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We have recently introduced the Local Equilibrium Monte Carlo (LEMC) technique (Boda, Gillespie, J. Chem.
Theor. Comput. 8 (2012) 824-829) inwhich a non-equilibrium system is divided into small volumeelements and
separate Grand Canonical Monte Carlo simulations are performed for each using a local intensive parameter,
which, as soon as local equilibrium is assumed, can be identified with the local electrochemical potential. The
simulation provides the concentration profiles of the steady-state diffuse system, where ions are transported
through a membrane from one bulk compartment to the other. The dynamics of the ions is described with the
Nernst–Planck (NP) transport equation. The NP equation is coupled to the LEMC simulations via an iteration pro-
cedure that ensures that conservation of mass (the continuity equation) is satisfied. We apply the method to a
simple calcium channel model and demonstrate its efficiency. The computer experiments are inspired by real
electrophysiological experiments for the Ryanodine Receptor calcium channel. The diffusion coefficients in the
channel are fitted to results of Dynamic Monte Carlo simulations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Biological and technological phenomena occur in non-equilibrium
conditions where intensive thermodynamic variables (temperature,
pressure, chemical potential) are different in different subspaces of
the system with matter and/or energy being transported from one
compartment to the other. An important case is when molecules or
ions diffuse through a membrane from the compartment on one
side of the membrane to the compartment on the other side. The
membrane can be a porous matrix as in the case of zeolites [1–3] or
a non-penetrable layer with embedded pores (artificial nanopores
etched into plastic foil [4–6] or biological ion channels [7,8]) that
make the transport possible. In the most important cases, these
pores discriminate between particles allowing the selective transport
of various components, thus giving the membrane a special function
in the respective biological or technological situations. Ion channels,
in addition, can be gated, namely, they open or close as a result of
an appropriate signal. A recent study [9] indicates that gating is pos-
sible in nanopores too by bubble formation mediated by an external
electric field.

Ion channels span the cell membrane, thus making the transport of
various physiologically relevant ions possible through the membrane
selectively. Calcium (Ca) channels, in particular, make the passage of
Ca2+ ions possible with a much larger probability than that of monova-
lent ions such as Na+ or K+ even if they are present in the bath inmuch

smaller quantity than the monovalent ions. The physiological impor-
tance of these channels cannot be overemphasized. The L-type Ca
channel in the membrane of muscle cells, for example, lets Ca2+

ions into the cell when an action potential arrives [10]. Ryanodine
Receptor (RyR) Ca channels, on the other hand, are located in the
membrane of the sarcoplasmic reticulum. When they are triggered to
open (by, for example, the Ca2+ ions provided by the L-type Ca channel),
they release a large amount of Ca2+ ions into the muscle cell, thus
initiating muscle contraction.

The selectivity properties of these channels are an essential part of
their functions in this chain of information-processing at the end of
which a muscle is contracted. To understand selectivity mechanisms
of such tiny pores, we need modeling. The model should contain all
the relevant information available for the respective channel. The
model, in turn, is studiedwith a statisticalmechanicalmethod. Computer
simulations have become themost importantmethod in the last decades
thanks to the constant increase in the speed of computers. Theories
[11–18], however, remain as a useful alternative to simulations. Our
purpose in this paper is to apply and test a newly proposed simulation
method to study permeation and selectivity properties of Ca channels.

When we talk about selectivity, we can look at the same thing
from two points of view [19]. Selectivity can be studied as a selective
binding (also termed binding affinity) that describes the probabilities
with which the competing ions are adsorbed to a certain binding site.
In the case of channels, this binding site is the selectivity filter, which is
the bottleneck of the pore, where ions are attracted with electrostatic
and van der Waals forces (no chemical bonds are involved). Selective
binding can be characterized by the average numbers of the respective
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ions in the selectivity filter (occupancies). This phenomenon has been
studied by Grand Canonical Monte Carlo (GCMC) simulations [20–27],
Density Functional Theory (DFT) [13,14,28–30], and other theories
[11,12,15,17].

In practice and in electrophysiological measurements, however, the
really important quantity is the current carried by the respective ions.
We candefinedynamical selectivity as the ratio offluxes of the competing
ions. In experiments, current–voltage relations are obtained for various
electrolyte compositions on the two sides of the membrane. Drawing
conclusions from such data to selectivity properties is not obvious be-
cause experiments provide the net current carried by both ions.

Qualitative conclusions are sometimes straightforward as in the case
of the L-type Ca channel, where adding Ca2+ to 30 mMNaCl blocks the
current when [Ca2+] is micromolar [10,31,32]. This fact implies that
Ca2+ ions bind preferentially to the selectivity filter even if they are
present in 1 μMquantity in the bath. The effect of this selective binding
on transport properties is relatively easy to decipher because selectivity
is so strong and the effect is so characteristic. In the general case, how-
ever, we need modeling and calculations to separate the fluxes carried
by the competing ions.

Simulation of transport phenomena is much more difficult than
that of equilibrium phenomena. The obvious tool for simulating a
non-equilibrium system is molecular dynamics (MD) for an explicit-
solvent model and Langevin dynamics (LD) or Brownian dynamics
(BD) for an implicit-solvent model [33–35]. MD solves Newton's equa-
tions of motion, computes trajectories, and provides time averages. LD
and BD include a frictional and a stochastic term describing interactions
withwatermolecules. LD and BD, therefore, solve a system of stochastic
differential equations, while MD solves a system of partial differential
equations (PDE). What is common in them is that they both provide
macroscopic properties from a purely mechanic description.

Dynamic Monte Carlo (DMC) is an alternative method, where MC
displacements are used instead of time steps. DMC does not generate
trajectories in time as MD or LD do, but it mimics them in a way that
an average over them gives the same answer for the mean-square
displacement that time averages over MD or LD trajectories give.
DMC proved to be especially useful in simulating dynamical selectivity
[19], namely, the ratio of the fluxes for various ionic species, because
DMC does not include an absolute measure of time; it only ensures pro-
portionality [36].

The driving force of diffusive transport of ions is the gradient of
the electrochemical potential

μα rð Þ ¼ μα
c rð Þ þ qαΦ rð Þ; ð1Þ

where μcα(r) is the chemical potential of species α, qα is the charge of
the ion, and Φ(r) is the mean electrostatic potential. The first term
can be identified with the chemical work necessary to bring the ion
from infinity to position r, while the second term can be identified
with the electrical work. These two terms, of course, cannot be separated
experimentally. In calculations, however, they can be distinguished to
better understand the behavior of the system.

Steady-state transport ismaintained if the difference in the chemical
potentials (concentration difference) and/or electrical potentials
(voltage) is maintained on the two sides of the membrane. This
means prescribed boundary conditions (BCs) in μcα and Φ on the
boundaries of the system. A well-established method to maintain
these differences in the intensive variables is the Dual Control Volume
(DCV) method, where two control cells are defined on the two sides
of the membrane [37,38]. Given concentrations are established in
the control cells by GCMC simulations. Between the two control
cells (e.g., in the transport region), the system is simulated with
one of the dynamical simulation methods (MD, LD, BD, or DMC);
the mechanistic description of the system is reserved in this region.
That is, only the control cells are connected to baths with well-defined
thermodynamic variables via MC simulations performed in a given

statistical mechanical ensemble. This is made possible by the assump-
tion that the control cells are in thermodynamic equilibrium.

The disadvantage of this setup, however, is that it is inefficient in
certain situations, for example, when a given species is present in
very small concentrations. This is an important case for Ca channels in
both experiments (Ca2+ is added gradually, startingwith very low con-
centrations) and in the physiological situations (Ca2+ is present in the
extracellular space in mM concentration). Simulation of this case with
the DCV method is problematic, because the event that a Ca2+ enters
the channel from the dilute bath is a rare event, which makes the
sampling inadequate.

The idea to overcome this difficulty is not to wait for a particle to
enter the transport region from the dilute bath, but rather insert (or
delete) the particle into this region with a certain probability [39].
In practice, we divide the space into small volume elements and
adopt the formalism of GCMC simulations, inserting/deleting particles
with the acceptance probabilities of theGCMC technique. This probability
is different for the various volumeelements containing a μα(ri) parameter
for speciesα and volume element i. This parameter can be identifiedwith
the local chemical potential in the given volume element as soon as we
assume local equilibrium (LE) [40]. In the case of charged particles we
must work with the electrochemical potential profile. Then, we perform
independent GCMC simulations for the different volume elements. This
method, called Local Equilibrium Monte Carlo (LEMC) provides the
concentration profiles, cα(ri), of the various species as the output of
the simulation.

The control cells can be considered as large volume elements,
where there are real thermodynamic equilibria and the identification
of the μα(ri) parameter with the (electro)chemical potential is exact.

The LEMC simulation establishes a relationship between μα(r) and
cα(r), but it does not say anything about the dynamics of the system,
namely, the flux carried by the various species, jα(r). Also, we do not
have any assurance that the μα(r) profile used as the input of the
LEMC simulation is the correct chemical potential profile. Therefore,
we need an additional theory that (1) describes the dynamics of the
system and (2) provides a closure between μα(r) and cα(r).

This additional theory can be simply a transport equation. We
have proposed coupling the LEMC technique with the Nernst–Planck
(NP) equation [39], where the flux is computed from

−kTjα rð Þ ¼ Dα rð Þcα rð Þ∇μα rð Þ; ð2Þ

where Dα(r) is the diffusion coefficient profile, k is the Boltzmann-
constant, and T is the temperature (298.15 K, in this work). In the
resulting NP+LEMC method [39], the chemical potential is iterated
until conservation of mass (∇ ⋅ jα(r) = 0) is satisfied (this provides
the required closure).

The closure can also be provided by a direct dynamical simulation
method (MD, LD, BD, or DMC). As a first step, we have coupled the
LEMCmethod to theDMC technique [41]. In this case, theflux is provided
by the DMC simulation, and the job of the LEMC technique is tomaintain
the constant driving force for the steady-state transport. An iteration
procedure is still necessary to satisfy the continuity equation. It is a
generalization of the control cell method; LE is assumed everywhere,
not only in the control cells.

In this paper, we apply the NP+LEMCmethod to a reduced model
of the Ca channel. In this reduced model, only the terminal groups of
the side chains of the relevant amino acids of the selectivity filter are
modeled explicitly. These amino acids have been identified as the de-
termining factors in the channels' selectivity properties with point
mutation experiments [10]. This type of reduced models was success-
fully used previously to qualitatively reproduce the micromolar
Ca2+-block in the L-type Ca channel [25,42–44]. A similar, but more de-
tailedmodel was used by Gillespie for the RyR Ca channel [28–30], who
studied this model with the NP equation coupled to a Density Function-
al Theory (NP+DFT). He successfully reproduced hundreds of current–
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voltage curves and predicted anomalous Ca2+ concentration depen-
dence (called Anomalous Mole Fraction Effect, AMFE) before it was ac-
tually measured.

AMFE is a fingerprint of strong divalent vs. monovalent selectivity
[30,42]. In this work, we apply the simple channel model used for the
L-type Ca channel to qualitatively reproduce AMFE curves for the RyR
Ca channel. Because this model is more simplistic than that of Gillespie,
we expect only qualitative agreement. We want to demonstrate the
capabilities of the NP+LEMC technique to work in asymmetric ionic
conditions with low concentrations in the presence of external voltage.
The experimentally motivated cases for the RyR channel make it possi-
ble to connect to reality to some degree instead of just running simula-
tions for a general channel model. The other advantage of using the RyR
channel as a test case is that the NP+DFT calculations of Gillespie
proved that the mechanism behind the reduced model (competition
of electrostatic attraction and hard sphere repulsion) is sufficient to re-
produce experimental data for this type of channel.

The diffusion coefficient profile, which is an input of the NP+LEMC
calculation, is estimated on the basis of DMC+DCV simulation data
by fitting the Dα(r) values so that we reproduce the flux ratio data
(dynamical selectivity) obtained from the DMC+DCV simulation.
With this, we demonstrate howwe can couple two different simulation
techniques by getting dynamical information from the DMC simulation
and using it in the transport equation.

2. Model

The geometry of our system is shown in Fig. 1. The simulation cell
has rotational symmetry, so, our cell has a cylindrical shape obtained
by rotating the shape of Fig. 1 around the z-axis. The cell is confined
by hard walls; no periodic BCs are applied. A membrane defined by

two planar hard walls is placed in the middle of the cell; the thickness
of the membrane is 20 Å. A pore penetrates this membrane
representing the pore of the channel protein. The pore has rounded
edges at the entrances of 5 Å curvature radius forming vestibules to
the central cylindrical region (of length 10 Å) of the pore. This central
region represents the selectivity filter of the channel. The radius of the
selectivity filter, denoted by R, is an important parameter from the
point of view of selectivity [21,26]. The two regions outside the mem-
brane on both sides represent the two baths. Distinction of access and
bulk regions is necessary for the NP+LEMC technique as explained in
the next section.

The selectivity filter contains eight half charged oxygen ions, O1/2−,
representing the oxygen atoms of the COO− groups hanging at the end
of the side chains of the four aspartic amino acids identified in the selec-
tivity filter of the RyR Ca channel. In the case of the L-type Ca channel,
these are four glutamic acids (EEEE locus). These amino acids have
been identified with point mutation experiments; changing them, for
example, to small and neutral alanine (A), the selectivity properties of
the channel are drastically altered [10]. This model was used in our
earlier GCMC [20,21,23,26,27,45] and DMC [19] studies to describe
Ca channels in general, and later, tomodel the L-type Ca channel specif-
ically [25,42,43]. In the case of the RyR Ca channel, even more amino
acids have been identified in and near the selectivity filter that made
it possible for Gillespie to construct his detailed channel model
[28–30] used in his NP+DFT calculations. In this paper, however, we
focus on qualitative agreement and testing our newly introduced
NP+LEMC method, so we use the simpler model shown in Fig. 1.

The oxygen ions are modeled by charged hard spheres of diameter
2.8 Å. Because the side chains of the amino acids in the filter are
hanging inside the pore in the permeation pathway [10] and they
are relatively long and flexible, we assume that the terminal groups
are mobile. This assumption was first made by Nonner et al. [12] in
their Mean Spherical Approximation calculations and it is the basis of
the Charge-Space Competition (CSC) mechanism [46]. This mechanism
states that in the small and crowded (with amino acid side chains) se-
lectivityfilter, ionic selectivity in a Ca channel is driven by a competition
between ions based on their two essential features: their charge and
size. These two features allow the filter to distinguish between the
ions using two essential physical forces: electrostatic attraction and
volume exclusion. Specifically, the selectivity filter of the Ca channel
prefers the divalent Ca2+ ions over the monovalent Na+ ions be-
cause they provide twice the charge in the same volume to balance
the negative charge of the oxygen ions in the filter. The mechanism
can also interpret selectivity between ions of the same valence but
different diameter [25,27,47,48] and selectivity in sodium channels
[22,44,49]. The strongest support of the mechanism is presumably the
success of Gillespie in reproducing hundreds of current–voltage data
for the RyR channel in varying conditions.

The ions are modeled as charged hard spheres, with diameters 1.9,
1.98, and 3.62 Å for Na+, Ca2+, and Cl−, respectively. Water is
modeled as a dielectric continuum with dielectric constant �¼ 78:5
throughout the system (meaning, in the bath, in the pore, and inside
the membrane). This is the Primitive Model of electrolytes, which was
shown to be quite “non-primitive” because it can reproduce the
non-monotonic concentration dependence of the activity coefficients
of electrolytes [50]. The concentration dependence of the dielectric
constant plays a central role in this theory.

The strong Ca2+ vs. Na+ selectivity of the L-type Ca channel could
be reproduced by assigning a different dielectric constant (usually
�pr = 10) to the interior of the protein/membrane region (gray area in
Fig. 1) [20,21,25,27,42,43]. The dielectric boundaries forming such sys-
tems carry induced charges whose calculation was solved with our In-
duced Charge Computation (ICC) method [20,51].

The RyR Ca channel, however, is a weakly-selective channel and
using uniform dielectric constant proved to be sufficient in the model
of Gillespie. Therefore, we do not include dielectric inhomogeneities
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Fig. 1. Geometry of the simulation cell. It is a cylinder confined by hard walls. The cell is
obtained by rotating the shape in the figure around the z-axis. A membrane with a
channel is placed in the center between −10 Å b z b10 Å. The central cylindrical part
(−5 Å b zb 5 Å) of the channel represents the selectivity filter of radius R. The solution
domain of the NP+LEMC system includes the channel region and the access regions.
The outer boundary surface of this domain (indicated by the blue line) is denoted by B.
The dimensions of the access regions are characterized by Hacc and Racc. There are bulk
regions outside the solution domain, but still inside the simulation cell with dimensions
HB and RB.
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in this study. Another aspect that gives a different flavor to Gillespie's
model is that he used neutral hard spheres to represent the corpus-
cular nature of water molecules. This is the Solvent Primitive
Model that was used by several investigators in various situations
[52–58].

During the years, many aspects of this channel model have been
investigated with GCMC simulations. We have studied the effect of
protein dielectric constant [20,27], channel radius [21], channel
shape [26], fixing or restricting themobility of oxygen ions [45], putting
the oxygen ions behind the wall buried in the body of the protein [23],
and the presence of trivalent ions [43]. Most importantly, free energy
studies have been published where the effects of various components
of the excess chemical potential (hard sphere, electrostatic, mean
field, ionic, polarization, etc.) have been separated for the RyR Ca channel
[29] and the L-type Ca channel [27]. All these studies showed that the
model can produce very diverse selectivity properties by adjusting only
a handful of model-parameters, explaining the basic selectivity mecha-
nisms of various ion channels (L-type and RyR Ca channels, DEKA Na
channel).

3. Methods

First, we describe the LEMCmethod, then we show howwe couple
it to the NP transport equation. Lastly, we briefly outline the
DMC+DCV method, which we used to get information about the dif-
fusion coefficient values in the selectivity filter.

3.1. The Local Equilibrium Monte Carlo method

The LEMC method considers a finite system with prescribed BCs
on the boundaries. Specifically, the system depicted in Fig. 1 considers
different chemical and electrical potentials in the bulk regions on the
left and right hand sides: μc,Lα andΦL on the left, while μc,Rα andΦR on the
right. The difference of the electrical potentials defines the applied
voltage:

ΔΦ ¼ ΦL−ΦR: ð3Þ

The bulk chemical potentials of the various species, μc,Lα and μc,Rα , for
a given composition (prescribed concentrations cL

α and cR
α for every

species α) of the electrolyte are calculated with the Adaptive GCMC
method of Malasics et al. [59,60]. It is important to stress that the con-
cepts of chemical and electrical potentials are used only in the bulk
regions at the boundaries of the system because in experiments we
set electrolyte composition and voltage. In the LEMC technique and
in the NP equation, however, we use the electrochemical potential
as a variable, so we set the BCs for this variable:

μα
L ¼ μα

c;L þ qαΦL

μα
R ¼ μα

c;R þ qαΦR:
ð4Þ

The boundary of the transport region is indicated by blue line in
Fig. 1 (denoted by B). The regions between the bulk regions and the
channel are called access regions. In the access regions, double
layers are formed that strongly influence the behavior of the system
contributing to the total resistance.

In the transport region (inside B), the electrochemical potential is
not constant and the system is out of equilibrium. The basic assump-
tion of the LEMC method is that we can simulate this region with the
toolbox of the equilibrium MC simulation technique. Specifically, we
divide the transport region into small volume elements, Di, that are
considered separately as individual simulation cells. Separate GCMC
simulations are performed for these elementary cells. The acceptance

probability of particle insertion/deletions into/from such a cell is
min(1, pi,χα (r)), where

pαi;χ rð Þ ¼ Nα
i !V

χ
i

Nα
i þ χ

� �
!
exp −ΔU rð Þ−χμα

i

kT

� �
: ð5Þ

In this equation, Ni
α is the number of ions of type α in the ith elementary

cell before insertion/deletion,ΔU(r) is the energy change associatedwith
the insertion/deletion in position r,Vi is the volume ofDi, whileχ = 1 for
insertion, and χ = −1 for deletion. The variable μiα can be identified
with the local electrochemical potential as soon as LE is assumed. If the
assumption of LE is problematic [40], the μα(r) variable is just an adjust-
able quantity that controls the local concentration in the transport region.
The assumption of LE, therefore, is not necessary to apply the LEMC tech-
nique. We identify μα(r) with the function whose gradient drives the
transport when we couple the LEMC method to the NP transport equa-
tion. This identification is reasonable because using an empirical equation
already assumes using various approximations: assuming LE and identi-
fying μα(r) with the local electrochemical potential is the least of our
problems (the diffusion coefficient profile, for example, is quite an ob-
scure quantity).

Whenwe displace an ion fromposition r to positionr′, the Boltzmann
factor in the acceptance probability can be given as

pαi→j r; r′
� �

¼ exp −
ΔU r; r′

� �
− μα

j −μα
i

� �
kT

0
@

1
A; ð6Þ

where thedifference μjα − μiα expresses thework thatwehave to exert to
move the ion against the electrochemical potential difference. This term
appears if position r is in cell i and position r′ in cell j.

The energy change ΔU in the above equation contains the direct
interactions with all the ions in the whole simulation cell. The system
outside the elementary simulation cell, Di, therefore, exerts its effect
on the ion(s) inDi as an external constraint. This constraint, of course,
changes as the simulation evolves because the ions outside Di also
move. The energy change ΔU also contains the interaction with an ex-
ternal electrical potential, Φappl(r). This applied potential is the result
of the Dirichlet BCs prescribed on the system's boundaries (ΦL and
ΦR) and can be calculated solving Laplace's equation

∇2Φappl rð Þ ¼ 0 ð7Þ

for the transport regionwith the prescribed BCs.We solve this equation
with the ICCmethod [20,51]. Thismethod provides the induced charges
on the system's boundary,B, that produce the required potential profile
inside B. Interaction with the applied potential then can be computed
from the interactions with these induced charges using Coulomb's
law. Details are found in Appendix A.

In the present geometry, the elementary cells areΔz� Δr rectangles
in the (z,r) plane. In the three-dimensional space, these correspond to
concentric rings with the z-axis in their centers.

The output of the LEMC simulation is the average number of the ions
of species α in the elementary cellDi denoted by 〈Ni

α〉. The density (con-
centration, if we prefer that unit) of ions then can be obtained by dividing
with the volume of the elementary cell: ciα = 〈Ni

α〉/Vi. However, it proved
to be more advantageous to use the Widom particle insertion method
[61,62] also known as the Potential Distribution Theorem [63,64].
According to this theorem, the excess chemical potential can be com-
puted as

e−μα;EX
i =kT ¼ e−ΔUα

i =kT
D E

; ð8Þ

where ΔUα
i is the energy change associated with the insertion of a par-

ticle of species α into a randomly chosen position in the elementary cell
i. This is the same energy computed in the particle insertion step of the
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LEMC technique, therefore, it does not require additional computational
cost. Since the excess chemical potential is defined as

μα;EX
i ¼ μα

i −kT lncαi ; ð9Þ

the concentration can be expressed as

cαi ¼ e−ΔUα
i =kT

D E
eμ

α
i =kT ð10Þ

from Eqs. (8) and (9). In these equations (and in every equation in this
paper), μiα denotes the configurational part of the electrochemical
potential, which does not include the term with the de Broglie thermal
wavelength.

We have checked that this method works in the non-equilibrium
situation considered in the LEMC framework. The ΔUα

i energy contains
the interactionwith the applied field and μiα is the local electrochemical
potential assigned to the elementary cell Di. The concentration is the
same obtained from Eq. (10) as that obtained from counting the ions
in the usual way, but much more accurate. The explanation is that in
some elementary cells the concentration is so small that it is a rare
event that an ion is found there. Sampling using the conventionalmethod,
therefore, is less efficient. Sampling using Eq. (10), on the other hand, is
more efficient, because the energyΔUα

i alwayshas a value,which contrib-
utes to sampling at every insertion.

3.2. Iteration using the Nernst–Planck equation and conservation of mass

The LEMC technique provides discrete ci
α output values for the

discrete μiα input values. These concentration values are assigned to
the centers of the volume elements, ri. Their values can be computed
anywhere in the simulation cell by linear interpolation. Similarly, the
electrochemical potential and its gradient can be computed anywhere
in the simulation cell numerically. Provided that we have the value of
the diffusion coefficient everywhere in the cell, we can compute the
flux density, jα(r), from the NP equation (Eq. (2)). The resulting flux
density should satisfy the continuity equation

∇⋅jα rð Þ ¼ 0; ð11Þ

namely, conservation of mass. Because there is no any guarantee that
the input electrochemical potentials produce concentrations (through
the LEMC simulations) that, together, produce flux densities (through
theNP equation) that satisfy the continuity equation, we use an iteration
technique that iterates the electrochemical potential until the conserva-
tion of mass is satisfied.

Technically, we use the divergence theorem to obtain a surface inte-
gral over the closed surface of volume element Di:

0 ¼ ∫Di
∇⋅jα rð ÞdV ¼ ∮Si

jα rð Þ⋅n rð Þda; ð12Þ

where Si denotes the surface and n(r) is the normal vector pointing
outward at position r of the surface. The Si surface is then divided
into surface elements Sij that form the interfacial surface element be-
tween volume elements Di and Dj. We assume that the concentration,
the gradient of the chemical potential, the diffusion coefficient, and
the flux density is constant at these surface elements. They will be de-
noted by hat: ĉαij ,∇μ̂ α

ij , D̂
α
ij , and ĵ

α
ij . The integral in Eq. (12), then, is writ-

ten as a sum over the surface elements

0 ¼ ∑
j; Sij∈Si

ĵ
α
ij ⋅nij aij; ð13Þ

where aij is the area of surface element Sij.
The iteration algorithm can be given as follows.

1. We begin with an appropriately chosen initial set of electrochem-
ical potentials, μiα[1], and compute the linearly interpolated values

at the Sij surface elements. The numbers in square brackets denote
the sequential number of the iteration.

2. LEMC simulations are performed using these values as inputs. The
resulting concentrations are denoted by ci

α[1].
3. Electrochemical potential values for the next iteration are obtained

on the basis of the assumption that the flux computed from the
“old” concentrations ciα[1] and the “new” electrochemical potentials
μiα[2] satisfy Eq. (13). For a general [n] → [n + 1] iteration, we
obtain

0 ¼ ∑
j; Sij∈Si

D̂α
ij ĉαij n½ �∇μ̂ α;CAL

ij nþ 1½ �⋅nij aij: ð14Þ

The values ∇μ̂ α;CAL
ij nþ 1½ � are obtained from the μiα,CAL[n + 1] values

by linear interpolation (the superscript CAL indicates thatwe calculate
the electrochemical potential values from Eq. (14)). Therefore,
Eq. (14) is a system of linear equations with the μiα,CAL[n + 1] values
being the unknowns. We have such an equation for every volume
element with an unknown electrochemical potential for each, so the
system of linear equations is solvable. BCs enter Eq. (14) when we
write it up for elementary cells bordering B. More details about the
solution are found in the supplementary material of Ref. [39].

4. We found that in the case of large driving forces we obtain faster and
more robust convergence using a mix of the values calculated in the
[n + 1]th iteration and the values obtained in the [n]th iteration by
mixing:

μα;MIX
i nþ 1½ � ¼ βαμα;CAL

i nþ 1½ �
þ 1−βα� �

μα;MIX
i n½ �: ð15Þ

The parameter βα determines in what ratio we use the two values in
themixing. If this parameter is close to 0, the iteration ismore steady,
but it is slow because the electrochemical potential values change
slowly during the iteration. Increasing the value of βα, we can get
faster iteration, but we must be aware of the danger that the system
can be trapped in fluctuating between local minima. In our calcula-
tions, we found the values βα = 0.9 − 0.95 for ±20 mV, and
βα = 0.7 − 0.8 for ±100 mV appropriate.

5. The values μiα,MIX[n + 1] are used as the input of the LEMC simula-
tions of the next round.

Practically the same iteration technique was used by Gillespie in his
NP+DFT calculations with the difference that there the concentration
was iterated and the chemical potential was computed from DFT (the
reverse of the GCMC route). Because DFT provideswell-defined numbers
for a given set of input concentrations, the iteration procedure converges
and provides a well-established solution.

In the case of simulations, however, the solution is always
obtained within a statistical error. The iteration, therefore, does not
converge to a given solution, but fluctuates around it. Therefore,
we obtain the final solution by averaging over the iterations. We
found it more suitable to run shorter LEMC simulations in more itera-
tions. The running average obtained this way can reach arbitrary
accuracy.

At the end of this procedure, the flux densities of the diffusing
ionic species are obtained. According to the rotational symmetry, vector
jα(r) is described with two components in the (z,r) plane: jzα(z,r) and
jr
α(z,r). The net flux through a cross section of radius R(z) of the pore
is calculated as

Jα zð Þ ¼ 2π∫R zð Þ
0 r jαz z; rð Þ dr: ð16Þ

This value is constant (denoted by Jα) inside the pore (|z| b 10 Å)
because the ions are not allowed to leave the pore in the radial direction.
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The electrical current carried by an ionic species is then Iα = qαJα and the
total current is

I ¼ ∑
α
qα Jα : ð17Þ

3.3. Dynamic Monte Carlo with dual control volumes

The diffusion constant profile is an input for the NP+LEMC calcula-
tion. This quantity includes all the dynamical information about themo-
bility of ions in the various regions. To complete the NP+LEMC
calculation, therefore, we need some information about the diffusion
coefficients. In the baths, the diffusion constants of the various ionic
species are usually experimental data. In the channel, however, this
information is not readily available. There are twoways to get this infor-
mation. First, we can fit them to experimental data as Gillespie did in his
NP+DFT calculations [28–30]. This route is appropriate if we study an
experimental situation. In the case of model calculations, where direct
connection to experiments is not present, we can get the dynamical in-
formation from direct dynamical simulations.

In this work, we follow a mixture of the two approaches. We use

the value of the diffusion coefficient of Na+ in the filter, DNaþ

F , as

obtained by Gillespie for the RyR channel. The value of DNaþ

F in itself
does not influence selectivity; it rather just modulates the absolute
value of current flowing through the channel. The diffusion coeffi-

cient of Ca2+ in the filter (more precisely, the DCa2
þ

F =DNaþ

F ratio), on
the other hand, directly determines selectivity, which is our main
concern in this work. Fitting to experimental data has already been
tested in Gillespie's works [28–30]. Here we are rather interested in

the question whether using theDCa2
þ

F =DNaþ

F value obtained from calcula-
tions for themodel gives sensible results for the experimental situation.
We generally make efforts to minimize the number of adjustable pa-
rameters of a model. If a piece of information can be gained from the
model itself, it can be considered as an “internal” parameter. Therefore,
it is sensible to use this “internal” parameter instead of obtaining it from

an “external” source. Our results imply that the DCa2
þ

F =DNaþ

F ratio can be
considered as such an “internal” parameter, because the mobilities of
ions in the selectivity filter are largely determined by local interactions
between particles modeled explicitly.

Our choice of the direct dynamical simulation method to obtain

DCa2
þ

F is the DMC technique, because it proved to be computationally
more efficient than the LDmethod, which is DMC's natural alternative
for this implicit water system. DMC provides better sampling and also
handling of hard sphere and hard wall interactions is much easier in
it.

The basic DMC step is the random particle displacement, in which
one particle is chosen from the N particles available in the system
with 1/N probability, and it is moved into a new position within a max-
imum displacement (the usual MC particle displacement). The DMC
method is based on the assumption that the sequence of configurations
generated by the above steps can be considered as a dynamic evolution
of the system in time [65]. DMC, however, does not generate determin-
istic trajectories; it reproduces average dynamic properties such as the
mean square displacement. Compared to MD, DMC does not guarantee
an absolute measure of physical time; it only ensures proportionality,
which makes it an appropriate candidate to simulate selectivity. In the
DMC technique [66], the flux, Jα, is calculated by counting the netmove-
ment of particles from-left-to-right and from-right-to-left through se-
lected reference planes perpendicular to the z-axis for a given length
of the simulation. The computed number is divided by the square root
of the mass of the component [36] since DMC in itself does not reflect
mass dependence.

The key parameter of the algorithm is the maximum displacement
rmax. For systems with every component modeled explicitly, the value
of rmax can be determined from the average free path of molecules as
shown by Rutkai and Kristóf [36]. The property that determines the
value of rmax in the first order is the density of the fluid. The algorithm
of Rutkai and Kristóf [36] was justified by comparing to results of MD
simulations. The case of implicit solvent, on the other hand, is not so
obvious because the value of rmax must reflect not only the collision
with other solute particles but also with water. Therefore, rmax should
be kept at a small value (≈ 1 Å) to mimic (at least partially) the
stochastic random walk of particles among the solvent molecules.

The DMC simulation is performed for the transport region be-
tween two control cells (basically corresponding to the bulk regions
in Fig. 1). In this DCV method, the driving force is maintained by the
concentration difference between the control cells.

DMC simulations do not give information about the number of
particles passing the reference plane in one second. Simulation time
can be connected to real time by fitting to experiments. The ratio of
fluxes carried by the two components (Jα/Jβ, dynamical selectivity),
however, is a well-defined quantity (it is dimensionless) and it is the
major output of the simulation. This quantity is the essential link between
the various methods (MD+DCV, DMC+DCV, DMC+LEMC) that are
said to be consistent if they give the same result for the dynamical selec-
tivity [41]. In this work, the diffusion coefficient of Ca2+ in the filter is
chosen so that the NP+LEMC method reproduces the Jα/Jβ value given
by the DMC+DCV method.

4. Results

We present results for two different situations:

1. In previous work by Rutkai et al. [19], we studied a general Ca
channel model using DMC+DCV simulations. In those simula-
tions, we performed a mole fraction experiment, where a mixture
of NaCl and CaCl2 was present at different compositions, but at

fixed total concentration of the cations, CNa
þ

L þ CCa2þ
R = 10 mM.

We studied the correlation between binding affinity and dynamical
selectivity in that work. Here, we use this case to investigate the
role of various geometrical parameters, such as the size of bulk re-
gions (HB and RB), the size of the access regions (Hacc and Racc), and
the grid resolution used to solve the NP+LEMC system. The mole
fraction experiment of Rutkai et al. [19] is repeated and analyzed to
see how the results change with these parameters.

2. The other system is supposed to mimic the RyR Ca channel. In this
case, we perform computer experiments inspired by real electrophys-
iological experiments on the RyR channel: CaCl2 is added to a constant
background of NaCl at different voltages. We will study the effect of
NaCl concentrations and voltages.

In both cases, the diffusion coefficient profiles, Dα(z), were cons-
tructed as follows. They are assumed to be independent of r. We used
fixed values outside the membrane region (|z| > 10 Å), denoted by
DB
α, and in the selectivity filter (|z| b 5 Å) denoted by DF

α. In the vesti-
bules (5 Å b |z| b 10 Å), we used a linear interpolation between DF

α

and DB
α.

The values outside the membrane region are the experimental
bulk values. For the cations, they are DNaþ

B = 1.33 × 10−9 m2s−1

and DCa2þ
B = 7.92 × 10−10 m2s−1.

Thus, the only adjustable values are those in the selectivity filter.
Because the DMC+DCV simulation gives information only about

the flux ratio, we cannot adjust both DNaþ
F and DCa2þ

F . Therefore, we

used the value DNaþ
F ¼ 3:92� 10−11 m2s−1 as reported by Gillespie

[30]. The order of magnitude of the diffusion coefficients in the filter
tunes the order of magnitude of the currents carried by the various
ions; they have less effect on selectivity, which is our main interest.
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Therefore, we do not care about the order of magnitude of the values
in the filter too much. Selectivity is rather influenced by the ratio of
the diffusion coefficients of the two competing species in the filter:

DCa2
þ

F =DNaþ

F . This ratio will be fitted to the JCa
2þ
=JNa

þ
result given by

the DMC+DCV simulation.

4.1. Effect of geometrical parameters

We start with the selectivity filter of the channel model considered
in the work of Rutkai et al. [19] with a radius R = 4 Å. The total cation
concentration on the left hand side is 100 mM, while it is 33 mM on
the right hand side (with the same mole fraction as on the left). The
driving force of the transport is the concentration difference, namely,
the chemical potential gradient.

We have chosen the Ca2+ mole fraction value 0.2 (this corresponds

to cCa
2þ ¼ 20

L mM) to fit the diffusion coefficient. At this mole fraction,

the flux ratio given by DMC+DCV is JCa
2þ
=JNa

þ
≈1:64. We found that

this value is reproduced when DCa2
þ

F =DNaþ

F ≈0.5.
These two numbers already characterize the relation between

binding and dynamical selectivity: although the mobility of Ca2+ is
smaller in the channel, its flux is larger. Moreover, the driving force
is smaller for Ca2+ (the chemical potential difference between the
two sides of the membrane for Na+ and Ca2+ are 0.89 kT and
0.26 kT, respectively) and there are four times fewer Ca2+ in the
bulk than Na+. The result of the Ca2+-flux being larger is then possi-
ble only if Ca2+ is present in the channel in much larger number than
Na+ is. That is, binding selectivity favors Ca2+ over Na+.

4.1.1. The effect of the bulk region
The simulation cell does not necessarily coincide with the solution

domain of the NP+LEMC system. The former contains bulk regions
just outside the latter (see Fig. 1), where the chemical potentials and
electrical potentials have constant values (μc,Lα , μc,Rα , ΦL, and ΦR). These
regions practically correspond to the control cells used in the DCV tech-
nique. Therefore, we assume real thermodynamic equilibria there.

We have found that the size of this region must be large enough to
accommodate the interfacial region of the electrolyte appearing near
the outer confining hard wall of the system. At such a boundary, the
electrolyte system shows depletion, namely, the concentration of
ions near the wall is smaller than in the bulk far from the wall. In
the absence of the bulk region (HB = RB = 0), therefore, this deple-
tion layer appears in the access region. In this case, B is not only an
imaginary surface indicating the boundary of NP+LEMC solution do-
main, but it is also a hardwall. Thismakes the concentration smaller atB
than its real bulk value, making the flux smaller through B because the
flux is proportional to the concentration (Eq. (2)). Because the total
number of particles passing through B in unit time (the integral of the
flux density over the surface) must be the same as in the pore, a smaller
flux at B corresponds to a smaller flux through the channel. The calcu-
lations show that this is the case: we obtain smaller flux using bulk re-
gions of insufficient size (data not shown).

4.1.2. The effect of the access region
The access region (its dimensions are denoted by Hacc and Racc) is

positioned between the bulk region and the channel region. This
region is very important because it accommodates the interfacial
layers formed on the two sides of the membrane. These layers are es-
pecially important when a voltage is applied; in this case, they are
called double layers. Cations are present in smaller or larger number
in the double layers compared to the bulk values depending on the
sign of voltage. The structure of the double layer, therefore, strongly
influences the resistance of the access region for a given ionic species.

Appropriately-sized access regions, therefore, must be included in the
model if we want a correct description of the system.

Here, we demonstrate the importance of the access region for zero
voltage. When voltage is present, even larger access regions should be
used (see Appendix A for more details). Fig. 2 shows the results for the
studied case (0.2 Ca2+ mole fraction) using various values for Hacc =
Racc. The size of the bulk region is HB = RB = 10 Å. Quantities averaged
over the cross section are plotted. In particular, the line density

nα zð Þ ¼ 2π∫R zð Þ
0 cα r; zð Þ r dr ð18Þ

is the number of particles along the z-axis for a given unit length (top
panel). The flux is constant in the channel because there is no net flux
in the radial direction. Outside the channel, the Jz

α(z) profiles decline be-
cause the ions can leave the channel region in the radial direction along
the membrane. This is a typical route for the ions; extra charge tends to
stay near surfaces. The electrochemical potential (bottom panel) de-
creases monotonically. As seen, the size of the access region has a pro-
found effect on all the functions appearing in the NP equation. The
flux, therefore, is sensitive to the size of the access region, but it con-
verges as we increase the size. This convergence is shown in Fig. 3 in
terms of electrical currents carried by the two competing ions.

Fig. 2 also shows the line density profiles obtained from the
DMC+DCV simulations. Inside the channel, it agrees well with the pro-
files given by the NP+LEMC technique. Furthermore, the NP+LEMC
profiles coincide inside the channel independent of the size of the access

0

0.1

0.2

nC
a  / 

Å
-1

DMC+DCV
H

acc
, R

acc
 = 0 Å

H
acc

, R
acc

 = 10 Å

H
acc

, R
acc

 = 30 Å

20

30

40

50

JC
a

× 
10

6  / 
s-1

-40 -20 0 20 40

z / Å

-13.2

-13

-12.8

μC
a  / 

kT

-10 -5 0 5 10
0

0.1

0.2

(A)

(B)

(C)

z

Fig. 2. Profiles for the (A) line number density, (B) z-component of the flux density, and
(C) the electrochemical potential of Ca2+ for various dimensions of the access region
(different lines correspond to NP+LEMC results obtained for different Hacc = Racc values).
The bulk concentrations are cCa

2þ

L ¼ 3cCa
2þ

R ¼ 20mM and cNa
þ

L ¼ 3cNa
þ

R ¼ 80 mM. No volt-
age is applied. The dimensions of the bulk regions are HB = RB = 10 Å. The symbols
show the results of DMC+DCV simulations obtained with Hacc = 0 Å.
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region. This is because the ionic profiles in the channel are chiefly deter-
mined by local forces that are large compared to the effect of the ions in
the access regions.

The access region of appropriate size is also necessary to satisfy
the electrostatic (Dirichlet) BC imposed at B (see Appendix A for
more details).

4.1.3. The effect of grid resolution
The NP+LEMC system is solved numerically for a grid of elemen-

tary cells formed by rectangles of size Δz� Δr in the (z,r) plane. A
coarser gridmeans faster calculation, while a finer gridmeansmore de-
tail and more accuracy. In the latter case, the smaller volume elements
require longer simulations for adequate sampling increasing computa-
tional time. We always have to compromise.

The question is howmuch accuracy do we lose with a coarser grid.
Looking at the profiles computed with different resolutions in the
range of Δz ¼ Δr ¼ 0:8−2 Å (results not shown) we can conclude
the followings:

1. Large peaks in concentration profiles are lost using a coarser grid.
2. The electrochemical potential profiles are quite similar for various

resolutions because they are smooth. The flux, however, depends
on the gradient of the electrochemical potential. Small deviations,
therefore, are magnified when we take the derivatives.

3. The flux of the respective ionic species, therefore, is quite sensitive
to the resolution of the grid.

4. The ratio of the Ca2+ and Na+ fluxes, on the other hand, is insen-
sitive to grid resolution because the change in grid resolution has a
similar effect on both ions. Numerical results are shown in Table 1.

4.1.4. Mole fraction experiment
Lastly, we have performed the samemole fraction experiment that

Rutkai et al. did using DMC+DCV simulations [19]. We used 10 Å for
the dimensions of the bulk regions, Hacc = 26 Å and Racc = 20 Å for

the access region, and Δz = Δr = 2 Å for the resolution. We have
performed calculations for Ca2+ mole fractions as small as 0.003.
This demonstrates the advantage of the NP+LEMC method over the
DMC+DCV method, which cannot give reasonable statistics for
mole fractions smaller than 0.05. We could only extrapolate to that
domain [19].

As Fig. 4 shows, NP+LEMC can handle small mole fractions easily.
The top panel shows the electrical currents as carried by the two
cations, as well as the total current. The AMFE (the minimum in total
current vs. mole fraction curve) is clearly seen. It can be explained by
the fact that theNa+-current decreases faster than the Ca2+-current in-
creases. This is caused by several effects [30,42]:

1. Ca2+ replaces Na+ in the selectivity filter at very small mole fractions
(see the bottom panel).

2. Ca2+-current increases only moderately because it is present in
other parts of the channel (the vestibules) in proportion with the
mole fraction of Ca2+.

3. An additional requirement is necessary to get theminimum:Na+- and
Ca2+-currents at mole fractions 0 and 1 should be similar.

Note that although the diffusion coefficient was fitted to mole
fraction 0.2, the agreement with the DMC+DCV results occurs for
the whole mole fraction range.

0 5 10 15 20 25 30

H
acc

=R
acc

 / Å

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Iα  / 
pA

Ca
2+

Na
+

Fig. 3. The convergence of the currents, Iα = qαJα, carried by Na+ and Ca2+ in terms of
the size of the access regions. The system is the same as in Fig. 2.

Table 1
Fluxes carried by the various ionic species for different resolutions of the grid (unit:
106 s−1). The fourth column shows the dynamical selectiviy (flux ratio).

Δz = Δr JCa
2þ

z JNa
þ

z JCa
2þ

z =JNa
þ

z

2.0 2.59 1.60 1.62
1.5 2.39 1.47 1.62
1.0 2.16 1.41 1.54
0.8 2.31 1.42 1.63
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Fig. 4. NP+LEMC results for the mole fraction experiment simulated by Rutkai et al.
[19] with DMC+DCV. The total concentration of Na+ and Ca2+ is 100 mM on the
left hand side. The bulk concentrations are the third of these on the right hand side.
Panel (A) shows the currents carried by the various cations and their sum,
representing dynamical selectivity. Panel (B) shows the occupancies of the two cations
(the average number of ions in the selectivity filter; e.g., the integral of the concentration
profile) representing binding selectivity. The inset focuses on small mole fractions.
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In summary, the channel binds Ca2+ more than it conducts it. In
other words, Ca2+ vs. Na+ binding selectivity is stronger than dynamical
selectivity, a general conclusion for Ca channels [12,25,30,42].

4.2. Mole fraction experiments motivated by the RyR Ca channel

In the case of themodelwhich is aimed to reproduce the experimental
data for the RyR Ca channel qualitatively, the BCs for theNP+LEMCsys-
tem are taken from the experiments. That is,we haveNaCl on both sides
of themembrane at concentrationscNa

þ
L ¼ cNa

þ
R . CaCl2 is added to the lu-

minal side (this is, the sarcoplasmic reticulum side) of the membrane
gradually (cCa

2þ

L ), while Ca2+ concentration on the cellular side ismicro-
molar (cCa

2þ

R ¼ 10−6 M). Voltage is set in away that the ground is on the
right hand (cellular) side.

For the radius of the selectivity filter we use the value R = 4.5 Å.
This value was chosen by performing calculations for R = 3.5, 4, and
4.5 Å, and the mole-fraction curve for 4.5 Å was the one most similar
to the experimental curve.

The diffusion coefficient of Ca2+ in the filter was again fitted to the
results of DMC+DCV simulations for the same situation as in the
previous subsection (100 mM total cation concentration, cLα = 3cRα

driving force, and no voltage) with the difference that the filter radius
was larger and that we used access regions of size HB = RB = 20 Å.
For this reason, we found a different diffusion coefficient ratio

( DCa2
þ

F =DNaþ

F ≈0.125 compared to 0.5 in the previous case) that
reproduced the flux ratio of the dynamical simulation. This ratio is
very similar to that found by Gillespie [29].

4.2.1. The effect of voltage
The first AMFE experiment we consider is that published in Fig. 1B

of the paper by Gillespie et al. [30]: CaCl2 is added to the luminal side
to a 100 mM NaCl background at different voltages. This figure is
replotted in Fig. 5A and shows both the experimental data and the
curves given be the NP+DFT theory of Gillespie [29] for voltages
10, 20, and 30 mV. Fig. 5B shows the curves computed from the
NP+LEMC method for voltages −20, 0, 10, 20, and 30 mV.

The qualitative agreement between the NP+LEMC and experi-
mental data is apparent. The anomalous behavior of the current vs.
Ca2+ concentration curve is present and the behavior as a function
of voltage is similar. Currents increase with increasing voltage, as
expected. The absolute value of the current does not agree because
we did not fit DNaþ

F to experimental data; we just used the value
reported by Gillespie, which is a quite different model. Most impor-
tantly, Gillespie used more acidic amino acids in his model that
attracted more cations into the channel including the vestibules;
this explains the larger current.

Fig. 5B includes results for voltages 0 and−20 mV. AMFE vanishes
at these voltages. This can be explained by analyzing Fig. 6, where the
electrical currents carried by Ca2+ and Na+ (and their sum) are
shown as functions of Ca2+ concentration for voltages 20 mV (top
panel) and −20 mV (bottom panel). In both cases, the absolute value
of theNa+-current decreases as the Ca2+ concentration is increased be-
cause Ca2+ gradually squeezes Na+ out of the selectivity filter (see
Fig. 4B). The behavior of Ca2+-current, on the other hand, is drastically
different. At positive voltage, the Ca2+-current has the same sign as
Na+-current has and it gradually increases, producing a typical
AMFE-behavior (similar to Fig. 4A). At negative voltage, however, the
Ca2+-current has the opposite sign and it remains small. The explana-
tion is that voltage works against the concentration difference of Ca2+

in this case.
Further insight can be gained from the concentration profiles

plotted for the different ions in Fig. 7 for cCa
2þ

L ¼ 10−3 M, and volt-
ages±20 mV. The cation profiles are different for positive and negative
voltages. For −20 mV, Ca2+ concentration is depleted on the right
hand side in the access region at the positive electrode (see the inset

of Fig. 7B; note the logarithmic scale of the inset). This depletion ex-
tends into the channel (see the main panel of Fig. 7B). The mechanism
behind this effect is complex: it involves all the functions appearing
in the NP equation. Basically, because the total driving force (chem-
ical plus electrical potential gradients) is smaller for negative volt-
age, the flux is smaller. On the right-hand side, this implies
decreasing Ca2+ concentration.

At the same time, Na+ concentration increases in the selectivity
filter, because Na+ ions are needed there to balance the charge of
the oxygen ions (see the main panel of Fig. 7A). Outside the mem-
brane, in the double layer region, Na+ shows the opposite behavior
of Ca2+. For the negative voltage, Na+ concentration increases in
the double layer at the membrane on the right hand side, while, at
the same time, Cl− concentration decreases compared to the positive
voltage (see the inset of Fig. 7A). The double layers on the two sides of
the membrane are formed to produce an electric field denoted by
Φion(r) (see Appendix A for more details). The sum of the applied
electric potential and that produced by the ions is the total electrical
potential shown in Fig. 7C.

The ionic concentration profiles are formed in the NP+LEMC sys-
tem in a way that the electrical potential of the ions counteracts the
applied field. In Fig. 7, two kinds of double layers can be observed.
The dominant ones contain excess of cations forming positive diffuse
layers to balance the negative charge of the channel. The negative
channel produces the electrical potential well around z = 0 Å,
while the positive double layers counteract the effect of the channel
and bring the level of the potential up to zero.
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Fig. 5. The added CaCl2 experiment considered by Gillespie et al. [30]. CaCl2 is added to a
constant background of 100 mM NaCl to the left hand side of the membrane at different
voltages (ground is on the right). Ca2+ concentration is micromolar on the right side.
The dimensions of the access and bulk regions are 20 and 10 Å, respectively. The resolu-
tion of the grid is 2 × 2 Å. Panel (A) replots the results of Fig. 1B of Ref. [30]. Symbols
are experiments, while lines are results of NP+DFT calculations. Panel (B) shows the
results of our NP+LEMC calculations.
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The secondary double layers appear because of the applied voltage.
For ΔΦ ¼ −20 mV, for example, the applied electrical potential is
monotonically increasing. To counteract this potential and to make
the potential profile close to horizontal in the right access region (see
Fig. 7C), excess positive charge is needed in the right-side double
layer (see Fig. 7A). Similarly, to decrease the potential in the left-side
access region, excess negative charge is needed in the left-side double
layer.

4.2.2. The effect of NaCl concentration
In the previous experiment, the concentration of the monovalent

salt was kept fixed and the voltage was changed. Now, let us consider
the opposite: NaCl concentration is changed at constant voltage
ΔΦ ¼ 20 mV. The results are shown in Fig. 8B. The top panel replots
the results of Fig. 4 of the paper of Gillespie et al. [30].

The qualitative agreement is again found:

1. Currents are larger for larger NaCl concentrations because more
Na+ ions enter the pore in this case.

2. The current vs. cCa
2þ

L curve declines at larger Ca2+ concentrations
when Na+ concentration is larger. This is because the ability of
Ca2+ to compete for the pore with Na+ depends on the concentra-
tion of the other competing ion [25,30]. This can be straightforwardly
explained with the energetics behind this selectivity as we did in
previous papers [27,29].

5. Summary

Wehave developed an accessibleMCmethod that couples statistical
probabilities of individual ionic configurations to a transport equation.
The former establishes a relation between the electrochemical potential

and the concentration, while the latter establishes a closure between
them and also computes flux density. The advantage of the method is
that it treats statistical mechanics in an “exact” manner, meaning that
simulations do not contain “built-in” approximations as theories do;
they are just subjects of system-size errors and statistical noise. An
additional advantage is that electrostatics is treated correctly in every
configuration through Coulomb's law and that Dirichlet BCs at the
boundary of the system are satisfied if the access regions are large
enough (see Appendix A).
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The disadvantage of the method is that it uses the approximation
of the NP equation to describe transport, which requires a priori
knowledge of the diffusion coefficient. Direct dynamical simulation
techniques can replace the NP equation, avoiding the use of this ad-
justable parameter, but at the cost of considerably larger computa-
tional time [41].
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Appendix A. Imposing Dirichlet boundary conditions

Treating electrostatics and imposing fixed-voltage BCs (Dirichlet)
are crucial aspects of our procedure and they deserve a detailed discus-
sion. We must clearly distinguish between imposing BCs for individual
configurations during the simulation and for the averaged profiles.

For a given configuration of the simulation, we have a number of
charges in the middle of an empty Universe in a small finite simulation
cell. In such a case, BCs are set at infinity and Coulomb's law is applied to
compute the energy, a usual way to compute electrostatic energy in
simulations of electrolytic systems.

There are two kinds of charges in the system. There are point
charges at the centers of the ions

ρ rð Þ ¼ ∑
k
qkδ r−rkð Þ; ðA:1Þ

where qk and rk are the charge and the position of the kth ion, respec-
tively. There is also a polarization charge, σfix(s), on the boundary of
the solution domain, B, obtained from solving Laplace's equation
(Eq. (7)) with the prescribed Dirichlet BCs. Let us denote the part of
surfaceB on the left and right hand sides withBL andBR, respectively.
The BC then can be written as

Φappl sð Þ ¼ ΦL if s∈ BL

Φappl sð Þ ¼ ΦR if s∈ BR;
ðA:2Þ

or we can just denote the potential on B with ΦBC(s) and write

ΦBC sð Þ ¼ Φappl sð Þ ðA:3Þ

for s∈ B. The polarization charge produces this applied potential
everywhere in the domain:

Φappl rð Þ ¼ 1
4π�0

∫
B

σ fix s′
� �

r−s′
�� �� da′: ðA:4Þ

If we write up this potential for B, we obtain

ΦBC sð Þ ¼ 1
4π�0

∫
B

σ fix s′
� �

s−s′
�� �� da′ ðA:5Þ

for s∈ B. Thus, we obtain an integral equation for σfix(s) that can be
solved with the ICC method [20,51,67,68]. This polarization charge is
also represented as a collection of point charges in this numerical frame-
work, but this is irrelevant for this discussion. The superscript “fix” is used
in σfix(s) because this charge is computed once at the beginning of the
simulation and fixed.

In every configuration during the simulation, the electrical potential
in the simulation domain is the sum of the potentials produced by the
ions and the applied potential:

Φ rð Þ ¼ Φion rð Þ þΦappl rð Þ; ðA:6Þ

where

Φion rð Þ ¼ 1
4π�0�

∑
k

qk
r−rkj j : ðA:7Þ

How does the NP+LEMC procedure ensure that the Dirichlet BC is
satisfied on B? The answer is that it ensures it only on average. This
means that the ensemble average of the electrical potential is equal
to the prescribed potential:

ΦBC sð Þ ¼ Φ sð Þh i ¼ Φion sð Þ
D E

þΦappl sð Þ ðA:8Þ

for s∈ B (the brackets denote ensemble average over the configura-
tions sampled in the LEMC simulations). From Eqs. (A.3) and (A.8)
we obtain

0 ¼ Φion sð Þ
D E

ðA:9Þ

for s∈B. There are four important aspects of the NP+LEMC technique
that make this possible.
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Fig. 8. The added CaCl2 experiment considered by Gillespie et al. [30]. CaCl2 is added to a
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of NP+DFT calculations. Panel (B) shows the results of our NP+LEMC calculations.
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1. The procedure ensures that the prescribed electrochemical potentials
(μLα and μRα, see Eq. (4)) are recovered on B.

2. The functions appearing in the solution of the NP+LEMC system
(μα(r), μcα(r), and Φ(r)) are continuous. The electrochemical poten-
tial, moreover, changes smoothly in the transport region between
the values on B.

3. In the bulk region and at the boundary, we simulate bulk electrolytes
with the prescribed compositions as if theywere at zero external po-
tential. This can be seen by considering the acceptance probability of
the ion-insertion (Eq. (5)). The term ΔUα rð Þ−μα rð Þ appears in this
formula. The electrostatic energy of the inserted ion, however, con-
tains the interaction with the ions and with the applied field:

ΔUα rð Þ ¼ qαΦion rð Þ þ qαΦappl rð Þ: ðA:10Þ

The electrochemical potential can also be split into the chemical and
the electrical terms (see Eq. (1)):

μα rð Þ ¼ μα
c rð Þ	 
þ qα Φα rð Þ	 


: ðA:11Þ

Because the electrical potential can be computed in the simulation as
an ensemble average (using a test charge for sampling), the chemical
potential, μcα(r), can also be written as an ensemble average. The
electrical potentials in the bulk regions and at B cancel as soon as
Eq. (A.8) holds. In this case, the LEMC simulations look like as if they
were performed for bulk electrolytes in the absence of an applied
field.

4. This last condition is fulfilled if the access regions are large enough.
Ions accumulate in the vicinity of the channel near the membrane
and form double layers. The access regions must be large enough
to accommodate these double layers, especially the diffuse layers.
IfB is far enough from the channel region, where charge imbalance
occurs, bulk electrolytes are formed in the access regions and at
the boundaries of them.

It is important to emphasize that the BC is satisfied not only by
electrostatic methods, but via the whole iteration procedure of the
NP+LEMC method involving statistical mechanical calculations. From
this point of view, our approach is not different from the NP+DFTmeth-
od of Gillespie et al. [13,14] or the PNP theory [5,69–74] (which is the
Poisson–Boltzmann equation coupled to the NP equation). The difference
is that the system can be solved accurately in the case of theories (an ad-
ditional loop is built into the calculations to satisfy Poisson's equation),
while in the case of simulations we are restricted by finite system size
effects and statistical errors. Fulfillment of the Dirichlet BC, therefore, is
an output of the NP+LEMC calculation. Our solution is an approximation
to the accurate solution.

This does not mean that our electrostatics is incorrect. Because
Coulomb's law is used for individual configurations, electrostatics
must be correct for the ensemble average too. The approximation
lies in the possibility that 〈Φα(s)〉 is not perfectly equal toΦBC(s) onB.

In order to ensure perfect agreement (within numerical errors)
between 〈Φα(s)〉 and ΦBC(s) on B, we should perform the LEMC simu-
lations in a way that the Dirichlet BCs are fulfilled for every individual
ion configuration. This requires solving Poisson's equation with the
prescribed Dirichlet BCs “on the fly”. This approach was used in BD
[75,76] and Transport Monte Carlo [77] simulations. A Poisson solver,
however, is also a numerical procedure subject to numerical errors. It
can also be time consuming compared to just using Coulomb's law.

Another possibility is using the ICC method [20,51,67,68] to compute
the induced charges on B. For this, Eq. (A.5) must be rewritten with the
ionic potential included:

ΦBC sð Þ ¼ Φion sð Þ þ 1
4π�0

∫B
σ tot s′

� �
s−s′
�� �� da′; ðA:12Þ

which is an integral equation for the polarization charge σtot(s) that can
be solved with ICC. The total polarization charge now includes the fixed
component and a fluctuating component, σfluct(s), that is different for
every configuration of ions, {rk}:

σ tot sð Þ ¼ σ fix sð Þ þ σ fluct sð Þ: ðA:13Þ

The integral equation then can be rewritten in terms of the fluctu-
ating charge:

0 ¼ Φion sð Þ þ 1
4π�0

∫B
σ fluct s′

� �
s−s′
�� �� da′: ðA:14Þ

This expresses that the fluctuating charge ensures that the Dirichlet
BCs are satisfied in every configuration. The ICC method, however, is
very time consuming; it usually increases the computational cost with
one or two orders of magnitude.

Our present approach avoids applying the Dirichlet BC “on the
fly” thus saving a lot of computational time, since we have to com-
pute the induced charges, σfix(s), only once at the beginning of the
calculation.

The two kinds of solutions are not equivalent because they corre-
spond to different Hamiltonians.Which one is closer to an experimental
situation is an interesting question. Applying Dirichlet BC “on the fly”
means perfect polarizability, meaning that charges can respond to the
movement of ions infinitely fast. This is clearly an idealization; in reality,
every particle has inertia. This implies that satisfying the BC only on av-
erage actually might be a more realistic approach. In a new method by
Jadhao et al. [78], the induced charges are actually treated as dynamical
variables with assigned masses in an MD scheme.

This is very similar to the classic double layer simulations, wherewe
simulate an electrolyte between two charged walls (electrodes). We
can impose fixed potentials on the electrodes “on the fly” with a PDE
solver or ICC as described above.We are not aware of such a simulation.
The alternative (a relative of the approach used in NP+LEMC) is the
constant voltage simulation technique by Kiyohara and Asaka [79,80]
that is based on treating voltage as a variable of a thermodynamic
ensemble. Then, anMC step is introduced in which a charge transfer oc-
curs between the electrodes. At the end of the simulation, ionic concen-
tration profiles are obtained that produce a potential profile that, in
turn, satisfies the prescribed potential difference between the electrodes.
The parallels between this approach and the NP+LEMC technique are
unmistakable.

Treating electrons and holes in semiconductors [81–83] is similar to
treating anions and cations in electrolytes from many points of view.
The basic requirement that electrostatics must be correct is the most
important parallel. Semiconductor devices, for example, can also be de-
scribed with the PNP theory with great success. There are, however,
very important differences. Electrons and holes can be treated as point
charges in a background dielectric, therefore, using the terminology of
physical chemistry, they can be considered as ideal solutions. This
means that they can be described by the Poisson–Boltzmann theory.
Solving Poisson's equation is the dominant problem in the case of
semiconductors, which is performed with great precision for finite
size systems modeling the various devices prescribing appropriate
BC at the boundary of the system.

Electrolytes, however, are far from being ideal solutions [84], espe-
cially in the high-density selectivity filter of an ion channel. Mean field
theories are not sufficient anymore and sophisticated statisticalmechan-
ical methods are necessary to average the microstates. Electrostatics,
however, must be correct in this case too. In practice, the problem is
seemingly approached from two different directions:

1. In theories using the averaged profiles as variables, solving Poisson's
equation is traditionally done with great care. Building statistical me-
chanical correlations beyond the mean-field level (such as excluded

111D. Boda et al. / Journal of Molecular Liquids 189 (2014) 100–112



Author's personal copy

volume effects and many-body correlations between ions) into the
theories, however, is a challenge, which has been taken up by several
groups worldwide. The NP+DFT method of Gillespie et al. [13,14] is
an example of success, although the method is restricted to one di-
mension. The task of extending it to three dimensions has been under-
taken [85]. The variational approach of Liu and coworkers [15–18]
works in three dimensions efficiently dealing with electrostatics and
hydrodynamics with considerable effort exerted to handle statistical
mechanics.

2. In simulations working with individual configurations, statistical
mechanics is treated right traditionally because the method itself
is designed for that purpose. Electrostatics is usually treated with
Coulomb's law, which ensures that electrostatics is right instanta-
neously, and, therefore, on average with BCs prescribed at infinity.
Prescribing electrostatic BCs on the boundaries of a finite system,
however, received less attention because simulations are originally
designed for equilibrium systems. With the increasing demand for
simulations to model actual experimental situations, however, the
requirement to impose electrostatic BCs on the boundary of a
finite-size system rose. In this paper, we showed an example how
to do it on average. To impose BCs for every configuration is compu-
tationally more demanding [75–77]. In future work, we intend to
study and compare the two approaches.
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