current. Strict enforcement of conservation of current is 
likely to aid numerical analysis by preventing artifactual accumulation of charge. 
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Conservation of charge and conservation of current are closely related. Indeed, when 
dielectric properties are ideal, conservation of current is naturally derived from conservation of 
charge as in the text (Jackson 1999) that has taught electrodynamics to generations of physicists. 
Any theory of an ideal dielectric that conserves charge will conserve current. But materials do not 
approximate ideal dielectrics in several electrical systems of great technological and biological 
importance. In semiconductors, dielectric properties vary by factors of 10 (silicon) over the time 
scales of importance. Dielectric properties are not at all ideal in ionic solutions like seawater or 
the solutions within and outside biological cells. Effective dielectric constant varies by factors of 
40, in the time range of molecular dynamics simulations used widely to connect atomic detail of 
biological proteins and macroscopic function of living cells and tissues.  

Electrochemical engineering and biology occur in complex fluids in which the electric 
force field joins with other fields (like convection and diffusion and sometimes heat) to move ions. 
The description of current flow then involves coupled partial differential equations difficult to 
write consistently in the mathematical sense, so all results are ‘transferrable’ in the chemical sense 
of the word. In transferrable models (that are mathematically consistent) all variables satisfy all 
field and boundary conditions under all circumstances with one set of unchanging parameters. 
Mathematical consistency is guaranteed by variational methods that deal with energy and 
dissipation (Ryham, Liu, and Wang 2006; Ryham 2006; Eisenberg, Hyon, and Liu 2010; Horng et 
al. 2012; Forster 2013; Wu, Lin, and Liu 2014b, 2014a; Xu, Sheng, and Liu 2014; Wu, Lin, and 
Liu 2015; Wang, Liu, and Tan 2016). But consistency with experimental data is another thing 
altogether. Mathematically consistent models can be inconsistent physically if (for example) they 
contain incomplete representations of the significant physics. 

This paper deals with complex systems in which dielectric properties are nothing like ideal. 
We argue that it is wise to include conservation of current as a separate but (nearly) equal 
conservation law when dealing with such systems. Numerical analysis and simulation are likely to 
be easier if artifactual charge accumulations are avoided in their discrete representations of 
continuous differential equations.  
 

Classical Derivation of Conservation of Current 
 
Charge and field are related by the electrostatic equation of Maxwell 

 ρ=div D   (1) 

where we have used the traditional formulation of Maxwell describing the relation of the 
displacement field and the charge ρ  that is not dielectric or polarization charge. The displacement 
field is defined as 

 0ε= +D E P   (2) 

E is the electric field created by any type of charge, dielectric, free or whatever. 0ε  is the electric 
field constant, the ‘permittivity of free space’, i.e. a vacuum, that is really constant everywhere 
and at all times in all conditions, P is the polarization field as customarily defined so its divergence 
is the polarization charge pρ   
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 pρ= −div P   (3) 

For ideal dielectrics the most traditional formulation is 

 0 ideal 0 because ( 1)  where  is a positive real number, a constant.r r rε ε ε ε ε= = −D E P E   (4) 

I introduce my own definition of ideal polarization idealP  that leaves out the polarization of free 
space 0 .ε E  

The P variables of eq. (3)-(4) allow easy display of ‘separation of charge’ in bulk dielectrics 
not so apparent if P were specified by pρ  itself, because the divergence theorem relates surface 
charges to div P. These bulk properties of dielectrics were studied in the early history of 
electrostatics where the difference between separation of charge and conduction of charge was 
most confusing and important. Separation of charge is most naturally described P. Conduction 
(i.e., flow) of charge is most naturally described by ,pρ  ,p tρ∂ ∂  and pρ∇ . 

Flux J and current depend on the velocity of charge motion u, whether the charge is 
described as a set of point charges (delta functions), a continuous distribution of charge, or even 
as particles of nonzero size which have charge and mass. Some particles have a definite amount 
of permanent charge (e.g., sodium ions in water) entirely independent of the strength of the electric 
field. Other particles have polarization charge as well as permanent charge (polarizable ions 
perhaps including chloride and even calcium). Still other particles (like water molecules 
themselves) are joined with their neighbors so strongly that their appropriate description as pρ  
and ρ  is not yet agreed upon. 

 massρ=J u  (5) 

J  is the flux of charge ρ  where (we reiterate) ρ  describes all charges of every type that have 
mass. 

Conservation of charges with mass is written as 

 mass( ) 0   or    0
t t
ρ ρρ∂ ∂
+ = + =

∂ ∂
div u div J   (6) 

We note that electric current carried by charges (with mass) is zeJ  where z is the number of 
charges associated with whatever is flowing, e.g., z can be the ‘valence’ of an ion, +1 for sodium 
ion), and e is the charge on one proton 1.602×10-19 cou. We do not bother writing the ze factor 
when talking about current later in the paper. 

 We connect flow and charge, by differentiating eq. (1)  

 0t t
ρ ε∂ ∂
=

∂ ∂
Ddiv  (7) 

and from eq. (2)  

 0t t t
ρ ε∂ ∂ ∂
= +

∂ ∂ ∂
divE divP   (8) 

and introduce flux from eq.(6) 
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 0 t t
ε ∂ ∂

− = +
∂ ∂

div J divE div P   (9) 

Ideal dielectrics with constant dielectric constants have ideal polarization:  

 ideal 0( 1)rε ε= −P E  where 1rε ≥  is a positive real number (10) 

rε  in this paper is the dimensionless (relative) dielectric constant that is a positive real number 
independent of time, frequency, and other parameters of experiments. We do not generalize the 
dielectric coefficient into a complex number (see below). Then, 

 0 0 0( 1)r rt t t
ε ε ε ε ε∂ ∂ ∂

− = + − =
∂ ∂ ∂

div J divE divE divE   (11) 

and we have a conservation law for ideal dielectrics as universal as the Maxwell equations from 
which it is derived. 

 Conservation Law: Ideal Dielectrics 

 0 0r t
ε ε ∂ + = ∂ 

Ediv J   (12) 

We might now define an ideal current 

 ideal 0 ;  is a positive real constantr rt
ε ε ε∂

+=
∂
EJI   (13) 

since idealI  is the conserved quantity (although the units are not quite right because ze is omitted).  

Ideal dielectric constant. Treating rε  as a real positive constant is a far-reaching idealization. 
The polarization of real materials almost always varies dramatically with time (or frequency of 
sinusoidal excitation) in the range of experimental interest and often varies in many other ways.  

The dielectric ‘constant’ studied with sinusoidal signals is often generalized into a complex 
quantity in the literature of impedance spectroscopy (Macdonald 1992; Barsoukov and Macdonald 
2005) and the classical literature of dielectrics (Barthel, Buchner, and Münsterer 1995; Buchner 
and Barthel 2001; Böttcher et al. 1978; Fröhlich 1958). We do not do that here because there is no 
compact algebraic generalization of the complex dielectric coefficient in the time domain. 
Convolution type integrals with memory kernels are needed. We thereby also avoid the confusing 
classical nomenclature that sometimes involves ‘admittance’ that is not the reciprocal of 
‘impedance’, frequency dependent resistances that are not the reciprocal of (frequency dependent) 
conductances, imaginary parts of imaginary parts of complex quantities (that turn out to be real 
numbers), and so on.  

Vacuum dielectrics. 1rε =  is an important special case describing ‘free space’, including the 
vacuum between stars and the vacuum within atoms, that occupies most of the space within atoms, 
because atomic nuclei are so small.  

Conservation of current in applications. Theories of flow that use only ordinary differential 
equations in time (like rate theories of mass action and Markov models) often omit the 0r tε ε ∂ ∂E  
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term in eq. (13) even though the 0r tε ε ∂ ∂E  term arises from the properties of electrodynamics 
itself and not from the geometry of a particular system (e.g., not just from ‘stray capacitances’) or 
from ‘self-energy’ arising from polarization charge on nearby dielectric boundaries (Nadler, 
Hollerbach, and Eisenberg 2003).  

Current conservation fails in many theories using only ordinary differential equations in 
time even in the steady state, even when 0.r tε ∂ ∂ =E  The sequence of reactions A B C   
often have different current for A B  and for B C  as can be shown by direct substitution in 
the equations that usually define the law of mass action or Markov processes, see (Eisenberg 
2014b). Un-conserved currents produce artifactual charges. Tiny artifactual charges are likely to 
have substantial even dramatic effects if they are not quickly removed by another process. The 
electric field is strong. See p.1.1 third paragraph of (Feynman, Leighton, and Sands 1963). 
Conservation of Matter. Note the flux of mass Jmass itself is not conserved by these equations 
(12) - (13). These equations conserve charge, not mass. The conservation of mass must be enforced 
by a separate theory and then conjoined to electrodynamics. For example, the Navier-Stokes theory 
of mass flow might be conjoined to the electrodynamic equations for fluids or solutions with 
charge (Eisenberg, Hyon, and Liu 2010). The resulting interactions can sometimes be simple, but 
they are often complex and subtle and difficult to describe consistently, so all variables satisfy all 
equations and boundary conditions with one set of unchanging parameters. An energetic 
variational approach helps guarantee consistency when treating complex fluids or systems like 
ionic solutions or ionic liquids.  

Real materials are not ideal. Real materials have dielectric properties that are nothing like the 
ideal dielectric defined in eq. (4). 

The nonideal properties of dielectrics can be described in many ways. Comparison with 
the classical literature is made easier if we introduce a new variable called Pexcess to describe excess 
polarization beyond the ideal polarization of eq. (4) and separate it from the vacuum polarization, 
of the vacuum dielectric and conduction. This formulation allows us to recognize terms in our 
equations—familiar from the classical literature of impedance spectroscopy and dielectric 
materials—while describing many of the complex properties of the actual charge movement found 
in experiments. Our treatment is certainly not general, however, since we assume isotropic 
properties, and do not deal explicitly with flows developed conjointly from multiple forces, leaving 
that to a variational analysis of complex fluids. 

The actual polarization measured in experiments is then  

 


actual excess ideal vacuum excess 0 0
Vacuum   Ideal
DielectricDielectric

( 1)rε ε ε= + + = + − +P P P P P E E


  (14) 
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We can write a general expression for the conservation of flux of charge in real matter from the 
continuity eq. (9) applied to Pactual. 

 


( ) ( ) ( )

0 0

excess ideal vacuum
( 1)

excess 0 0

     

( 1)

r

r

t

t t t

ε ε ε

ε ε ε

−

 ∂  − = + +
 ∂
 

∂ ∂ ∂
= + − +
∂ ∂ ∂

div E div E

div J div P P P

div P div E div E



  (15) 

or in more conventional terms, we write  

 Conservation Law for Actual Materials 

 excess
0 0  ( 1) 0rt t t

ε ε ε∂ ∂ ∂ + + − + = ∂ ∂ ∂ 
P E Ediv J   (16) 

This actual conservation law involves the excess polarization excess t∂ ∂P  that has complex properties 
different in different materials. The law is valid whenever (a) Maxwell’s equations are true, (b) the 
vector operators can be defined, and (c) time and space differentiation can be interchanged.  

We might now try to define the current actualI  that is conserved in actual materials as  

 excess
0actua 0l ( 1)rt t t

ε ε ε∂ ∂ ∂
+ + − +

∂
=

∂ ∂
I P E EJ   (17) 

This current actualI  is conserved universally under all conditions that Maxwell equations are valid.  

The definition of ‘current’ actualI  in eq. (17) seems too vague to use without a constitutive 
law for J  and excess ./ t∂ ∂P  A general description seems impossible because J  and excess / t∂ ∂P  are so 
different in different materials. The conservation law eq. (16) is not of much use, unless J  and 

excess / t∂ ∂P  are known in detail. 

Real Dielectrics. The study of real dielectrics (that do not conduct significant current at very long 
times in steady applied electric fields) is mostly the study of Pexcess . The excess polarization is very 
different in different materials, but is almost never negligible. In pure water, it varies from roughly 
80 at long times to roughly 2 at the time scales used in molecular dynamics simulations, although 
the low frequency behavior has considerable complexity when measured with modern methods 
(Angulo-Sherman and Mercado-Uribe 2011).  

Real Conductors including Dielectrics. Most systems of interest in chemical technology—for 
example batteries, desalination and detoxification systems, or nanodevices—contain ions that flow 
at low frequencies so 0≠J  even at vanishing frequencies. These devices are not ideal dielectrics.  

Ions flow in these systems as a complex function of time because they are driven by 
migration in the electric field, diffusion in a concentration field, fluid flow in a pressure field, and 
sometimes heat flow in a temperature field. These fields occur in devices. Devices hardly ever 
function without power supplied from power supplies. Devices nearly always involve the flow of  
charges (ions, holes, or electrons) through a complex fluid, like ionic liquids or electrolyte 
solutions or semiconductors. Living systems, like electrochemical systems and semiconductors, 
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can often form devices in the engineering sense of the word (Eisenberg 2012, 2003). Devices have 
inputs at one location, outputs at another, and usually use power supplied at still different locations. 
Analysis requires models that have spatially inhomogeneous boundary conditions and flows. 
Devices do not exist in the thermodynamic limit of classical statistical mechanics and molecular 
dynamics. 

A better conservation law is needed than eq.(12). We seek another form for the conservation law 
that is more convincing and universal.  

A hint of the other form comes if we abandon the separation of J  and excess / t∂ ∂P  by 
introducing a new variable for the flux of charge J .  
J  is defined as  

 excess
0

   Ideal
Dielectric

( 1)rt t
ε ε∂ ∂

= + + −
∂ ∂
P EJ J



      where 1rε ≥  is a positive real number (18) 

Vacuum displacement current’ 0 tε ∂ ∂E  is not part of J , even though the term 0 tε ∂ ∂E  helps 
create the magnetic field. The conservation law is then 

 More Useful Conservation Law for Actual Materials 

 0   0
t

ε ∂ + = ∂ 
Ediv J   (19) 

Eq. (19) includes J  and so J  must be defined if it is to be useful. J  is defined using Maxwell’s 
version of Ampere’s law. 

 ( )0

‘ ’

0 t
µ ε ∂

= +
∂

Current

Ecurl B J


.  (20) 

‘Current’ is defined as anything that produces curl B in an experiment. 0 0 and µ ε  are the magnetic 
and electrostatic constants that are truly constant under all conditions. They specify the scales of 
electrodynamics and give the velocity of light 0 01 .µ ε=  

The definition of J  is 

 ( )0 0 t
µ ε ∂

−
∂
EJ curl B

   (21) 

J  is defined by eq. (21) whenever ( )0 0 tµ ε− ∂ ∂curl B E  can be measured.  

 The conservation law follows easily: div curl = 0 is an identity true whenever div and curl 
can be defined so we have the desired derivation of conservation of current eq. (19). 
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 ( )
‘ ’

0 0tε+ ∂ ∂ =
Current

div J E



 (22) or (19) 

In plain language, anything that creates curl B  is defined as current. Anything that creates curl B  
is conserved. Current creates curl B . Current is conserved. 

Summary: Eq. (21) provides an operational definition of J  that allows J  to be defined by 
experiments whenever ( )0 0 tµ ε− ∂ ∂curl B E  can be measured. Eq. (22) shows that conservation 
of current can be written without reference to the properties of matter. 
 
 

Discussion 
 

This paper derives a universal form of the law of conservation of current eq. (19) that does 
not involve the properties of matter and so is more useful (and convincing) than the form eq. (12) 
that describes the polarization of matter with a dielectric constant rε  assumed to be a constant real 
number. 
Universal forms of conservation of current are needed, in my opinion so the many models found 
in the literature that do not conserve current will be improved. Numerical procedures might run 
more reliably if conservation of current is universally enforced. Tiny artifactual accumulations of 
charge in approximate schemes can have significant sometimes explosive effects. 

If the conservation of current is viewed as a poor approximation, that depends on the 
idealization that dielectric coefficients are constants, few scientists will be motivated to change 
their models. If conservation of current is viewed as a universal law, scientists will realize it must 
be enforced in their own models. Examples and extensive discussion of models that do not 
conserve current have been published (Eisenberg 2014b; Eisenberg 2016b) and the numerical 
consequences of lack of conservation have been estimated as nontrivial.  
Universal Forms are not always needed. Idealized dielectrics with dielectric constants 
independent of time and conditions do not need a separate statement of conservation of current no 
matter how unrealistic that idealization is. In the idealized case, Maxwell’s equations and the 
continuity equation automatically conserve both charge and current. In that ideal case, 
conservation of charge implies conservation of current. The idealized models do not describe 
matter very well, but they they conserve current. 

Magnetic systems do not need a separate statement of conservation of current because 
Ampere’s law implies conservation of current no matter how badly the models oversimplify the 
dielectric constant. 
Universal Forms are needed in Realistic Electrostatic Models. Realistic electrostatic models are 
important in many systems of practical importance. They include semiconductors, in which 
magnetic phenomena are not significant under a wide range of conditions. They include ionic 
solutions like seawater, the electrolytes of electrochemistry, batteries, ionic liquids, and 
supercapacitors. They include the ionic solutions derived from seawater inside and outside 
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biological cells. An additional statement of conservation of current is needed (in the form of 
eq. (19)) for these systems, in my view. 

Most of these systems are studied with coarse grained models that link the atomic motions 
of molecular dynamics to macroscopic properties important in electrochemical technology, 
biology, and the oceans. Coarse grain models and simulations would benefit from a distinct 
statement of conservation of current. Numerical approximates can only benefit if conservation of 
current is universally satisfied in numerical schemes or (not quite the same) enforced by a 
constraint, separate and (nearly) equal in importance to conservation of charge. See speculation 
below.  

 
Why does this matter? 

 
Practical consequences are of interest to readers, as they have kindly told me, so I add this 

section in the third version of this paper and refer the reader to (Eisenberg 2016a; Eisenberg 2016b; 
Eisenberg 2014b) for further discussion and estimates of the size of effects.  
Example of a resistor. It is useful to consider flux of charge and flow of current through an Ohm’s 
law resistor. See detailed discussion on p. 13 of (Eisenberg 2016a) and discusion and equaitons on 
p. 10, Resistor section of (Eisenberg 2016b). If only the flux of charge is considered when 
applying Kirchoff’s flux law to a resistor (i.e., Kirchoff’scurrent law without 0 tε ∂ ∂E ), no charge 
can accumulate and no electrical force or potential difference can develop. A capacitor added 
artificially to the circuit accumulates charge and forces and potentials develop. (The capacitor is 
sometimes called a ‘stray’ capacitance in the engineering literature, but part of the stray 
capacitance is an unavoidable vacuum capacitor, an essential feature of Maxwell’s equations, see 
Chapters 3, 5, and 10 of (Maxwell 1891).)  

The charge accumulation and electrical force and potential difference appear automatically 
(without adding an artifical capacitor) if one considers the flow of Maxwell’s ‘current’ when 
applying Kirchoff’s current law (including 0 tε ∂ ∂E  as in eq. (20)). ‘Charge accumulation’ occurs 
automatically in the vacuum (in Maxwell’s ether, if you wish, described by 0ε , note the subscript 
is not r ; see eq. (14)) and nothing needs to be added to the circuit to ensure that forces and 
potentials exist.  
Models that use ordinary differential equations rarely conserve current, until amended. Thus, 
Markov models (of gating in ion channels, for example, (Zheng and Trudeau 2015; Colquhoun 
and Hawkes 1981; Sakmann and Neher 1995; Magleby and Weiss 1990)) and chemical kinetic 
models (of enzymes, for example, the classical description in (Dixon and Webb 1979) followed 
by every textbook and review article I know about), do not satisfy conservation of current, until 
amended. The consequences are likely to be numerically severe (see appendix of 
https://arxiv.org/abs/1502.07251 (Eisenberg 2016b)) because enormous forces are created in 
microseconds if unbalanced currents flow, forces enough in fact to destroy laboratories in many 
situations, see third paragraph of the first page 1.1 of (Feynman, Leighton, and Sands 1963).  
Models that do not conserve current are not likely to be useful under more than one set of 
conditions. Classical models (of chemical kinetics for example) implemented with ordinary 
differential equations often remedy thse difficulties by adjusting parameters to fit data in one set 
of conditions (Eisenberg 2014b). Such models cannot be transferred (with one set of parameters) 

https://arxiv.org/abs/1502.07251
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to situations with different concentrations or contents of solutions, or with different electric fields, 
or different current flow, except in most unusual situations, in my view (Eisenberg 2014a, 2014b). 
Thermal Fluctuations of Electrochemical Potential produce regions of large concentration in 
which apparently well stirred chemical reactions are likely to occur with properties very different 
from reactions with average macroscopic concentrations. Thermal fluctuatuions in kinetic energy 
and electrochemical ptoential produce unavoidable stochastic fluctuations of current (in space and 
time) that are likely to propagate to macroscopic time scales even in systems without macroscopic 
flow, as reported by Ferry for example (Ferry 1980).  

Stochastic circulating currents need to be included in treatments of chemical reactions at 
chemical equilibriium, because most of those reactions are likely to occur in small regions with 
thermal fluctuations in concentrations (i.e., electrochemical potentials) very different from the 
spatial mean concentrations. Chemical reactions (involving rearrangements of electrons in 
covalent bonds) are very fast (say 10-19sec) and are steep functions of concentration (in most cases). 
Reactions in such systems will occur in small regions of inhomogeneity (that will often pesist say 
10-9 sec, a very long time compared to the 10-18 sec needed to complete the rearrangement of 
electons).  

These transient regions of large concentration do not exist in traditional well stirred 
approximations (Moore and Pearson 1981) Spatial variables do not occur in well stirred 
approximations, and field theories are approximated by ordinary differential equations in time. 
The Belousov Zhabotinsky reaction (search the arXiv, Google and Google Scholar for glimpses of 
the large literature) is the classical example of a phenomenon that cannot be described by the 
ordinary differential equations (in time) of well stirred approximation. A graphic example is shown 
at https://www.youtube.com/watch?v=3JAqrRnKFHo. Similar phenomena seem likely to occur 
more often than not on the nanoscale because of unavoidable thermal fluctuations in 
electrochemical potential and resulting thermal current flows. 
Speculation concerning numerical methods. Computations of electrodynamics including 
diffusion in the general spirit of the Poisson Nernst Planck equations (called drift diffusion in the 
semiconductor literature) are notoriously difficult when flows and electric fields are large. 
Electrical fields are large in and near the highly concentrated charges (often > 10 Molar; solid 
Na+Cl− is 37 M) so important in electrochemical applications (near electrodes) and biological 
systems (in and near ion channels, binding proteins, nucleic acids and enzyme active sites).  
It seems likely to me (but admittedly not to others), that some of these difficulties would disappear 
if current as defined in eq. (22) were forced to be conserved ‘exactly’ at every step and stage of a 
numerical approximation and analysis. It seems to me that many of the ‘tricks of the trade’ (see 
our enumeration in (Liu and Eisenberg 2015), but of course this is just one listing out of many in 
the trade) may not be needed if current as defined in eq. (22) were exactly conserved at every step 
and stage of a numerical analysis, assuming such is possible. 
 

  

https://www.youtube.com/watch?v=3JAqrRnKFHo
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