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Abstract

A concise account is given about Monte Carlo (MC) simulation techniques for homogeneous and inhomo-

geneous systems of electrolyte solutions at concentrations characteristic of biological situations. While the

techniques are quite general, the focus here is on reduced models of ion channels where the electrolyte is

modeled in the implicit solvent framework, while the channel and the membrane are modeled using minimal

structural information. The ion channels under consideration are the L-type calcium channel (present in

muscle cell membranes) and the ryanodine receptor calcium release channel (present in the membrane of the

sarcoplasmic reticulum). Although MC simulations are known to be appropriate to simulate equilibrium

systems, these examples show how to use MC techniques to simulate non-equilibrium ionic transport. The

Local Equilibrium Monte Carlo method is shown to be especially useful to simulate globally non-equilibrium

systems by coupling MC to the Nernst-Planck transport equation.
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1. Introduction

Life goes on in aqueous electrolyte solutions, in which ions (organic and inorganic) are solvated in water.

Many relevant physiological processes are governed by movement (diffusion) of ions in these solutions. Mem-

brane transport facilitated by membrane proteins (carriers, pumps, and channels) is especially important

for communication of a cell with its environment and between cells.

Modeling the properties of biological electrolyte solutions and the proteins that interact with these solu-

tions is useful for understanding the behavior of these systems on the molecular level. With the continuous

development of computers, the models are becoming more and more detailed and simulations are becoming

the primary computational tool to study these models [1, 2, 3, 4, 5]. Monte Carlo (MC) simulation is one

kind of these techniques.

MC as a general computational method helps us to find an averaged final response emerging from many

possible states/events by sampling these states/events stochastically (hence the name), but according to a

well-defined statistical probability distribution [6, 7, 8, 9, 10, 11]. It is used in many areas of science such as

particle transport [12, 13], astronomy [14], radiation oncology [15], biochemical processes [16], environmental

engineering [17], condensed matter physics [18], biology of macromolecules [19], semiconductor physics [20],

and kinetic processes (Kinetic Monte Carlo [21, 22, 23, 24, 25]). In this work, however, I will focus on MC

simulations of matter consisting of interacting particles [1, 2, 3, 4, 5] (molecules, atoms, ions, whatever the

constituents are).
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Specifically, this work provides an overview of how MC simulations can be used to study a specific

biological system: an ion channel and its environment [26]. Ion channels are pore-forming proteins that

enable the passive diffusion of an ionic species through the otherwise impermeable cell membrane selectively.

Ion channels can discriminate between different ions; they let one kind of ion through with a larger probability

than other ions. In this work, I discuss calcium (Ca) channels that let Ca2+ ions into the cells to carry a

chemical signal and activate various functions (muscle contraction, for example) by binding to appropriate

proteins. The methods described are, however, quite general.

Models of ion channels can be very detailed or they can be simplified to include only a handful of impor-

tant features of the channel. Similarly, the electrolyte itself can be modeled in more or less detail depending

whether we model the water molecules explicitly or implicitly. Several groups, including those of Coalson

[27, 28, 29], Chung [30, 31, 32, 33, 34, 35, 36, 37, 38], and Roux [39, 40, 41, 42, 43, 44] used various simula-

tion methods (including Brownian dynamics (BD), dynamic lattice Monte Carlo, and molecular dynamics

(MD)) to study diffusion of ions through biological ion channels. Theoretical considerations range from rate

models [45, 46, 47, 48, 49] through diffusion models based on the Nernst-Planck (NP) transport equation

[50, 51, 52, 53, 54, 55, 56, 57] to variational approaches [53, 58, 59, 60, 61, 62, 63, 64].

In this work, I show examples for Ca channels and the surrounding electrolytes that are modeled in the

framework of reduced representations. I will show how MC simulations can be useful in simulating these

models in and out of equilibrium. Non-equilibrium situations are especially important in biology because

life itself is a non-equilibrium process (equilibrium is death).

Using MC in simulating transport processes and using its flexible sampling capabilities in a non-equilibrium

situation is an open question because MC is fundamentally designed for equilibrium. In this work, I provide

answers to this question and show results for Ca channels in comparison with experimental data.

2. Statistical mechanical background

In classical physics, a microscopic state of a many-particle system can be given by specifying the positions,

ri and velocities, vi, of all N particles, thus defining a phase point in the 6N -dimension phase space,

Γ = {ri,vi}, where i = 1, . . .N . The evolution of the system on the microscopic level is a continuous series

of phase points in time (Γ(t), called a trajectory) as all the positions and velocities of the particles vary

during thermal motion. The microscopic states cannot be followed experimentally due the time (ps) and

length (nm) scale of thermal motion.

The microscopic value of a physical quantity, B(t) = B[Γ(t)], fluctuates in time. In equilibrium, however,

it fluctuates around a well-defined value, the time-average of the quantity in question

B̄ = lim
τ→∞

1

τ

∫ τ

0

B(t)dt. (1)

This is what we can measure with our experimental instruments and this is what we simulate with MD

simulations [65, 66]. If we assume that the premises of classical mechanics are valid, the trajectories can

be determined from Newton’s equation of motion. In this approximation, therefore, it is a deterministic

process.

There are, however, so many of the possible states that it can be viewed as a stochastic process eventually.

Statistical mechanics [67, 68, 69] is built on probability theory and uses a few basic postulates. One of them
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is that every microscopic state has a well-defined probability – more precisely, can be described with a

well-defined probability distribution, P(Γ) – and that if we allow enough time (τ → ∞), the system goes

through every possible states (the ergodic hypothesis). The average over states sampled from the available

states with proper weights is an ensemble average

〈B〉 =

∫

B(Γ)P(Γ)dΓ (2)

equal to the time average in equilibrium ergodic systems. MC simulations have been devised to determine

these ensemble averages by sampling the possible states appropriately [6, 7].

A few important differences between MD and MC should be noted. MD simulations follow trajectories in

time, thus sampling the phase space, while no such a restriction is applied to MC. MD uses the forces acting

on the particles to determine the particles’ paths, while MC uses the energy as its central quantity because

the probabilities depend on the energy of the system: P(E) = P(Γ) = P [H(r,v)], where the Hamiltonian,

H(r,v), of the system corresponds to the energy for conservative force-fields:

E = H(r,v) = K(v) + U(r), (3)

and can be given as a sum of kinetic and potential energies, depending only on the velocities and the positions

of the particles, respectively. The potential energy is a result of the interactions between the particles usually

computed as the sum of pairwise additive pair-potentials (in addition to external forces). A possible way

to take non-additivity into account is to build molecular polarization into the model. Because an analytical

expression is available for the kinetic energy (K =
∑

i
1
2
miv

2
i ), the kinetic part can be integrated, providing

analytical equations. MC simulations, therefore, sample only the configurational part of the phase space,

{ri}.

3. Molecular models

This brings us to what is common to any simulation technique; they are based on a precisely defined

microscopic model. The main constituent of the model is the intermolecular potential describing the interac-

tions between particles. Although the field of ab-initio simulations is an emerging one [70], models still work

in the framework of classical mechanics and approximate the interactions with simplified, but physically

well-based, functions that contain a certain number of parameters that can be adjusted to experiments.

Intermolecular potentials can be classified on the basis of the numbers of these adjustable parameters.

Detailed, all-atom models represent the system on the atomic level. These models, known as force fields,

are based on the assumptions of molecular mechanics, which is a standard method of structural chemistry.

The energy, in this approximation, is expressed as a Taylor expansion in bonds, bends, torsions, etc [71, 72].

These models can be calibrated against experimental results such as structural data, vibrational spectra,

and thermodynamic quantities. They can also be parameterized from quantum chemical calculations. These

kinds of models are especially useful where details matter: simulation of potential energy surfaces, chemical

reactions, protein folding, etc. Examples of popular force fields include AMBER [73], OPLS [74], CHARMM

[75], and GROMOS [76]. For a more complete list, see the recent review of Dubbeldam et al. [11]

Parameterization, however, is an art that is more difficult the larger the number of parameters is. A
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simplified (or reduced) model that captures the important physical forces that determine the mechanisms

underlying the studied phenomena can often give better and more insightful results. Identifying the “im-

portant” forces, however, is another piece of art [77]. In reduced models, certain degrees of freedom are

averaged into an implicit response function, while the “important” degrees of freedom are modeled explicitly.

This process is called coarse-graining. The best known example of coarse-graining is replacing the screening

effect of water molecules with a dielectric response, namely, with a dielectric continuum characterized by a

dielectric constant, ǫ.

Intermolecular potentials acting between the molecules of a fluid (liquid or gas) are commonly expressed

as sums of components of varying range [78, 79]. (1) The finite size of molecules is represented by a repulsive,

short-range potential that can be either the ∼ r−12 part of the Lennard-Jones (LJ) potential or the hard

sphere (HS) potential. The former is usually used in common force field, while the HS potential is rather

used in reduced models. Note that hard core potentials are easily simulated with MC, while they cause

major trouble in MD. (2) Dispersion interactions are attractive and result from the interaction of electric

charge distributions induced momentarily on the molecules by spontaneous fluctuations. The leading term is

the dipole-dipole interaction resulting in a contribution of ∼ r−6 range, which corresponds to the attractive

term of the LJ potential. (3) The charge distribution of a polar or charged particle can be modeled in

two ways. Common force fields place partial charges at certain sites in the molecule. Another route is

to perform a multipole expansion [80] of the molecular charge distribution and place the multipoles in the

center of the molecule. Thus, only the distances between the molecular centers are needed to be calculated

in a simulation. The leading (zeroth order) term of the multipole expansion is the net charge of the particle,

while the next term is the dipole term that has fundamental importance in the theory of polarization [81].

The model of the electrolyte used in this work is the implicit solvent model (also known as the “primitive

model” of electrolytes), where the effect of the solvent is taken into account by the dielectric constant in

the denominator of the Coulomb-potential expressing the screening of the dielectric surrounding the ion,

while the ions are modeled as point charges in the centers of hard spheres so that the interaction potential

between ions of species α and β is

uαβ(r) =







∞ if r ≤ Rα +Rβ

1

4πǫ0ǫ

qαqβ

r
if r > Rα +Rβ,

(4)

where ǫ0 is the permittivity of vacuum, while qα and Rα are the charge and radius of ionic species α,

respectively. Basically, the three parameters that appear in this equation (ǫ, qα, and Rα) are the parameters

that are used in the reduced models shown in this work. We assume that the three major physical forces

playing the leading role in selectivity of Ca channels are volume exclusion, electrostatic attraction/repulsion,

and polarization (solvation).

Force fields usually model electrolytes as mixtures of ions (modeled as a LJ center carrying a point

charge) and water molecules (modeled as a LJ center on the oxygen carrying several point charges whose

distribution depends on the particular water model such as SPC, SPC/E, TIP3P, TIP4P). This is an explicit

solvent model and unavoidable whenever the corpuscular nature of water molecules plays an important role

in the phenomenon under study.
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4. Simulation methods

These models are studied with a statistical mechanical method to compute macroscopic averages for

the various measurable quantities. The statistical mechanical method can be a theory, which generally

contains some kind of approximation. Examples are the Poisson-Boltzmann (PB) theory, the Mean Spherical

Approximation (MSA), and the Density Functional Theory (DFT). While theories are applicable only for

simple models, simulations can be applied for complex models with any geometry and sophisticated, many-

parameter force-fields. Simulations, if performed properly, provide exact results for the thermodynamic

average quantities. Errors can arise from inadequate sampling and small system size. Simulation results,

furthermore, always come with statistical uncertainties because the size of the sample taken from the phase

space is always finite.

We have to make a clear distinction between models and methods [1] even if these two concepts often

overlap and are confused (especially, in the case of detailed all-atom models integrated in simulation pack-

ages). Let us assume that a well-specified model of a real system (for which experimental data are available)

is studied with a statistical mechanical method. If we obtain a result that does not agree with experiment,

the deviation can come from two sources: incompleteness of the model or inadequacies of the method. The

problem with the model can be either that it is too simple or that it is too complex with inappropriate

parameters. The problem with the method can be either that it contains too crude approximations (in

the case of theories) or that it performs inadequate sampling for some reason (in the case of simulations).

Whatever is the case, the user must be aware of limits of the modeling level and the applied methods. In

the case of the reduced ion channel and electrolyte models studied in this work, the bottleneck is basically

the simplicity of the model.

4.1. Molecular Dynamics

MD solves the Newtonian equations of motions that form a system of partial differential equations.

Several integration schemes have been developed during the decades of which the most efficient are built into

standard simulation packages. These packages are highly optimized codes either open source (GROMACS

[82], LAMMPS [83], RASPA, OPENMD, DLPOLY [84]) or commercial (Materials Studio). The common

force fields are usually integrated in the MD packages. The natural ensemble of MD is the microcanonical

ensemble (NV E), where the system isolated; the number of particles, N , volume, V , and the energy, E, are

fixed. The system evolves on a constant energy surface. MD can be performed in other ensembles too, but

the implementation of a thermostat (constant temperature) or a manostat (constant pressure) is far more

difficult than in MC simulations. These packages are quite flexible and easy to use for the specific purpose

for which they are intended. GROMACS, for example, has been designed for the simulation of biomolecules.

4.2. Langevin Dynamics

MD is used when solvent (usually water) molecules are part of the model and treated explicitly on the

molecular level. In the case of an implicit solvent, however, the interactions of the solute particle (often

an ion) with the surrounding solvent molecules must be taken into account. The irregular collisions of ions

with the surrounding water molecules can be modeled by a friction and a stochastic collision term that are

added to the Newtonian equations of motions resulting in the Langevin equation [85]:

mir̈i(t) = Fi[Γ(t)] −miγivi(t) +Ri(t), (5)
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where ri, vi, mi, and γi are the position, the velocity, the mass, and the friction coefficient of particle i,

respectively. The three forces on the right hand side are the systematic force, Fi(t), the frictional force,

−miγivi(t), and the random force, Ri(t). The Langevin equation forms a system of stochastic differential

equations while the Newton equation forms a system of partial differential equations. The simulation method

that solves the Langevin equation is called Langevin Dynamics (LD) or Brownian Dynamics (BD) in the

high friction limit [31, 32, 35, 39, 43, 44, 86, 87, 88].

4.3. Metropolis Monte Carlo

The Metropolis (or Metropolis-Hastings) scheme of MC simulations generates a Markov-chain of states

(configurations), where the next state depends only on the previous state [6, 7]. The procedure can be

outlined briefly as follows. Let us denote two states by m and n and their probabilities by Pm and Pn. The

Markov-chain is defined by the transition matrix πmn through

∑

m

Pmπmn = Pn, (6)

with the condition
∑

n πmn = 1. It is usual to replace the above equation with the unnecessarily strong

condition of microscopic reversibility:

Pmπmn = Pnπnm. (7)

The transition probability from state m to state n is a product of two probabilities: πmn = αmnpmn; the

probability of generating the new state n provided that the previous (old) state was m (αmn) and the

probability of accepting this transition from the old to new state (pmn).

The limiting distribution, Pm, and the underlying stochastic matrix, αmn, depend on the thermodynamic

ensemble in which the simulation is performed. The ensemble, on the other hand, is determined by the nature

of the boundaries confining the system. In the canonical ensemble (fixed particle numbers, Nα, volume,

V , and temperature, T ), the boundary is permeable to heat so that the system (on average) has the same

temperature as the thermostat. The MC step corresponding to heat exchange is a particle displacement,

where a randomly chosen particle is displaced into a randomly generated new position. The new position can

be anywhere in the simulation cell (advantageous in gases and in the implicit solvent electrolyte considered

here) or can be in a 2rmax cube around the old position (advantageous in liquids):

rn = rm + ξrmax, (8)

where the components of vector ξ are random numbers between −1 and 1. If αmn is symmetric, Eqs. 6 and

7 give
πmn

πnm

=
pmn

pnm
=

Pn

Pm

= exp (−∆Umn/kT ) , (9)

because Pn ∝ exp(−Un/kT ) in the canonical ensemble and ∆Umn = Un−Um is the potential energy change

associated with the move (Un is the energy of state n). The Metropolis scheme prescribes the following

asymmetric solution to the above equation

pmn = min [1, exp (−∆Umn/kT )] , (10)
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namely the displacement is always accepted if ∆Umn < 0 and it is accepted with exp (−∆Umn/kT ) prob-

ability otherwise. This is the basic step of MC also used in other (constant T ) ensembles and in Dynamic

Monte Carlo (DMC).

MC simulations have many advantages and disadvantages over MD. The main advantage is that MC is

not restricted to sampling along a trajectory in time. Therefore, a wide variety of sampling techniques can

be developed in MC. It is straightforward, for example, to simulate different ensembles. In other ensembles,

other thermodynamic parameters are fixed. In the isobaric-isothermal ensemble, the pressure, p, and the

temperature, T , are fixed. In this case, the volume of the simulation cell can fluctuate so volume is an

ensemble average instead of an independent variable. The MC step associated with this is a volume change

with a corresponding acceptance criterion. Similarly, the number of particles can fluctuate in the grand

canonical (GC) ensemble (with the chemical potential as the independent variable) so particle insertions

and deletions are associated with this fluctuation. I will discuss the GC ensemble in detail in section 4.5.

There are cases, however, where standard MC steps become problematic. An electrolyte with an explicit

solvent is a typical system where MC fails and MD is more advantageous. The reason is that, in the simplest

case, MC uses single-particle movements, so the random displacement of an ion is practically always rejected

because the ion overlaps with the strongly coordinated hydration shell around it. MD, on the other hand,

moves every particle in a time step along their natural trajectories according to the forces acting on them.

These forces include the short-range repulsion that prevents particle-overlaps. These short-range repulsions,

however, can cause trouble in MD and LD simulations because unphysical configurations can occur. If two

particles get too close to each other after a time step, the repulsion between them can be too large, resulting

in long unphysical jumps. Handling these difficulties requires intelligent coding [89].

The MC technique, nonetheless, has considerable flexibility so that inadequate sampling due to ergodicity

problems (deep free energy wells due to strong interactions and high density) can be overcome by biased (or

preferential) sampling. This means that we “oversample” (prefer) those configurations whose acceptance is

more probable and avoid sampling improbable states. This biasing means modification of the αmn underlying

stochastic matrix that controls the generation of the next state in the Markov-chain. This bias in sampling

must be “unbiased” in the acceptance probabilities, pmn. Examples include configurational-bias MC [90, 91],

force-bias MC [92], cavity-biased MC [93], cluster-moves [94], and many others [2, 8, 9].

Another disadvantage of MC is that it is fundamentally designed for equilibrium simulations. It samples

only the configurational space (positions of particles), while kinetic properties are computed from the ideal

gas equations. MC does not have time in it so it cannot simulate dynamical properties. There are, however,

two notable exceptions. DMC can be used to mimic the deterministic trajectories of the system (see section

4.4), while Local Equilibrium Monte Carlo (LEMC) can be used to simulate subsystems of a globally non-

equilibrium system using the assumption that these subsystems are in equilibrium locally (see section 4.6).

4.4. Dynamic Monte Carlo

The central idea of the DMC method is that ions move in the direction of force (decreasing energy),

with larger probability than in other directions. Performing MC displacements (Eq. 8), therefore, can mimic

real-time trajectories [8] and is applicable even if the system is out of equilibrium [95, 96, 97, 98]. DMC does

not generate deterministic trajectories; it reproduces average dynamic properties such as the mean-square

displacement. Furthermore, DMC cannot provide the measures of flux in a given amount of physical time

(time is measured in MC steps in DMC). It has been shown, however, that DMC is an appropriate method to

7



compute relative fluxes in mixtures [98] (selectivity), as demonstrated in DMC simulations for ion channels

[99, 100] and coupled transport in a narrow multiply occupied pore [101].

Note the importance of the choice of the maximum displacement, rmax. While an algorithm has been

developed by Rutkai and Kristóf [98] to estimate rmax for the case of all-atom systems, its value in implicit

solvent electrolytes is far less obvious. The rmax parameter can be adjusted to describe the strength of the

interaction with the surrounding water, therefore, in this respect, its role is closely related to the role of the

friction coefficient, γi, of LD simulations.

4.5. Grand Canonical Monte Carlo

The GC ensemble mimics an open system whose boundaries are permeable to particles. It is an important

distinction, however, that a subsystem of a larger system can also be considered as a system in the GC

ensemble. The boundaries of such an open subsystem are imaginary; they just define the subvolume without

imposing any physical effect like a real wall. This subvolume is in equilibrium with its environment just

like a system in the GC ensemble is in equilibrium with an imaginary bath characterized by the chemical

potentials of the components. The total chemical potential can be decomposed as

µα
TOT = kT ln (Λα)

3
+ kT ln cα + µα

EX = kT ln (Λα)
3
+ µα, (11)

where Λα is the thermal de Broglie wavelength, cα = Nα/V is the concentration (density) of species α, Nα

is the number of particles of this species, µα
EX is the excess chemical potential characterizing the interactions

between the particles, and µα is the configurational chemical potential often used in statistical mechanics as

the variable (held constant in the GCMC simulation). The concentration and the excess chemical potential

can be space dependent, while µα
TOT and µα are constant in equilibrium.

In the case of ions in an electrolyte, the chemical potential is often called electrochemical potential. Also,

the excess chemical potential contains the interaction with an external electric field beyond the interactions

between the particles: µα
EX = µα

CH + zαeΦEXT, where zα is the valence of the ion, e is the elementary

charge, and ΦEXT is the mean external electric potential. The chemical (µα
CH) and electrical (zαeΦEXT)

components cannot be separated experimentally. They can be distinguished, however, in bulk solutions,

where the external electric potential is constant (so the field is zero), so we have to deal only with the

interactions between the ions in a bulk simulation. In a non-equilibrium situation, such as ion channels

conducting ions between two baths separated by a membrane, on the other hand, we have to consider the

effect of the external field.

MC simulations performed in the GC ensemble apply particle insertion/deletion steps in order to sample

configurations with varying particle numbers [102]. In the particle insertion step, we choose a species α and

insert a particle at a uniformly randomly generated position into subvolume Bi (from the imaginary bath).

The insertion is accepted with probability

pαi,INS = min

{

1,
Vi

Nα
i + 1

exp

(

−∆Ui + µα
i

kT

)}

, (12)

where Vi is the volume of subsystem Bi, N
α
i is the number of particles of component α in Bi before insertion,

∆Ui is the energy change associated with the insertion (including the effect of the external field), and µα
i

is the configurational chemical potential of component α in Bi. In the particle deletion step we randomly
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choose a particle of component α in subvolume Bi and delete it (e.g., we move it into the imaginary bath).

The deletion is accepted with probability

pαi,DEL = min

{

1,
Nα

i

Vi

exp

(

−∆Ui − µα
i

kT

)}

. (13)

Here, Nα
i is the number of particles of component α in subvolume Bi before deletion.

In electrolytes, it is usual to insert/delete electroneutral groups of ions in order to maintain charge

neutrality in the simulation box [103]. In this work, we allow the charge to fluctuate in the simulation cell so

we allow insertion/deletion of individual ions. The cell, however, should be charge neutral on average. For

this, we must use the correct excess chemical potentials in the bulk regions of the simulation cell that produce

average ionic concentrations that satisfy charge neutrality: 0 =
∑

α zαcα. Local charge neutrality is not a

requirement in inhomogeneous regions of the system (such as inside the ion channel or near the membrane).

The excess chemical potentials of individual ions can be calculated in a simulation using Widom’s particle

insertion method [104, 105] by applying a neutralizing charge to balance the charge of the inserted ion

[106, 107]. This approach was used in our Adaptive GCMC (A-GCMC) method [108] that can efficiently

determine the individual chemical potentials using an iterative method in the GC ensemble.

The GCMC method is especially useful to simulate adsorption [109], where an inhomogeneous subsystem

is in equilibrium with a homogeneous bath. Examples include adsorption of molecular species in zeolite [110]

and kaolinite [111]. In electrolytes, the trivial example is the electrical (also called electrochemical) double

layer that forms near a local charged inhomogeneous region [112, 113]. This inhomogeneity can be a charged

electrode or a charged macromolecule. Counterions are attracted to the charged surfaces (while coions are

repelled), forming a charged diffuse layer that counterbalances the surface charge. Double layers are also

present near the membranes of biological cells associated with a resting membrane potential. Adsorption is

basically an equilibrium phenomenon, but the double layers are also present in a non-equilibrium system,

playing an essential role in the resistances of the access regions of the ion channels. “Double layers are

everywhere.” [114]

Selective adsorption is an important case where there are more than two competing species in the bath

[115]. The selective adsorption of ions in the selectivity filter of ion channels is defined by the relative

occupancy of the competing ions in the filter. The experimentally accessible quantity is the current carried

by the ions. Thus, we can define dynamical selectivity as the relative flux carried by the competing ions

through the channel. Selective adsorption and dynamical selectivity are closely intertwined quantities [99].

I will show an example for selective adsorption in section 5.3 in the example of the L-type Ca channel.

If we want to simulate steady state diffusion between two bulk regions of different concentrations, we can

apply GCMC simulations in these regions [116, 39, 117] using different chemical potentials in each. These

regions, called Dual Control Volumes (DCV) or just control cells, are assumed to be in equilibrium. DCV

can be coupled with any of the dynamical simulation methods: MD+DCV [118, 119], LD+DCV (also called

GCMC-BD) [39, 35, 43], or DMC+DCV [120, 98, 99, 100, 121, 101].

4.6. Local Equilibrium Monte Carlo

Since ionic transport is a non-equilibrium phenomenon, we need appropriate simulation methods to study

it. MD or LD are obvious choices with corresponding advantages and disadvantages. The question arises
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whether the efficient sampling capabilities of MC can be harvested to study non-equilibrium phenomena.

DMC is one answer to this question; in this section I describe another one.

Let us consider an experimental setup for a typical ion channel electrophysiological measurement. A

membrane separates two baths in which different ionic compositions can be applied. A voltage is imposed

across the membrane using two electrodes in the two baths. Concentration and electrical potential differences

impose a constant driving force for steady-state electrodiffusion of ions through the ion channel embedded

in the membrane.

The simulation setup corresponding to this experimental setup assumes a finite simulation domain with

prescribed boundary conditions on its boundaries (concentrations of ionic components and voltage). The

transport region inside this domain is not in global equilibrium. We can assume, however, that small

subvolumes inside it are in equilibrium locally (the limitations of this assumption are discussed in Refs.

[121, 122]). Such a small subvolume, Bi, can be considered an open system (with an imaginary surrounding

boundary), so it can be considered a system in local equilibrium (LE) in the GC ensemble [123] using the

local chemical potentials as the independent variables of the ensemble, µα
i .

Let us then perform a GCMC simulation for this system, applying insertion/deletion steps using the

acceptance criteria in Eqs. 12 and 13. The difference between this simulation and a usual GCMC simulation

for a system in global equilibrium is that we use the electrochemical potential of subvolume Bi if we attempt

to insert an ion in this subvolume or attempt delete one from this subvolume. This is why I used index i in

Eqs. 12 and 13 (for a system in global equilibrium Bi is the whole simulation cell). The local electrochemical

potential, µα
i , controls the probability that ionic species α is found in that subvolume in a steady-state

system.

It is important to note that the effect of the full simulation domain outside subvolume Bi is included

in the energy change ∆Ui. The effect of the applied potential is also included in ∆Ui. The result of the

simulation is the concentration cαi in every volume element. Both the discretized electrochemical potentials,

µα
i , and concentrations, cαi , can be interpolated to create an electrochemical potential profile, µα(r), and

concentration profile, cα(r). The method is called Local Equilibrium Monte Carlo (LEMC) to distinguish

it from GCMC performed in global equilibrium.

Thus, we determine a statistical mechanically reasonable relationship between these profiles, but we do

not have any information about the dynamical quantities (velocities, flux). LEMC, therefore, must be used

together with an additional method that describes transport. One choice is a transport equation that, in

the case of ions, is the NP equation:

jα(r) = −
1

kT
Dα(r)cα(r)∇µα(r), (14)

where jα(r) and Dα(r) are the flux density and diffusion coefficient profiles of species α, respectively. The

diffusion coefficient profile is an input parameter of the calculation and can be fitted to experiments or

to the results of MD, LD, or DMC simulations. The LEMC simulations are coupled to the NP equations

(NP+LEMC method) so that they form a self-consistent system, where the flux satisfies the continuity

equation, namely, conservation of mass:

∇ · jα(r) = 0. (15)

To solve this system, an iterative procedure is needed, where µα
i is changed until convergence is achieved.
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The procedure for iteration step n can be summarized as

µα
i [n]

LEMC
−−−−→ cαi [n]

NP
−−→ jαi [n]

∇·jα=0
−−−−−→ µα

i [n+ 1]. (16)

The electrochemical potential for the next iteration, µα
i [n+1], is computed from the results of the previous

iteration, cαi [n], in a way that they together produce a flux (through the NP equation) that satisfies the

continuity equation. The algorithm for the calculation of µα
i [n+1] can be found in our original paper [123].

The NP+LEMC technique has been applied for ionic transport through a model Ca channel (the one in Fig.

3a with ǫpr = ǫch = ǫw = 80) and was proved to be very efficient [122].

Another choice to determine flux in cooperation with LEMC is a dynamical simulation technique: MD,

LD, or DMC. We have already coupled LEMC with DMC (DMC+LEMC) and showed [121] that it is more ef-

ficient than just using DMC between control cells (DMC+DCV). The main difference between DMC+LEMC

and DMC+DCV is that the driving force of steady-state transport is ensured everywhere in the simulation

domain with LEMC, while it is ensured only in the control cells with DCV. Coupling LD simulations to the

LEMC method is under development.

The idea of coupling NP and LEMC can be approached from the other direction; let us assume that we

want to compute ionic transport with the NP equation (Eq. 14). Then, we need a closure between µα(r)

and cα(r). If the electrolyte is modeled as an ideal solution (ions are point charges and the excess chemical

potential is just the interaction with the mean electric field, µα
CH = 0), we can apply the Poisson-Boltzmann

(PB) theory to determine this relationship. This approach could be coined as NP+PB, but it is widely

known as the Poisson-Nernst-Planck (PNP) theory [28, 50, 51, 52, 54, 55, 56, 57, 63], because the Poisson

equation must be solved to ensure the correct relationship between the charge distribution,
∑

α zαecα(r),

and the mean electric field, Φ(r). PNP can be applied where ideality of the electrolyte solution is a good

approximation (wide nanopores, for example). This assumption is clearly false inside ion channels crowded

with ions and structural amino acid side chains.

An important step forward was the development of Tarazona et al. [59, 60] with the Dynamic DFT to

describe intermolecular forces. The work of Nonner et al. [53, 58] was based on this development. They

coupled the NP equation with DFT, resulting in a self-consistent system (NP+DFT). They developed the

Reference Functional Density to describe ions at large local concentrations accurately. This DFT was shown

to give good agreement with MC results for the electrical double layer, a one-dimensional problem [115, 124].

The fact that it is mostly restricted to one dimension is a disadvantage of the DFT method; LEMC can

handle complex geometries in three dimensions.

Gillespie developed a one-dimensional model for the RyR Ca channel [125, 126, 127] on the basis of

current-voltage and mutation data measured by the group of Gerhard Meissner [128, 129, 130]. He applied

the NP+DFT method for this model and reproduced hundreds of current-voltage curves and predicted

anomalous phenomena before they were actually measured. In this work, I show NP+LEMC results for a

three-dimensional model of the RyR Ca channel based on Gillespie’s model (section 5.4).

5. Results

Before I show the results for the Ca channel models, the question whether the implicit solvent model is

appropriate to describe the bulk electrolyte should be discussed (section 5.1). This is an important question
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Figure 1: Concentration dependent dielectric constant from measurements. The equations of the fitted curves are ǫ(c) =
78.5 − 15.45 c + 3.76 c3/2 for NaCl [131] and ǫ(c) = 78.5 − 34 c + 10 c3/2 for CaCl2 [132, 133], where c is the electrolyte
concentration (cation concentration in the case of monovalent anion).

because how can we expect the model to describe the high-density system inside the channel if it cannot

even describe the bulk, an easier problem. Then, after discussing the importance of the studied Ca channels

and describing the models (section 5.2), GCMC results for the L-type (section 5.3) and NP+LEMC results

for the RyR (section 5.4) Ca channels will be presented.

5.1. Bulk electrolytes

The classic experimental data that we aim to reproduce show that the excess mean chemical poten-

tial depends on the electrolyte concentration non-monotonically; it decreases from zero near dilute solution

according to the Debye-Hückel limiting law [134], goes through a minimum, and increases at high concen-

trations close to saturation. Using NaCl and CaCl2 as examples, the mean excess chemical potentials are

defined as

µNaCl
± =

1

2

(

µNa+

EX + µCl−

EX

)

= kT ln γNaCl
± , (17)

and

µCaCl2
± =

1

3

(

µCa2+

EX + 2µCl−

EX

)

= kT ln γCaCl2
± , (18)

where γ± is the mean activity coefficient.

Several studies considered this problem on the basis of the implicit solvent model (the “primitive model”

of electrolytes) using either the MSA or simulations [135, 136, 137, 138, 139, 140, 135, 141, 142, 143, 144, 145].

Most of these studies used a fixed dielectric constant (≈ 78.5) independent of concentration. All these studies

found that very large ionic radii (much larger than the Pauling radii [146]) must be used to reproduce

experiments. These authors interpreted their results in the following way. The non-monotonic behavior is

the result of the balance between Coulomb attraction and HS repulsion. The large radii are needed to make

the HS repulsion strong enough to counterbalance the Coulomb attraction. Also, this increased radius was
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Figure 2: Concentration dependence of the mean activity coefficient (EX) of (a) NaCl and (b) CaCl2. The experimental data
are from Refs. [147, 148]. The II and IW terms are also shown.

called “solvated radius” and was said to take solvation into account by representing the hydration shells of

ions.

We argued [149, 150] that such a “solvated radius” is unphysical because we should not prevent cations

and anions from approaching each other to contact position. Cations and anions can be at contact, as proved

by MD simulations showing a large peak in the radial distribution functions at contact [151, 152]. It does

not make sense intuitively either; how can the ions associate if they are separated by the hydration shells?

Instead, we suggested [149] to take solvation into account by a dielectric constant that decreases with

concentration as suggested by experiments [131, 132, 133] (see Fig. 1). This decrease is a result of dielectric

saturation; the electric field of ions orients the water molecules in the hydration shells of other ions, making

it more difficult for them to screen the electric field of that ion.

We suggested [149] splitting the excess chemical potential of an ion into two terms

µα
EX = µα

II + µα
IW, (19)

where II and IW refer to ion-ion and ion-water interactions, respectively. The II term can be determined

by A-GCMC simulations [108] for a given composition of the electrolyte.

The IW term can be approximated in the implicit solvent framework by Born’s treatment [153]:

µα
IW(c) =

(zαe)2

8πǫ0Rα
B

(

1

ǫ(c)
−

1

ǫw

)

, (20)

where Rα
B is the Born radius fitted to experimental hydration energies [112, 154]. The Born radii are 1.62,

1.71, and 2.26 Å for Na+, Ca2+, and Cl−, respectively. They are larger than the Pauling [146] radii that

are 0.94, 0.99, and 1.81 Å for these ions, respectively. Note that Eq. 20 does not contain any adjustable

parameter.
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The results for NaCl and CaCl2 are shown in Fig. 2 up to 1 M concentration. The agreement with

experiment is excellent at small to intermediate concentrations, relevant in biological solutions. Deviations

occur at larger concentrations, but the agreement is still quite good considering the fact that the II+IW

model does not use any adjustable parameters. The results for CaCl2 are especially comforting because

the II and IW terms range in the interval between −2.5kT and 1.5kT , while their sum gives the EX term

between −1kT and 0, quite close to experiments. Results for other electrolytes (KCl, LiCl, CsCl, NaBr,

NaI, MgCl2, CaCl2, SrCl2, and BaCl2) can be found in our original publication [149]. The accuracy of the

model is quite good for divalents (Mg2+ to Ba2+), while it is relatively weak for large monovalents (K+,

Cs+).

The figure clearly shows that the non-monotonic behavior in this picture is a result of the balance of

the II and IW terms. The IW term is positive because the ion must pay the solvation penalty as we bring

it from an infinitely dilute solution into a concentrated solution. It increases with concentration as ǫ(c)

decreases. The II term becomes more and more negative with increasing concentration from two reasons.

First, cations and anions are closer to each other on average at higher concentration. Second, the Coulomb

potential becomes stronger because ǫ(c) in its denominator becomes smaller, namely, the ion becomes less

screened.

Other authors also considered the possibility of using a concentration dependent dielectric constant, but

they either ignored the IW term [137, 138, 139, 142, 143, 144], or used it with the Pauling radii instead of

the Born radii [140]. Note the work of Inchekel et al. [155] who used a variation of the Born treatment in

the framework of a many-term equation of state for electrolytes.

To summarize, the “primitive model” of electrolyte solutions seems to be not so primitive after all.

We can reproduce energetic behavior by using the Pauling radii [146] of “bare” ions and adding one more

variable to the picture, the dielectric constant, that takes the variation of solvation properties with varying

ionic concentrations into account. This shows that MC simulations of a reduced electrolyte representation

can reproduce important experimental data.

5.2. Reduced models of calcium channels

Reduced models described in section 3 are advantageous in situations where accurate three-dimensional

structure of the channel protein is not available so we need to make intelligent guesses for the channel

structure. The two kinds of Ca channels considered in this work belong to this class. The dihydropyridine-

sensitive L-type Ca channels found in vertebrate skeletal muscle, heart, and brain are voltage-gated ion

channels that allow Ca2+ to enter muscle or nerve cell when the membrane potential depolarizes [156]. The

high Ca2+ selectivity of the L-type Ca channels is deduced from the experimental fact that 1 µM Ca2+

blocks the current of Na+ (arriving from a 32 mM bath) by half. The relevant experiment by Almers and

McCleskey [157, 158] shows an anomalous behavior of current as a function of concentration of added Ca2+

(Anomalous Mole Fraction Effect, AMFE).

Muscle contraction is initiated by large amounts of Ca2+ ions. These ions, however, come from the

Sarcoplasmic Reticulum (SR) through Ca2+-release channels called Ryanodine Receptor (RyR). RyR Ca

channels are much less Ca2+ selective than the L-type Ca channels and they allow much larger flux from the

SR where Ca2+ is stored in abundance in massive Ca2+-storage networks (Calsequestrin). A large amount

of experimental current-voltage data are available for the RyR Ca channel, making it an ideal test system

for ion channel models and theories [128, 129, 130].
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Figure 3: Reduced models (a) for the L-type Ca channel [162] and (b) for the RyR Ca channel (unpublished). The three-
dimensional model is obtained by rotating the shaded gray area about the z-axis (the models have rotational symmetry). The
concentration profiles of the oxygen ions representing amino acid side chains are shown. The charges of the E4902 residues of
the RyR channel are modeled by eight point charges on a ring. The dielectric constants can be different in different regions of
the L-type Ca channel (ǫw, ǫpr, and ǫch), while the dielectric is uniform in the case of the RyR Ca channel (ǫw = 78.5). The
entire simulation cell is enclosed in a large cylinder. The geometry for the NP+LEMC calculations can be found in Fig. 1 of
Ref. [122].

To model these channels, we need some minimal structural information about their selectivity filters.

It is known from point mutation experiments that the selectivity filters of Ca channels are lined with four

negative amino acids; four glutamate residues (E393, E736, E1146, E1446) in the case of L-type [159, 160],

and four aspartate residues (D4899) in the case of the RyR Ca channel [128, 129, 130]. This carboxyl-rich

region forms a high-affinity binding site for Ca2+ just as they do in the EF-hands of Ca2+-binding proteins

[161] (binding ions with only physical forces; no chemical bonds are involved).

In this work, we show that reduced models can reproduce the selectivity properties of both channels. The

model of the L-type Ca channel is based on the minimal structural information for the filter and shown in

Fig. 3a [162]. The pore of radius R = 3.5 Å is confined by hard walls, while the four negative carboxyl-groups

of the four glutamate residues are modeled by eight half-charged oxygen ions of diameter 2.8 Å. As a first

approximation, they can move freely inside the selectivity filter that is represented by the central cylindrical

region of the channel (10 Å long). An important and necessary feature of this model is that the dielectric

coefficient can be different inside the protein (ǫpr) and in the baths (ǫw). In this work, we also allow the

dielectric constant to be different inside the channel (along the permeation pathway, ǫch) and in the baths, a

simple model of solvation [163]. We have shown that the effect of the polarization of the dielectric boundary

at the pore/protein interface is necessary to reproduce the micromolar selectivity of the L-type Ca channel

[162, 164].

The RyR Ca channel, on the other hand, is weakly Ca2+ selective and does not require inhomogeneous
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dielectrics (Fig. 3b); the dielectric constant is the same everywhere, ǫw = 78.5. The channel model is

asymmetric with a wider filter (R = 5.5 Å) and contains amino acid residues in the vestibules [128, 129, 130].

The hard work of model developing and parameter fitting was done by Gillespie [125, 126]; we just used

his ideas and created a three-dimensional version of his model in the spirit of the one used for the L-type

channel. The oxygen ions representing the various residues are confined into different regions of the channel;

Fig. 3b shows their concentration profiles.

To calculate the RyR channel model with NP+LEMC, we need to create diffusion coefficient profiles for

the free ions in the system (Na+, Ca2+, and Cl−). The bulk values are known (1.334 · 10−9, 7.92 · 10−10,

and 2.032 · 10−9 m2s−1), while the values in the selectivity filter are fitted to two experimental data points:

250 mM symmetric NaCl at 100mV for Na+, while added 10 mM lumenal CaCl2 at -100 mV for Ca2+. The

resulting values (1.27 · 10−10 and 1.27 · 10−11 for Na+ and Ca2+, respectively) are fixed and never changed.

The diffusion constant profiles are interpolated in the vestibules between the bulk and filter values in a way

that their value changes in proportion with the cross section of the channel. Note that Gillespie’s model is

more sophisticated from this point of view; he adjusted the values in the vestibules in order to obtain good

results for the mutants too; we concentrated to the wild-type RyR channel.

The ions are modeled as charged hard spheres (see Eq. 4) with Pauling radii. The simulation cell is a

cylinder confined by hard walls. Large enough regions are allowed on the two sides of the membrane so that

homogeneous bulk regions can form to accomodate the double layers appearing near the membrane.

5.3. Selective binding in the L-type Ca channel

The selectivity filter of the L-type Ca channel is a region where exactly the variables used in the bulk

solution determine selectivity (at least, in our model): radius and charge of ions, and dielectric constant.

Ionic charge and dielectric polarization determine electrostatics, while the finite size of ions determines

volume (HS) exclusion. According to the hypothesis of Nonner, Eisenberg, and coworkers [165, 166, 167, 168],

these are the basic forces that determine ionic selectivity in the crowded filter of Ca channels (the “electric

stew”). The Charge-Space Competition (CSC) mechanism states that the filter is selective for Ca2+ over

Na+ because Ca2+ provides twice the charge to balance the charge of the filter than Na+ which occupies

about the same space. Volume exclusion, therefore, is a crucial component of this model [169] as opposed

to the model of Chung and coworkers [34], where the protein charges were embedded in the protein “behind

the wall”. Chung and coworkers claimed that electrostatic forces alone are sufficient to explain Ca2+ vs.

Na+ selectivity [38]. They used BD simulations to prove their point, but they did not to simulate the system

below [Ca2+] = 18 mM, so their proof was based on an extrapolation to micromolar Ca2+ concentrations.

We have performed equilibrium GCMC simulations [162, 163, 164, 170, 171, 172, 173, 174, 175] for the

L-type Ca channel model shown in Fig. 3a. The advantage of GCMC simulations in this case is that it makes

simulation of micromolar Ca2+ concentrations possible. After developing the Induced Charge Computation

(ICC) method to handle polarization charges on the dielectric boundaries, we showed that a low-dielectric

protein is necessary to achieve micromolar Ca2+ selectivity [162, 164, 170, 171].

Results for different combinations of ǫpr and ǫch are shown in Fig. 4. The average numbers of Ca2+

and Na+ ions in the filter (called occupancies) are shown as functions of [Ca2+] added to a 30 mM Na+

background. Ca2+ ions gradually squeeze Na+ ions out of the selectivity filter as [Ca2+] is increased. We

can characterize selectivity with the Ca2+ concentration at which the number of Na+ ions drops to half
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Figure 4: AMFE in the L-type Ca channel. Binding curves (occupancies of Na+ (solid lines) and Ca2+ (dashed lines) as
functions of added [Ca2+]) are shown for different combination of the dielectric constants ǫpr and ǫch. Occupancies are
computed by integrating the concentration profiles over the selectivity filter. The experimental data points of Almers and
McCleskey [157, 158] are also shown (× symbols corresponding to the right hand side y-axis). Solid lines and filled symbols
refer to Na+, while dashed lines and open symbols refer to Ca2+.

compared to the absence of Ca2+. This Ca2+ concentration is micromolar for ǫpr = 10, while it is about

millimolar for ǫpr = 80.

The traditional explanation of the AMFE (experimental data are plotted in Fig. 4 with × symbols) is

that the current is reduced because there are less Na+ ions in the filter so they carry less current. In the

meantime, Ca2+ does not conduct at these small Ca2+ concentrations. As [Ca2+] is increased further, Ca2+

ions start to conduct explaining the right hand side upswing of current. Our equilibrium binding curves are

consistent with this picture.

What is more, we have proposed an integrated form of the NP equation [170, 171] that made it possible

to estimate the slope conductance of the channel using the equilibrium concentration profiles as input. The

conductance results computed on the basis of this equation are also in agreement with the micromolar

Ca2+-block of Na+-current.

Figure 4 also reveals why low ǫpr favors Ca2+ selectivity. There are altogether more cations adsorbed

into the selectivity filter when ǫpr = 10 compared to the ǫpr = 80 case. This is because the low-dielectric

protein focuses the electric field and makes electrostatic forces stronger in the filter. To put it another way:

it requires work to polarize the dielectric boundary. To minimize this work, more cations are adsorbed in

the filter, bringing it closer to charge neutrality (the filter is not charge neutral due to limited space for

neutralizing cations of finite size).

More ions in the filter, on the other hand, means stronger competition between Ca2+ and Na+ that

results in stronger Ca2+ affinity due to the CSC mechanism. Larger cation density in the filter can also be
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Figure 5: Equilibrium concentration profiles of Na+ and Ca2+ for the L-type Ca channel for [NaCl]=30mM and [CaCl2]=1µM
for two different values of ǫch. The ǫch = 60 case takes the effect of solvation into account in the framework of the implicit
solvent model.

achieved by decreasing the volume of the filter (either by decreasing filter radius [164] or filter length [172]),

also resulting in stronger Ca2+ affinity. Also, we showed that changing the mobility of oxygen ions has little

effect on selectivity [174]. We reproduced several experimental data qualitatively [170, 171, 173, 100] using

the model shown in Fig. 3a with the fixed parameters of R = 3.5 Å and ǫpr = 10.

We have shown with DMC+DCV simulations [99, 100] that selective adsorption and dynamical selectivity

do not necessarily coincide; Ca channel filters bind Ca2+ ions strongly, reducing the mobility of Ca2+ ions;

this acts against dynamical selectivity for Ca2+. The mobility of Ca2+ ions is reduced by electrostatic forces;

the Coulomb attraction of the oxygen ions keeps the Ca2+ ions in the filter, making them reluctant to leave

the filter. Thus, the L-type channel binds Ca2+ ions very well even at low Ca2+ concentrations, and large

Ca2+ concentrations are needed to produce a considerable Ca2+ current.

A recent development made it possible to handle charged hard sphere ions passing through dielectric

boundaries [176]. This, in turn, made it possible to simulate the channel model of Fig. 3a for the case when

the dielectric constant is smaller inside the channel (ǫch = 60) than outside of it (ǫw = 80) in the baths [163].

It is a reasonable and widely accepted assumption because the local dielectric environment is profoundly

different from that in the baths; there are fewer water molecules and there are stronger electric fields. The

occupancy results are shown in Fig. 4 with red squares. Surprisingly, the curves practically coincide with

the ǫch = 80 curves (black circles). Not only the occupancies (the integrals of the concentration profiles over

the filter), but also the concentration profiles themselves are weakly influenced by the decreasing ǫch (Fig.

5).

This result is counterintuitive because the Born-penalty is four times larger for Ca2+ than for Na+
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Figure 6: AMFE in the RyR Ca channel. CaCl2 is added to the lumenal side. The NaCl concentration is 100mM on both
sides, while voltage is 20mV. The experimental and NP+DFT data are from Ref. [126].

(replace ǫch for ǫ(c) in Eq. 20). Our analysis showed [163] that selectivity is unchanged because the increased

solvation penalty is balanced by the increased Coulomb attraction between cations and oxygen ions inside

the channel. This result justifies the ǫch = ǫw = 80 model a posteriori.

5.4. Selective transport in the RyR Ca channel

Since the RyR Ca channel is quite robust, electrophysiological experiments are relatively easy to perform

for it (unlike for the L-type channel). The model developed by Gillespie [125, 126] was created for current-

voltage curves that are nonlinear and for varying electrolyte compositions on the two sides of the membrane.

The diffusion coefficients were fit to a small set of data points and fixed. All the other experimental curves

were reproduced using these fixed diffusion coefficients.

The three-dimensional model that we created based on Gillespie’s model was also able to reproduce many

experimental current-voltage curves not only qualitatively, but quantitatively. In this paper, we show results

for the case that is closely related to the Almers-McCleskey experiment for the L-type channel: CaCl2 is

added gradually to a fixed NaCl background (100 mM, in this case). CaCl2 was added only to the lumenal

bath. Voltage is -20 mM (ground is on the SR side). This corresponds to the experimental setup exactly.

The results obtained from the NP+LEMC method [123] are shown in Fig. 6. The figure shows the

results for both the Gillespie model obtained with NP+DFT and for the three-dimensional model obtained

from NP+LEMC. I also plotted the currents carried by Na+ and Ca2+ ions separately. The agreement with

experiment is quite good for both models.

Comparing these results to those for the L-type Ca channel (Fig. 4), it can be observed that the Na+

current starts to decrease at larger Ca2+ concentrations than in the case of the L-type channel. The current

data are in agreement with the occupancy data (not shown), so the basic reason of this weaker dynamical
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selectivity is the weaker adsorption selectivity. The RyR channel is wider and electrostatics is weaker in

the filter, resulting in a less Ca2+ selective channel than the L-type. NP+LEMC simulations for the L-type

Ca channel would require adding the ICC method to the calculation to handle dielectric boundaries. This

would increase computational time considerably. Code development in this direction is in progress.

Comparison of NP+DFT and NP+LEMC results provide the following conclusions. LEMC has the

advantage that we are able to perform calculations for a three-dimensional model. This makes it possible

to study phenomena such as the distribution of ions in the radial dimension and the current of ions flowing

out of the channel along the membrane in the radial direction instead of the axial (z) direction. Also, our

results show that the implicit solvent model is appropriate to model the RyR Ca channel under experimental

conditions; Gillespie used hard sphere solvent to represent water molecules (the so called Solvent Primitive

Model).

6. Conclusions

This work gave a few examples of equilibrium and non-equilibrium MC for biological systems, where

coarse-grained models of electrolytes and channel proteins can give insightful results. Coarse-graining is

effective in these cases because the selectivity filter discriminates between the different ionic species pri-

marily on the basis of their charge and radius. The physical forces corresponding to these properties are

included in the model. Implicit water is needed because simulations of electrolyte solutions of very low Ca2+

concentrations are necessary.

The modeling level makes the application of MC methods possible; the use of the GC ensemble is

especially useful to handle micromolar (and smaller) concentrations. The development of the NP+LEMC

method made it possible to build a model that appropriately mimics the real-world experimental setup,

namely, electrical (voltage) and thermodynamic (concentrations) boundary conditions prescribed at the

boundary of the solution domain. Combining the LEMC method with dynamical simulations (LD or DMC)

can lead to even more detailed simulations of such systems leading to better understanding their behavior

on the molecular level.
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[115] M. Valiskó, D. Gillespie, D. Boda, Selective adsorption of ions with different diameter and valence at highly-charged

interfaces, J. Phys. Chem. C 111 (43) (2007) 15575–15585.

[116] P. Pohl, G. Heffelfinger, D. Smith, Molecular Dynamics Computer Simulation Of Gas Permeation In Thin Silicalite

Membranes, Mol. Phys. 89 (6) (1996) 1725–1731.

[117] E. Enciso, N. G. Almarza, S. Murad, M. A. Gonzalez, A Non-Equilibrium Molecular Dynamics Approach To Fluid

Transfer Through Microporous Membranes, Mol. Phys. 100 (14) (2002) 2337–2349.

[118] G. S. Heffelfinger, F. van Swol, Diffusion In Lennardjones Fluids Using Dual Control Volume Grand Canonical Molecular

Dynamics Simulation (Dcvgcmd), J. Chem. Phys. 100 (10) (1994) 7548.

24
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