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ABSTRACT: We propose a procedure to compute the steady-state transport of charged particles based on the Nernst−Planck
(NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and
electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand
Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements.
An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge
quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-
dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle
simulation techniques.

1. INTRODUCTION
The purpose of this paper is to present a general methodology
to study steady-state diffusive transport of charged particles on
the basis of the Nernst−Planck (NP) equation of electro-
diffusion:
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kT

D cj r r r r( )
1

( ) ( ) ( )
(1)

where T is the temperature, k is Boltzmann’s constant, Dα(r) is
the diffusion coefficient profile (α = 1, ..., M refers to diffusing
species), cα(r) is the density (concentration) profile, and jα(r)
is the particle flux density that must satisfy the continuity
equation

∇· =αj r( ) 0 (2)

The electrochemical potential is given by

μ = μ + Φα α αz er r r( ) ( ) ( )c (3)

and is divided into the chemical, μc
α(r), and electrical, zαeΦ(r),

work done in bringing an ion from a standard state to the
specified concentration and electrical potential (zα is the valence,
e is the electronic charge, and Φ(r) is the mean electrical
potential). Because the chemical work and the electrical work
cannot be separated experimentally, the electrochemical potential
must be used as a variable. In theories and simulations, however,
Φ(r) can be computed so μc

α(r) can be obtained from eq 3 if
μα(r) is known.
The NP equation contains two thermodynamic variables

(cα(r) and μα(r)), and a closure is needed that defines the
relation between these two functions. Because the methodology
works on the basis of a well-defined molecular model (that
determines the Hamiltonian of the system unambiguously),
this relation must be provided by statistical mechanics. Here,
we propose to use Monte Carlo (MC) simulations to couple
the electrochemical potentials and the concentrations.

Before detailing our method, we describe past closures. The
Poisson−Boltzmann (PB) theory is widely used to compute the
relation between cα(r) and μα(r). When coupled to the NP
equation and solved self-consistently (with Poisson’s equation
also satisfied), it is called the Poisson−Nernst−Planck (PNP)
theory.1 In this model, ions are represented as point charges
interacting with the mean electric field, while the solvent is
represented as a dielectric background. The applicability of
this approach is limited to dilute electrolyte solutions because
this theory does not take the size of the ions and ionic
correlations into account.
To handle these correlations and go beyond the mean field

level of the PB theory, advanced statistical mechanical theories
are needed. Gillespie et al.,2 for example, developed a Density
Functional Theory (DFT) coupled to the NP equation (PNP/
DFT). DFT provides {μα(r)} from {cα(r)}, thus establishing
the relation between them and providing the closure. However,
DFT contains certain approximations, as every theory does.
Moreover, it can be applied easily only in one dimension for
limited geometries and molecular models.
Therefore, the natural need to use computer simulations to

establish the general relation between {μα(r)} and {cα(r)}
arises. In this work, we suggest using MC simulations for this
purpose. This is novel because the MC method is commonly con-
sidered3,4 to be usable only in global equilibrium where μα is
constant and no voltage is applied.
In this paper, we propose a break with this convention and

suggest applying MC simulations locally for small subvolumes
(denoted by i) of the simulation cell that are assumed to be
in local equilibrium (LE). Because subvolume i represents
an open system, the natural ensemble of the simulation for
this subvolume is the grand canonical (GC) ensemble where
the thermodynamic state is characterized by the volume (Vi),
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the electrochemical potentials (μi
α), and the temperature (T).

Therefore, we introduce the Local Equilibrium Monte Carlo
(LEMC) simulation method to simulate a globally non-
equilibrium steady-state system with spatially varying electro-
chemical potential by applying separate Grand Canonical Monte
Carlo (GCMC) simulations for the separate subvolumes. Our
procedure of computing flux with the NP equation and using
LEMC for closure will be denoted by NP+LEMC.
The use of LEMC in the NP equation is actually a natural

extension of previous applications of NP. The NP equation is a
phenomenological relationship between the flux, the concen-
trations, and the electrochemical potentials. All of the closures of
which we are aware have used equilibrium formulations (be it
PB, DFT, or something else) to connect cα(r) and μα(r), making
the ansatz that they are connected through the same formalism
at and away from equilibrium.5−8 Here, we propose GCMC as a
closure. It is both accurate (up to statistical error)and by its
very nature more accurate than other closures for the same
molecular modeland, we show here, computes quickly enough
to be useful for many applications.
Using MC in nonequilibrium situations is not new. (1) Both

Kinetic Monte Carlo (KMC)9−13 and Dynamical Monte Carlo
(DMC)14,15 use stochastic MC steps, although in different ways,
to study dynamical phenomena directly (a more detailed dis-
cussion will be given in the Conclusions). (2) In the dual control
cell method,16 the two baths between which particle transport
occurs is simulated by GCMC simulations. The assumption that
makes this possible is that these two subsystems are close to
equilibrium; therefore, they can be treated with a simulation
method designed for equilibrium. The system between the two
control cells is still simulated with molecular dynamics
(MD),16,17 Brownian dynamics (BD),18 or DMC.14,15 Here,
we generalize this idea and extend the GCMC simulations to the
entire simulation cell.
The {μα(r)} and {cα(r)} functions are characterized by

discretized variables denoted by {μi
α} and {ci

α}, where i = 1, ...,
N, with N being the number of subvolumes in the simulation
domain. The input quantities of an LEMC simulation are the
electrochemical potential values, {μi

α}, in the subvolumes. The
output quantities of an LEMC simulation are the concentration
values, {ci

α}, in the subvolumes. The discretized values of the
concentration and the electrochemical potential are assigned
to the ri centers of the subvolumes: cα(ri) = ci

α and μα(ri) = μi
α.

The values of these functions in intermediate points, and,
therefore, the μα(r) and cα(r) functions can be obtained from
linear interpolation.
Substituting these functions and the Dα(r) diffusion

coefficient profile (which must be provided by the user) into
the NP equation, the flux density, jα(r), can be calculated. There
is no guarantee that even an intelligent guess for the μα(r)
profiles provides flux densities that satisfy the conservation of
mass, e.g., the continuity equation (eq 2). The electrochemical
potentials, therefore, must be changed iteratively until we obtain
cα(r) and μα(r) profiles that, in turn, produce flux densities
(through the NP equation) that satisfy eq 2. This iteration
procedure, in addition to the idea of LEMC, is the other main
contribution of this work.

2. LOCAL EQUILIBRIUM MONTE CARLO METHOD

In the LEMC method, we apply independent particle insertion
steps into uniformly generated positions r in the various

subdomains i and deletions of uniformly chosen particles from
a subdomain. The factor governing the acceptance of the step is

=
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where Ni
α is the number of particles of species α in subvolume

i before insertion/deletion, χ = 1 for insertion, and χ = −1
for deletion, Vi is the volume of i, and ΔU(r) is the energy
change associated with the insertion or deletion of the particle
in/from position r. In the Metropolis sampling, the acceptance
probability is min[1, pi,χ

α (r)]. Insertions and deletions are
attempted with equal probability. Acceptance of particle
displacements from position r in subvolume i to position r′
in subvolume j is governed by the factor

′ = −
Δ ′ − μ − μ

→
α
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The energy change, ΔU(r, r′), contains the ion’s interaction
with an applied potential, zαeΦappl(r), which is the solution of
Laplace’s equation, ∇2Φappl(r) = 0, with the prescribed Dirichlet
boundary conditions on the boundary of the simulation domain.
It is important to note that r and r′ are not restricted to a lattice
and can be anywhere within i and j, respectively.
The separate LEMC simulations for the various subvolumes

are coupled through the temperature and the energy change,
ΔU, that contains not only the interaction energies between
particles in subvolume i but also the effect of particles outside
this subvolume. The interactions with these particles can be
considered as an external “constraint” on the particles in
subvolume i. This “constraint”, of course, continuously changes
as the simulation evolves.
The mean electrical potential profile Φ(r) is computed in the

simulation “on the fly” by using the inserted ions as test
charges. The electrical potentials computed at the positions of
the inserted ions are averaged over the subvolume. The
electrical potential obtained for subvolume i is assigned to the
ri center of the subvolume: Φi = Φ(ri).
The discrete values {ci

α} and {μi
α} can be used to compute

the functions {cα(r)} and {μα(r)} at any r by interpolation. The
flux density, {jα(r)}, then can be computed at any position in
the simulation domain from the NP equation (eq 1).

3. ITERATION PROCESS ON THE BASIS OF THE
CONTINUITY EQUATION

The resulting flux profile, however, does not necessarily satisfy
the continuity equation (eq 2). Therefore, we iteratively change
the μα profiles until the flux satisfies eq 2. The iteration
procedure is based on the integral form of the continuity
equation. The divergence theorem for the ith subvolume is

∫ ∮= ∇· = ·α αV aj r j r n r0 ( ) d ( ) ( ) d
i i (6)

where i denotes the closed surface of volume element i and
n(r) is the outward normal vector to the surface at point r.
The surface i is decomposed into subsurfaces (we call them
faces), with which subvolume i meets the neighboring
subvolumes j. These faces will be denoted by ij. The values
of the concentration and the electrochemical potential on the
face ij are computed by interpolation from the {ci

α} and {μi
α}

values in the neighboring subvolumes on the two sides of ij.
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We perform a linear interpolation between the centers of the
neighboring subvolumes and use the resulting value for the
whole face that separates these two subvolumes. Therefore,
the values of the concentration, the electrochemical potential,
its gradient, and the normal vector can be characterized
by single values on the faces: cîj

α, μ̂ij
α, ∇μ̂ijα, and nij, respectively

(it is practical to define subvolumes confined by flat faces).
The diffusion coefficients must also be provided on the faces:
D̂ij

α. The surface integral in eq 6 then can be written as a sum
over the faces:

∑= ̂ ·
∈

α aj n0
j

ij ij ij
, ij i (7)

where jîj
α is the flux density on the face ij of area aij. The

iteration algorithm can be summarized as follows:

(1) An initial guess must be given for the discretized electro-
chemical potential profiles: {μi

α[1]} (iterations will be
denoted by numbers in square brackets). In the f irst step,
we prescribe the concentrations on the boundary of the
system (usually, in the left- and right-hand side baths: cα,L

and cα,R). Then, we calculate the chemical potentials μc
α,L

and μc
α,R (see eq 3) that correspond to the prescribed

concentrations using the Adaptive GCMC (A-GCMC)
method of Malasics and Boda.19 In the second step, we add
the interactions with the applied potentials on the
boundaries of the system, zαeΦL and zαeΦR, where ΦL

and ΦR are the Dirichlet boundary condition. The values
of the electrochemical potential in the centers ri, μi

α[1],
are obtained by (properly guessed) interpolation
between their values at the boundaries of the system.
One possible choice for this interpolation will be given in
the Results section.

(2) LEMC simulations are performed for all of the subvolumes
using the {μi

α[1]} values as input. The concentrations
obtained from the simulations are denoted by {ci

α[1]}.
Using {ci

α[1]} with {μi
α[1]} in the NP equation results in

flux densities that do not necessarily satisfy eq 2.
(3) The electrochemical potential profiles for the next

iteration, {μi
α[2]}, are obtained by assuming that together

with {ci
α[1]} in the NP equation they provide flux

densities that satisfy eq 2. Substituting the NP equation for
jîj
α in eq 7, for a general [n] → [n + 1] iteration, we obtain

∑= ̂ ̂ ∇μ̂ + ·
∈

α α αD c n n an0 [ ] [ 1]
j

ij ij ij ij ij
, ij i (8)

Because μ̂ij
α[n+1] is obtained from the μi

α[n+1] values
(and, also, cîj

α[n] from the ci
α[n] values) by linear inter-

polation, eq 8 represents a system of N linear equations
with {μi

α[n+1]} being the unknowns for a given ionic
species α. This system of linear equations can be
converted into a matrix equation with a sparse matrix.
Here, we used full-matrix methods to solve the system, but
for large N, sparse-matrix methods can be used. This
potentially allows the solution time to scale as an order of
N, a strength of the NP+LEMC method.

(4) The new electrochemical potential profiles, {μi
α[n+1]},

are used in the LEMC simulations in the next, [n+1]th,
iteration. These simulations provide new concentration
profiles, {ci

α[n+1]}, and the iteration continues until
convergence is achieved.

Note that perfect convergence is not possible due to statistical
errors in the simulation results, {ci

α[n]}. As we will see, the
iteration converges to the final result quite fast, and after that the
data just fluctuate around certain mean values. These
fluctuations are smaller if we run longer LEMC simulations in
the iterations. We found it, however, more efficient to run
shorter simulations and to average the results obtained in the
iterations over the fluctuation period. The running average
obtained this way can achieve arbitrary accuracy as the number
of iterations increases.

4. RESULTS

Actual implementations of the procedure will be shown for two
geometries.

(1) In the first test system, the ions diffuse through a
membrane. The system has a planar symmetry. Therefore,
the resulting profiles are one-dimensional: they depend
only on the distance perpendicular to the membrane. This
geometry makes it possible to illustrate our methodology
more clearly and to compare with PNP/DFT.

(2) In the other test system, the ions diffuse through a pore
spanning a membrane that separates two bulk electrolytes.
The model pore is designed to be rotationally symmetric
(the boundary conditions must also be rotationally
symmetric). Therefore, the profiles are two-dimensional:
they depend on the axial distance through the pore and
the radial distance from the axis. This geometry makes it
possible to illustrate the efficiency of our method for a
more complex geometry.

We describe the models concisely and present results that are
sufficient to illustrate our method. More details are provided in
the Supporting Information.

4.1. Planar Geometry: Ions Diffusing through a
Membrane. The ions travel in the x dimension, while the
system is homogeneous in the y and z dimensions, which is
achieved by applying periodic boundary conditions in these two
dimensions in the LEMC simulations. There is a membrane be-
tween a 1 M NaCl electrolyte on the right-hand side and a 0.1 M
NaCl electrolyte on the left-hand side. Ions are modeled as
charged hard spheres with the Pauling radii for Na+ and Cl−,
respectively, immersed in an implicit solvent characterized by a
dielectric continuum of dielectric constant 78.5 at a temper-
ature of 298.15 K. The probability that an ionic species α enters
the membrane is tuned by an energy penalty in the membrane.
The fact that the mobility of the ions is smaller in the
membrane than in the bulk is taken into account by reducing
the diffusion coefficients by a factor 10.
Boundary conditions are that the electrochemical potential is

μα,L = μc
α,L + zαeΦL on the left-hand side, while it is μα,R = μc

α,R +
zαeΦR on the right-hand side bulk for species α. The bulk
chemical potentials, μc

α,L and μc
α,R corresponding to the

prescribed concentrations 0.1 and 1 M were calculated with
the A-GCMC method.19 The electrical potential in the left bath
is chosen to be ΦL = 0, so the value ΦR (20 mV = 0.778e/kT,
in this work) gives the voltage.
Due to the planar symmetry, the subvolumes are slabs with

two faces. Equation 8 then expresses that whatever enters
through the left face of the slab, it leaves through the right face of
the slab. The details are found in the Supporting Information.
We show how the μα(x) profiles converge during the iteration

in Figure 1. The initial guess (n = 1) for the chemical potential
profiles is that μc

α(x) is constant in the bulk regions and drops
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linearly in the membrane region (dashed line in Figure 1). The
initial guess for the μα(x) is obtained by adding the interaction
with the applied field (filled black squares with solid line in
Figure 1). The trivial solution of Laplace’s equation for the
planar geometry is that Φappl(x) drops linearly between the
boundaries of the system. This choice for μi

α[1] ensures that
the boundary conditions for the electrochemical potential are
fulfilled. The algorithm converges fast after only three iterations
with relatively short (2 × 106 sampled configurations) simula-
tions for each iteration (Figure 1). The updated μα(x) from the
third iteration (#4) and that from the second iteration (#3)
would be indistinguishable on the scale of the figure.
The electrical potential profiles obtained in the first iteration

and the final averaged result are shown in Figure 2 in

comparison with the PNP/DFT curve (more curves showing
convergence are found in the Supporting Information). The
potential obtained from a single (relatively short) simulation is
quite noisy, while the converged and averaged result is smooth
and shows excellent agreement with the PNP/DFT results.
This agreement indicates that the two methods do the same
thing although with different accuracies.
The converged potential profile is quite flat in the 1 M region

to the right from the membrane because the electrical
resistance in this region is small (due to the large concentration
of charge carriers). The 0.1 M bulk region, on the other hand, is
a high-resistance element. In the membrane region, the electrical
potential shows nonmonotonic behavior, resulting in a possibly

negative electrical resistance. In this region, therefore, the total
driving force (the drop of the electrochemical potential) should
be used to measure the resistance of this region. Figure 1 shows
that the drop of μα(x) is largest in the membrane region,
indicating that this region has the largest resistance to the flow
of ions driven by the electrochemical potential gradient (due to
the reduced diffusion coefficients in the membrane).
The electrical potential profile is a sum of Φappl(x) and the

potential produced by the ionic distributions. A charge
separation occurs in and near the membrane forming electrical
double layers as seen in Figure 3, where the distribution of ions

as obtained from the NP+LEMC and the PNP/DFT methods
is shown (concentration profiles in various iterations are shown
in the Supporting Information). These double layers produce
an electric field that counter-balances the applied field and
produces the profiles in Figure 2 (the flat potential in the 1 M
bulk, for example).
The fluxes that are computed with cα[n] and μα[n] (i.e.,

before updating) are not constant (as they should be in this
geometry), but they flatten out as the iteration proceeds (see
Supporting Information). The fluxes that are computed with
cα[n] and μα[n+1] (i.e., the updated chemical potential), on the
other hand, are constant by design. These values also fluctuate
around a mean value. Their average provides the final result for
the fluxes carried by the various ions.

4.2. Rotational Geometry: Ions Diffusing through a
Pore. A membrane generally contains pores through which
particles travel from one side to the other. Biological ion
channels are an example. In this work, we test our method on a
pore geometry that we used in our equilibrium GCMC simula-
tions for ion channels.20 The pore (of radius 5 Å) spans a
membrane of thickness 20 Å. It has a 10 Å central cylindrical
region sandwiched by two vestibules on the two sides (for
details, see the Supporting Information). Negative partial charges
are placed on the wall of the central cylinder on three concentric
rings, thus forming a pore with −3e structural charge.
The boundary conditions are the same as in the planar

symmetry except that they are now set on the surface of a large
cylinder (72 Å in length and 30 Å in radius) surrounding the pore
region: the left-hand side boundary conditions are prescribed on
the left part of the cylinder left from the membrane, while the
right-hand side boundary conditions are prescribed on the right
part of the cylinder right from the membrane. The solution of the
Laplace equation now requires a numerical procedure; we used a
boundary element method20 to compute the surface charges on
the system’s boundary. The potential inside the cylinder in the

Figure 1. Convergence of the electrochemical potential of Na+

through two iterations for the planar geometry. The dashed line is
the initial guess for μc

α(x), while the curve labeled with #1 is the initial
guess for μα(r). The curves labeled with #2 and #3 are the updated
μα(x)’s obtained in the first and second iterations.

Figure 2. The mean electrical potential profile obtained from the first
iteration (dashed line) and as an average from 10 iterations (symbols)
for the planar geometry. The solid line shows the PNP/DFT result.

Figure 3. Concentration profiles for Na+ and Cl− as obtained from the
NP+LEMC (symbols) and the PNP/DFT (curves) methods for the
planar geometry.
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subvolumes’ centers was considered as that produced by these
surface charges.
The subvolumes in this case are squares in the (x,r) plane,

where the x axis is in the centerline of the pore and r is the
distance from it. In three dimensions, these squares are rings.
The problem, however, can be handled in two dimensions, and
eq 8 contains a sum over four faces: ions can travel through
faces to the left, right, up, and down. The equations can be
found in the Supporting Information.
The diffusion constant was considered to be the same in the

bulk and in the pore. Although the mobility of ions is reduced
in pores and confined geometries, we defer the study of this
effect to later papers, where we will apply the NP+LEMC
technique to ion channels and synthetic nanopores.
The results of the calculations are now surfaces over the (x,r)

plane. The initial condition of the μα(x,r) surface for Na+

(labeled as #1) is shown in Figure 4. It is a linear interpolation

in the pore region (|x| < 10 Å) similar to the planar symmetry
(see Figure 1). The surface obtained after an iteration (labeled
as #2) is also shown. The surface from the next iteration is very
close to the #2 surface, so the convergence of the iteration is
quite fast. The region without data is the membrane, where the
concentration of Na+ is zero (it is indicated with shaded gray
areas in Figures 5 and 6). The subvolumes in this region are not
included in eq 8.

Plotting and digesting such surfaces is a difficult task, so it is
often advantageous to plot profiles that are averaged over one

dimension. Figure 5 shows the concentration profiles and the
electrical potential profile averaged over the cross-section
through which the ions permeate. The presence of negative
structural charges makes the pore cation selective, as indicated
by the Na+ vs Cl− profiles. The Na+ ions cannot balance the
structural charges in the confined space of the pore; therefore,
the charge of the pore is overall negative (the structural charges
are balanced from outside). This produces a negative potential
well as indicated by the dot-dashed line in Figure 5.
Since the flux densities are vector quantities, it is convenient

to illustrate them with actual vectors as shown in Figure 6. The
figure clearly shows the lines along which the diffusion of Na+

ions occurs.

5. CONCLUSIONS
The proposed mechanism of LEMC simulations coupled to the
NP equation provides an efficient way to study steady-state flux
in systems modeled on the molecular level. It is applicable not
only to implicit solvent electrolytes but also to systems modeled
on the all-atom level. At high densities, particle insertions and,
thus, GCMC sampling become inefficient, but that can be
overcome with various methods that improve sampling (e.g.,
cavity biased sampling). The method is equally applicable to the
diffusion of uncharged particles. In this case, ionic charges,
electrical potential, and Poisson’s equation do not appear in the
formalism, and we just iterate the usual chemical potential.
Despite these constraints, however, the NP+LEMC technique

has several significant advantages over other methods that can
make it an important tool in a wide variety of applications.
Compared to approximate theories like DFT, the LEMC
simulation provides the same information as DFT, but it can be
applied to three-dimensional systems with a much wider variety
of geometries and pair potentials and provides exact results
(apart from statistical and system size errors). Moreover, it
provides a mean electrical potential that automatically satisfies
Poisson’s equation, while an additional loop is required in PNP
and PNP/DFT to make the calculations electrostatically self-
consistent.
We use a lattice to discretize the variables of the NP equation.

This resembles the way Lattice Kinetic Monte Carlo (LKMC)
handles the problem of diffusion.21 There is an important
difference, however. Our LEMC simulations are continuous in

Figure 4. Electrochemical potential of Na+ for the pore geometry. The
red + symbols show the initial guess, while blue × symbols show the
updated μα(x,r) obtained in the first iteration.

Figure 5. The concentrations of Na+ and Cl− ions (right axis) and the
mean electrical potential (left axis) as functions of the axial distance
through the pore averaged over the cross-section of the permeation
pathway of the ions.

Figure 6. The flux densities of Na+ ions in the pore geometry. The
lengths of dashes are proportional to the magnitudes of the flux
densities in the given positions (indicated by circles), while their
directions correspond to the flux density vectors’ directions. Only a
part of the whole simulation domain is shown.
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the sense that particles can be inserted/displaced at any position
of the simulation domain, while the dynamics is taken care of by
the (discretized) NP equation. LKMC, on the other hand,
simulates dynamics directly by allowing ion hopping between
lattice cells with well-defined probabilities. Nonlattice-based MC
methods include the DMC technique,14,15 where random and
continuous particle displacements are allowed (not only hops)
and moves are accepted/rejected on the basis of the system’s
energy computed from the interparticle potentials. KMC
algorithms without restrictions to lattice sites have also been
described.22

The advantage of these and other direct dynamical particle
simulations like MD and BD is that these simulations provide
dynamics and do not require external information about the
diffusion coefficient. In the NP+LEMC technique, we need to
provide the diffusion coefficient profiles, which are generally
not known but can be fit to experimental data.23−25 Another
advantage of the direct simulation methods is that they can be
applied to problems where momentum exchange occurs (single
file ion transport through narrow ion channels, for example).
The NP+LEMC technique, on the other hand, assumes drift-
diffusion and can be used only if the NP equation is valid.
Furthermore, our technique, in its present form, is designed to
study steady-state diffusion and cannot be applied for time-
dependent processes.
The advantage of the NP+LEMC method, however, is that it

provides converged results very quickly. The LEMC method
samples only the configurational space (positions of particles),
while dynamical methods sample phase space (positions and
velocities of particles). Sampling only the configurational space
can be performed more efficiently because the advantageous
sampling capabilities of the equilibrium MC techniques can be
exploited. Dynamical methods, on the other hand, cannot
always sample trajectories for a long enough time to compute
flux adequately (KMC can be a good alternative here with its
stochastic approach).
Moreover, because it uses the GC ensemble, NP+LEMC can

be used on systems with very low concentrations (e.g., 10−6 M
and below). In contrast, simulation methods that use fixed
numbers of particles cannot even reach 10−3 M concentrations
efficiently. This is important in many applications like
nanofluidic devices with charged walls where low concentrations
are used to exclude co-ions to improve ion separation and
pressure-to-voltage energy conversion.26 At the same time, ion
size is important even at low concentrations in such a system for
nonlinear effects like charge inversion.27 Low concentrations are
also vital in biological applications where Ca2+ and Mg2+

concentrations range between 10−7 and 10−3 M. Equally
important in biological systems is the application of small
voltages (0−100 mV) that is difficult to do in other particle
simulation methods but straightforward in NP+LEMC.
The need to apply simulation methods to mesoscopic systems

on the nanometer length scale and above is continuously
increasing. The NP+LEMC method applied to coarse-grained
models is a promising tool to study diffusive particle transport in
systems that are beyond the microscopic length scale. Therefore,
NP+LEMC is a powerful and very general new technique that
will give physical insight into a wide variety of systems.
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