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Permeation Through an Open Channel: Poisson-Nernst-Planck Theory of
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ABSTRACT The synthetic channel [acetyl-(LeuSerSerLeulLeuSerlLeu);-CONH,]g (pore diameter ~8 A, length ~30 A) is a
bundle of six a-helices with blocked termini. This simple channel has complex properties, which are difficult to explain, even
qualitatively, by traditional theories: its single-channel currents rectify in symmetrical solutions and its selectivity (defined by
reversal potential) is a sensitive function of bathing solution. These complex properties can be fit quantitatively if the channel
has fixed charge at its ends, forming a kind of macrodipole, bracketing a central charged region, and the shielding of the fixed
charges is described by the Poisson-Nernst-Planck (PNP) equations. PNP fits current voltage relations measured in 15
solutions with an r.m.s. error of 3.6% using four adjustable parameters: the diffusion coefficients in the channel’s pore D, =
2.1 X 107®and Dg, = 2.6 X 1077 cm?/s; and the fixed charge at the ends of the channel of =0.12e (with unequal densities 0.71
M = 0.021e/A on the N-side and —1.9 M = —0.058e/A on the C-side). The fixed charge in the central region is 0.31e (with density
P, =047 M = 0.01 4e/A). In contrast to traditional theories, PNP computes the electric field in the open channel from all of the
charges in the system, by a rapid and accurate numerical procedure. In essence, PNP is a theory of the shielding of fixed (i.e.,
permanent) charge of the channel by mobile charge and by the ionic atmosphere in and near the channel’s pore. The theory fits
a wide range of data because the ionic contents and potential profile in the channel change significantly with experimental
conditions, as they must, if the channel simultaneously satisfies the Poisson and Nernst-Planck equations and boundary
conditions. Qualitatively speaking, the theory shows that small changes in the ionic atmosphere of the channeil (i.e., shielding) make
big changes in the potential profile and even bigger changes in flux, because potential is a sensitive function of charge and

shielding, and flux is an exponential function of potential.

INTRODUCTION

Ionic channels are gatekeepers to cells, controlling biolog-
ical processes of considerable generality and importance
(Hille, 1992), but the physics underlying their function is
simple, as is their structure. Once open, ionic channels form
a nearly one-dimensional path for electrodiffusion. We
adopt the simplest self-consistent' theory of electrodiffusion
and call it PNP for short: Poisson’s equation to describe
how the charge on ions and proteins determines the poten-
tial of the electric field and Nernst-Planck equations to
describe the migration and diffusion of ions in gradients of
potential and concentration. Combined, these are the “drift-
diffusion equations” of physics (see Mason and McDaniel,
1988; Spohn, 1991; Balian, 1992) particularly solid state
physics (Jerome, 1996; Ashcroft and Mermin, 1976; Seeger,
1991; Shur, 1990; Sze, 1981; Selberherr, 1984; Roulston,
1990; Lundstrom. 1992). Eisenberg (1996a) gives other
references and reviews the biological literature. The drift-
diffusion equations compute the electric field (and thus
shielding), unlike most other theories of the open channel,
which assume it.”
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The PNP equations are a mean field theory that occupies.
the same place in the hierarchy of approximations of con-
densed phases as the Vlasov equations® of plasma physics
(Balescu, 1975, p. 404; Balian, 1992; Kersch and Morokoff,
1995; see also, Balescu, 1963) and the nonlinear Poisson
Boltzmann theory of solutions and proteins (Honig and
Nicholls, 1995; Davis and McCammon, 1990; Hecht et al.,
1995) is particularly important because it provides direct
experimental verification of the theory (see also Warwicker
and Watson, 1982; Klapper et al., 1986; Gilson et al., 1988;
Davis et al., 1991; Holst et al., 1994; Forsten et al., 1994,
describe important computational improvements to the the-
ory). Poisson-Boltzmann is, however, an equilibrium theory
that does not allow flux, or nonequilibrium states of the
system. It could thus describe only perfectly selective chan-
nels held at their equilibrium potential. An equilibrium
theory is of limited use in describing the purposeful function
of transistors (e.g., as logic elements) and has similar lim-
itations in describing channels. Both transistors and chan-
nels after all must be biased to perform their useful work:
without the flux that accompanies bias, transistors cannot
amplify or switch; without the flux that accompanies bias,
channels cannot transport current or ions and so cannot
change the membrane potential or cell contents.

In the PNP theory of channels, permanent (i.e., often
called fixed) charge plays a particularly important role, as it
does in transistors, where (under the name doping) it deter-
mines the nature and properties of the semiconductor de-
vice. In both cases, the permanent charge profile P(x) is a
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one-dimensional representation of the effective charge of
the underlying (protein or crystal) structure that does not
change in a wide range of conditions. Indeed, once the
distribution of permanent charge is known, the PNP equa-
tions predict the properties of the open channel—the fluxes
and current through it—in all experimental conditions of
varying concentrations and transmembrane potentials.*

In the simple version of the PNP equations used here,
structural parameters change only if the channel protein
changes its conformation or composition: the radius and
length of the channel, the dielectric constants, the diffusion
coefficients, and the distribution of permanent charge all
remain fixed as solutions and transmembrane potential are
varied. Conformations of proteins undoubtediy can and do
change as conditions change. Their composition can change
as well: proteins can donate (or accept) a hydrogen (a
process sometimes called ionization) or a phosphate group
(called phosphorylation), thus changing their permanent
charge, and probably shape and conformation as well, and
perhaps thereby gating the channel. Nonetheless, in this
paper, the structure and distribution of the permanent charge
of the channel are kept fixed as solutions and transmem-
brane potential vary. We wish to see how well a fixed
version of the theory, describing a channel of one confor-
mation and composition, can predict such changeable data.

Here we consider the channel made by the synthetic
protein that is a bundle of six amphiphilic a-helices [acetyl-
(LeuSerSerLeuLeuSerLeu);-CONH,], with an acetylated
amino as the N-terminal group and a carboxamide as the
C-terminal group, both formally uncharged (Akerfeldt et al.,
1993). LS (as we call it) was designed (Lear et al., 1988) to
be a bundle of a-helices that can be described more or less
as a macrodipole (Wada, 1976; Hol, 1985). Strictly speak-
ing, a macrodipole is a spatial distribution of fixed (i.e.,
permanent) charge rather like a dumbbell, made of equal
and oppositely signed charges near the ends of a cylindrical
molecule, bracketing a central charge-free region. Speaking
less strictly, the central region might contain a uniform
density of charge, arising, for example, from the hydroxyls
of serine residues.” Still less strictly, the end charges might
be inherently unequal (Agvist et al., 1991; Sitkoff et al.,
1994, and references cited therein), or they might be effec-
tively unequal if, for example, charged headgroups of ad-
jacent lipid molecules produced significant shielding.

Placed in a lipid bilayer, LS makes a channel 30 A long
with a pore diameter of 8 A (Kienker et al., 1994; Kienker
and Lear, 1995), reminiscent of natural channels. The se-
lectivity of LS (as traditionally defined by the reversal
potential) varies substantially with bathing solution. Inter-
estingly, the single channel shows strong N-ward rectifica-
tion (i.e., more current flows from C-terminal to N-terminal
than vice versa: Kienker et al., 1994; Kienker and Lear,
1995), even in symmetrical solutions, where the gradient of
electrochemical potential is nearly zero.

We loosely describe the permanent charge at the ends of
the channel as a macrodipole (using one adjustable param-
eter), bracketing permanent charge in the central region
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(described by one other parameter), and show that the PNP
equations can predict the wide range of behavior observed
experimentally as solutions and membrane potentials are
varied, if two additional parameters are used to describe the
diffusion of K™ and Cl~ in the channel’s pore. The IV
curves predicted from this distribution of permanent charge
rectify in symmetrical solutions. In particular, the reversal
potential (the potential at which zero current flows through
the channel) changes dramatically as solutions are changed,
even if, for example, solutions are simply interchanged from
onc side of the channel to another: the selectivity of the
predicted channel changes as solutions are changed.

THEORY AND METHODS

We present PNP theory here to make the paper reasonably self-contained,
following the suggestion of the reviewers and the editor, although nearly
the same presentation has been published in the review of Eisenberg
(1996a) that summarized the original papers (e.g., Chen and Eisenberg,
1993a,b).

The program that executes this numerical procedure is written in FOR-
TRAN 77 and is available to anyone who requests it. The program has been.
compiled and run easily on a number of systems, and we think it (or its
equivalent) is needed to develop a qualitative feel for the PNP equations:
the system is so nonlinear (see Fig. 11) that we find it necessary (for
physical understanding and subsequent biological intuition) to actually
compute and plot the potential profiles and concentration profiles, for every
membrane potential and pair of concentrations of interest.

The channel is described in this theory as a one-dimensional structure of
radius r and length 4, extending from x = O on the L (or left or N or inside
of the channel) to x = d on the R (or right or C or outside). The baths
extend to infinity where the concentrations of ions Cj(—=) = C{(L) and
Cj(+») = C{(R) (units: c¢m™>) and the potentials (units: volts) ¢{—) =
¢(L) are maintained at desired values by the experimenter and his appa-
ratus.® Theoretical expressions are written in terms of dimensionless po-
tential functions ®(-), and the (dimensional) potential difference Vappt
applied to the baths, which we often loosely call the transmembrane
potential, following laboratory practice (see Eq. 4):

ee(*) Fol-)
ksT ~— RT 1)

Vappl = (P(L) - ‘P(R)

Usually ¢(+2) = ¢(R) = 0 and ¢(L) = V,,;. Here, e is the charge on a
proton; F is Faraday’s constant, the charge on Avogadro’s number of
protons; the thermal energy kgT or RT is given by the product of T, the
absolute temperature in degrees Kelvin, and kg, the Boltzmann constant, or
R, the gas constant.

() =

Donnan potential

Permanent (i.e., fixed) charge at the ends of the channels P(0) and P(d)
creates Donnan or built-in potentials in the baths ®,(0), ®,,(d), assumed
independent of current flow. With this approximation,’ these are easily
computed because the bathing solutions are made of (nearly) equal
amounts of cations and anions, viz., Z_, 3 C(L) = Z, C{(R) = 0. Then,

VPX(0) + 4C\(L)Cy(L) + P(0)

q)bi(o) = loge 2C2(L)

(2)

VP*(d) + 4C,(R)Cy(R) + P(d)

q)bi(d) = loge 2C7(R)

3
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The potentials on each end of the pore, and from one end to the other, are

e
P(0) = ®,,(0) + kT Va

ppl
®(d) = P,(d) 4)

A = Vappl + (Pbl(o) - (pbx(d)

Note that the potential A (between x = 0 and x = d) is not the transmem-
brane potential V, , measured between the electrodes (i.e., between x =
L — —oand x = R — +) that is used as the independent variable in most
measurements of IV relations.

The concentrations just outside the channel C;(0) and Cy(d) can easily
be computed because the baths are assumed at equilibrium, even when
current flows, so

Cj(O) = Cj(L)exp[_qu)bi(O)]

(5)
Cj(d) = C_;(R)CXP[_qu)bi(d)]-

Thus the permanent charge at the ends of the channel P(0) and P(d) are
used to compute the potential drop between the electrodes (at *%) and the
ends of the channel (using Eqs. 2 and 3). The potential drops are then used
to compute the concentrations at the ends of the channel.

Poisson’s equation® determines the potential from the charges present:

Permanent Channel Induced charge
charge contents
do -
—EuEo gz = eP(x) + eszCj(x) + E[A(1 — xd) — ¢(x)].
j
Deviation from
constant field

(6)

The concentrations P(x) and C(x) are one-dimensional representations of
numbers of particles per unit volume (e.g., cm™>). They are effective
concentrations. The dielectric properties of the channel protein and its
watery pore (radius r, length d) are described by the permittivity of free
space &, (units: coulombs - volt™' - cm™'); the (dimensionless) dielectric
constants €, and &y, respectively; and the effective dielectric parameter®
€ (units: coulombs - volt™' - cm™3):

-~ _ Sp 280 7
€= oo An’ 7
Nemst-Planck equations determine the flux J; (units: cm™ - s7') of each ion j,
Diffusion Migration
J; = —D; dc; dd | (8)
P T

where D; is its diffusion coefficient.

The Nemst-Planck equations (Eq. 8) can be integrated analytically to
give expressions for the concentration of ions in the channel, namely the
channel’s contents:

) < GO exp [P0) — P)]- [ exp 5P(Q)de
i = Texp 500l

©)
. Gld) - exp 3[P(d) — B()]- [ exp 3 P(D)dL
Sy exp 5®(¢)d¢ '

This system of equations (Eqs. 6 and 9) must be solved simultaneously
because the potential depends on the concentrations Cj(x) through the
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Poisson equation (Eq. 6), but the concentrations also depend on the
potential through the integrated Nernst-Planck equations (Eq. 9). Indeed,
the concentrations depend exponentially on the potential.

A different integration of the Nernst-Planck equations shows that flux
and current / also depend exponentially on the potential profile:

D Cj(L)eXp(ZjVappl/kBT) - CJ(R)‘
1T J5 exp z®(x)dx ’

I=7r 3 ey,
J
(10)

which can be rewritten to emphasize the symmetry of the problem:

J. =D G
177 fdexp z[®(x) — gVipplksTldx
1y
o G®
) [Texp z®@(x)dx

The Nemst-Planck equations can be derived from the stochastic de-
scription of the motion of a single charged particle. Eisenberg et al. (1995)
prove that

expl(gViptksT) _

Udf3exp z®(x)dx Prob{R|L};
(12)

1/d[§ exp z;P(x)dx = Prob{L[R}.

They show that the concentrations Cj(x) describe the mean values of the
probability of an ion being at location x: the Nernst-Planck equation is not
a (perhaps vaguely derived) continuum approximation, but rather an exact
description of the probability density function of the location of discrete
particles.

Equation 11 predicts the charge accumulated in the patch pipette or
electrode during the sampling time of the current measurement, typically
5-50 us. Because the passage time of trajectories is much faster than that
(160 ns for a channel that always contains one ion and passes 1 pA of
current; see similar estimates from the simulations of Cooper et al., 1985;
Chiu and Jakobsson, 1989; Barcilon et al., 1993; Eisenberg et al., 1995)
and atomic motions are very much faster yet (ranging from 10™'* s for
solvation (Stratt, 1995) to, say, 107! s for motions of the atoms of the
protein), the current measurement is necessarily an average of a large
number of individual stochastic events. The potential that describes this
averaged current must then also be an averaged potential (some sort of
“‘potential of mean force™), and the parameters linking potential and current
(e.g., diffusion coefficients and permanent charge densities) must also be
averaged (i.e., effective parameters). Of course, they—most importantly
the permanent charge profile P(x)—are also spatial averages, and so they
are effective parameters in that sense as well.

The essential postulate of PNP theory is that the average potential of the
Nemnst-Planck equations is described by the average potential of the
Poisson equation and its effective parameters (listed in note 4 and Eq. 20).
Similar mean field approximations are widely used in many fields of
science (See citations in Eisenberg, 1996a). The closely related Vlasov
equation of plasma physics is derived from statistical mechanics in Balescu
(1963, 1975). Balian (1992), Kersch and Morokoff (1995), and Syganow
and von Kitzing (1995) use a generalized Vlasov model essentially the
same as our PNP theory to describe the open channel.

Determining parameters

The MINPACK version of the Levenburg-Marquardt algorithm (Johnson
and Faunt, 1992; Press et al., 1992, p. 683; Moré et al., 1980), performed
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the least-squares fitting, converging in some two to four iterations per
parameter, when starting from a reasonable but not ideal initial guess. The
curve fit to the four-parameter macrodipole model (see Eq. 20) took some
8 h of cpu time; the curve fit to the seven-parameter SVD model (see Eq.
14) took some (7/4)> X 8 = 24 h on our workstation, an IBM RS/6000
model 550, with a floating point performance of some SPECfp92 = 72.

The SVD calculation was done with a corrected and tuned version of the
routine in Press et al. (1992). The SVD analysis of the four-parameter
macrodipole model (see Eq. 20) took some 45 min, and the seven-param-
eter SVD model (see Eq. 14) took some (7/4)* X 3/4 = 2.2 h to compute
on our system.

Comparing the data set of Kienker and Lear (1995) with the flux
predicted by the PNP equations for one set of adjustable parameters'®
requires the computation of some 15 IV curves, one for each solution, each
containing 201 individual /V points (which are samples of the more or less
continuous IV curve actually measured). The data set includes, of course,
all of the information sometimes plotted as curves of reversal potential
versus concentration and (the operationally-defined chord or slope) con-
ductance (i.e., [AI/AV], . o or [8]/8V], - o) versus concentration.

It is important to state the “‘ground rules” of these comparisons of theory
and experiment. The distribution of permanent charge; the length, radius,
and dielectric constants of the channel protein; and the diffusion coeffi-
cients in the channel's pore are the same at all potentials and in all
solutions. Indeed, no parameters of the model are changed from solution to
solution or applied potential to potential, other than the concentrations and
applied potentials themselves. Unless otherwise indicated, only four pa-
rameters were adjusted to fit the data, namely, the two diffusion coeffi-
cients in the channel's pore Dy and D¢, and the two values of the
permanent charge P, and P,:

P=P0=x=x)=—(d-x)x)Pk,=x=d):

P=P(x; <x<ux). (13)

The optimal values of the diffusion coefficients Dy and D, and the
parameters of P(x) are determined by minimizing the summed-square
deviation between experimentally observed and theoretically predicted
current. Because the PNP equations are strongly nonlinear (see Fig. 11),
nonlinear least-squares curve fitting was used rather as it was used some
time ago by Eisenberg (1967) and Valdiosera et al., (1974) in another
context. As we shall see, the number and type of parameters needed to
characterize P(x) were determined using a newer method, kindly brought to
our attention by Prof. Nonner (Franciolini and Nonner, 1994), singular
value decomposition (SVD for short). For example, if P(x) is the type of
macrodipole shown in Fig. 6, characterized by parame‘lcrs x, and x, (the
location of the steps in charge) and charge densities P, P,. and P, (defined
later in Eq. 15), SVD shows that the Kienker-Lear data set allows mea-
surement of two parameters of the macrodipolar charge distribution—e.g.,
P, and P,—and the two diffusion coefficients of the tons—Dy and D—
but the existing data do not allow reliable estimation of x, and x, them-
selves. No attempt was made to optimize the values of the other parameters
in the theory, namely r and d (see note 19).

Singular value decomposition

The SVD is useful for us because it provides a rigorous and easy way to
determine the number of (linearly independent) parameters that can be
estimated from an existing data set. Without SVD, this is a difficult
problem (Hamilton. 1964). The SVD is essentially a linear analysis. how-
ever. so it provides this information only in one neighborhood at a time.
That is to say, SVD tells how many parameters can be independently
determined in the vicinity of some particular values of those parameters,
say,

I

{B,(SVD)} {Dx, Dcilx;. x|Py. Py, P}, (14)
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where

P,=P0=x=x); P,=Plxs=x=x)

(15)
P3EP(X25de),

as defined in Fig. 6. Note that for the singular value decomposition. we use
a larger parameter set than used in the final curve fit: the final parameter
set is a subset of parameters that is well determined according to the SVD.
In particular, for the SVD we allow the locations x,; x,; x5 to vary and we
do not require the charge on the two ends of the macrodipole to be equal;
i.e., in the SVD, P, does not equal —([d — x,}/x,)P5. Aquist et al. (1991)
and Sitkoff et al., (1994, and references cited therein) discuss the chemical
evidence for the equality of charge at the two ends of a-helices.

Not all data sets have the same effect on the SVD. IV relations measured
in some solutions (e.g., asymmetrical solutions) are far more useful in
defining parameters than in others (e.g., symmetrical solutions). The SVD
reflects this intuitive reality; it gives different results, depending on the
bathing solution in which the data set is measured. Indeed, much of the art
of experimentation is to choose experimental conditions (and variables to
be measured) that yield well-determined estimates of the parameters of
interest. SVD serves as a theoretical foundation for experimental design; it
buttresses the experimental superstructure with objective pillars, estimates
of error.

Here is how we have performed the singular value decomposition of a
curve fit of PNP to data. The inputs to the theory are 1) the structure of the
channel (its permanent charge, diffusion coefficients, length, diameter, and
dielectric constants; see Eq. 14 above); and 2) experimental conditions
(i.e., bath concentrations Cy(L) and Cy(R) and transmembrane potential
V,pp1)- The outputs of the theory are the predicted /V relations I(Vapp,ICk(L):
C,(R)|B,). This forward mapping can be represented symbolically (see
Eisenberg, 1996a). When we use the theory to estimate the adjustable
parameters f3;,, we consider the inverse mapping shown in Fig. 1.

We use SVD to construct a linear approximation to the above inverse
mapping near values S (of diffusion- coefficients and the permanent
charge) that together fit the data. For example, we might determine the best
least-squares estimate of the parameters {Dy, Dg|x,, x,|P,. P,, P3} by the
(nonlinear) Levenberg-Marquardt procedure and then linearize and per-
form SVD around those values. Fig. 2 shows the least-squares linear
approximation to the inverse operator (derived in many texts on linear least
squares, e.g., Clifford, 1973). Here, the column vector {1} lists all of the ¥
measured currents being used to fit the data. The currents might come from
different experiments with different membrane potentials and/or bath con-
centrations. The column vector {;] of J adjustable parameters is the best
nonlinear least-squares estimate of the value of these parameters. J might
be called a “Jacobian™ or sensitivity matrix, with elements 41,/3f3; giving
the derivative of the data with respect to each adjustable parameter. J7 is
its transpose, and the superscript ~ 1 indicates the inverse matrix operation.

INVERSE Inputs Least Squares Outputs
PROBLEM Fitting
_ Experimental Data
Current Yoltage
__ Rolations
N
Experimental Conditions PNP -1 Adjustable Parameters 3 J
Mombrane Potential | —y — Diffusion Coefficients
Bath Concentrations Permanent Charge
Constant Pargmeters 1
Length & Diameter
Dielectric Constants
FIGURE 1 The inverse problem by which the PNP equations are used to

estimate (parameters of) the structure of the channel and the diffusion
coefficients of ions.
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INVERSE Linearized  Measured Adjustable
PROBLEM PNP’  Currents Parameters
(linearized)
Ly B J (SVD)
D
I, K
12 DCI
r——/T X 1
[yma]ar ' = X,
1 Pl
N-1 1)2
IN
A

FIGURE 2 A linearized version of the inverse problem.

Note that some parameters may not be well determined by the combination
of data and theory (as will turn out to be the case for x, and x, in the present
situation).

In practical applications, experiments are usually designed to yield
redundant data, thereby reducing the effect of noise and uncertainty;
specifically in our case, the number of current samples far exceeds the
number of adjustable parameters in the PNP equations. The matrix [JTJ] is
then nearly singular (because many of the data are redundant, rows/
columns of the matrix are linearly dependent, and so different combina-
tions of parameters can fit the somewhat noisy experimental data equally
well).

The problem is how to define the inverse of the nearly singular matrix.
The SVD solves the problem: it is the best estimate, in the least-squares
sense, of the underdetermined parameters of theory; it provides the best
approximation to the inverse of the overdetermined system of equations
(see Press, et al.,, 1992, p. 670, for discussion and implementation; van
Huffel and Vandewalle, 1991, for references and proofs; Kalman, 1996,
provides a wonderful overview; Horn and Johnson, 1985, pp. 415-417, is
valuable; Golub and van Loan, 1983, is the classic reference).

The SVD provides the singular values {s,} = {5}, 55, ..., 5, ..., 0,
0, ..., 0}. The number of zeros in the vector {s,} is the number of
parameters that are not well determined by the data.'' In this way, the
singular values in {s.} tell how many but not which parameters are well
determined; a single SVD does not directly tell which parameters are well
determined by the data, because the parameters are combined (linearly) in
the curve-fitting process.

The well-determined parameters are identified by considering the sin-
gular values of a model and the correlation coefficients between its pa-
rameters (shown in Table 2). The number of redundant parameters is
determined from the vector {s,}. The ill-determined parameter(s) are
identified by eliminating parameters from the set {3}, one at a time. The
SVD is then performed on each of the correspondingly reduced problems,
with sensitivity matrices J{one fewer parameter], J[two fewer parame-
ters], . .. (with parameter sets {f;_,} {B;-2},-.-. etc.). When all of the
singular values of a reduced matrix are significantly larger than zero, the
corresponding set of parameters is well determined. In other words, one
chooses the largest set of parameters that give a set of singular values all
significantly larger than zero.

More than one set of well-determined parameters may exist for a given
data set, because any linear orthogonal transformation of well-determined
parameters is also well determined. The correlations between parameters
are different, however, for the different sets, and this fact helps distinguish
between the sets. Of course, physical, biological, and structural information
helps even more. That is in fact why in this paper we constrain the total
charge to be equal on the two sides of the channel protein (see Eq. 13)."2
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Quality of fit is measured by

a*(Iy) = var(curve fit)
(16)

1 n=N
N > [I(theory) — I (experiment)]*.
n=1

o?(Iy) is the variance of the fit between theory and experiment (not to be
confused with the variance a'J2 of the parameters f3;).

Chemical solutions

In all calculations the concentration variables C; were actually activities
estimated as if they were properties of bulk solution (e.g., Kienker and
Lear, 1995). No one knows how to compute activity coefficients inside a
channel a priori or in concentrated (i.e., physiological) ionic solutions
outside a channel in an ordinary bulk solution, for that matter. Indeed, there
is a considerable controversy about how to compute changes in activity
when mixtures of solutes are present in different concentrations in different
regions of a solution, even in well-defined physical systems of bulk phases
at equilibrium (see the 18 references cited in Krukowski et al., 1995).
Away from equilibrium, where large fluxes flow, just defining the appro-
priate variables (analogous to free energy or activity) is a significant
challenge to statistical mechanics that evidently has not yet been met
(Keizer, 1987, Schonert, 1994; Lee and Rasaiah, 1994; Vlad and Ross,
1995).

RESULTS

Ionic channels are often named by their selectivity (for
example, as K™ or anion channels), and their selectivity is
characterized by a single number, as a rule, using “constant
field” theory (Hille, 1992), however much that rule of
constant field has been ““proved”'? by its exceptions. The LS
channel is one of those numerous exceptions. Kienker and
Lear (1995) find that the apparent selectivity Py/Pq, of the
LS channel depends dramatically on ionic conditions. Figs.
3 and 4 show current-voltage relations recorded by them in
symmetrical and asymmetrical solutions. (Kienker and Lear
recorded IV curves as more or less continuous functions,
and 201 samples were taken from each for our analysis.
Only a subset of these 201 points is shown in each graph for
appearance’s sake.) Perhaps Fig. 5 shows the most striking
result, namely the change in reversal potentials when the
(approximately) 114 mM and 1040 mM solutions are inter-
changed from the C-terminal (in)side of the channel or the
N-terminal (out)side.'* Then the reversal potential changes
from —37 mV to +18 mV. Fig. 5 also shows the currents
carried by individual ions igx and i). The intuitive idea of
selectivity is a measure of the relative size of the driving
force for each ion when the applied potential is the reversal
potential, the potential at which the total current through the
channel (carried by both ions) is zero. If |V, — Vi| <<
|Veew — Vil the reversal potential for the channel ap-
proaches the equilibrium potential for K and the channel is
said to be a K channel (where Vi ¢ is the equilibrium (i.e.,
Nernst) potential for each ion). If |V,,, — V| << |V, —
V|, the reversal potential for the channel approaches the
equilibrium potential for C1™ and the channel is said to be
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FIGURE 3 Current-voltage relations in symmetrical solutions. The cur-
rent flowing through a single open LS channel is shown as a function of
Veppt» i-€., the transmembrane potential for several different solutions.
[KCl]} means the concentration of [KCl} on the N-terminal or inside of the
channel; {KCl]. means the concentration on the C-terminal or outside. IV
curves were measured by Kienker and Lear (1995) as more or less con-
tinuous functions, and 201 samples were taken from each for our analysis.
Only a subset of these 201 points is shown in each graph for appearance’s
sake. The theoretical curves, labeled PNP, were computed from the least-
squares fit of the PNP equations as described in the text and the caption to
Fig. 7.
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a CI™ channel. The current flow of each ion has the same
magnitude at the reversal potential (otherwise the total
current could not be zero), but the driving force needed to
make the current zero is not the same. Less driving force is
needed if the magnitude of the “conductance at reversal” for
K" (defined as, say, g,..(K) = ix/(V,e, — Vg)) is greater
than the analogous conductance for C1™. In other words, the
channel is selective for the ion with the greater conductance
at the reversal potential.

Fitting data

Fig. 6 (lower panel) shows the structure of the LS channel
(Wasserman, personal communication; Lear et al., 1988)
and its pore, approximated (see thick gray lines in the
figure) as a circular cylinder, with length d = 30 A and
radius r = 4 A. The atoms that appear within the channel are
actually projections of atoms within the walls of the chan-
nel. The channel was designed to be a bundle of a-helices
that can be described more or less as a macrodipole (Kien-
ker et al., 1994; Kienker and Lear, 1995), with equal
amounts of permanent charge at each end (Wada, 1976;
Hol, 1985). In the PNP equations used here, the three-
dimensional distribution of permanent charge of a protein is
represented by the one-dimensional (effective) parameter
P(x)!°: in particular, we describe the chemical structure of
the LS channel as three steps in P(x) (Fig. 6). )

The charge density (per unit length) at the N or in or left
side of the channel protein is P, = P(0 < x = x,). The total
charge at one end of a macrodipole is supposed to equal the
charge at the other (that is, after all, what we mean by
“dipole” or *“macrodipole,” strictly speaking; however, see
note 12), and the diameter of the channels is supposed to the
same everywhere. Thus,

macrodipole charge density is
a7
(d—x)Px,=x=d)

X

Pi=P0=x=x)=

The charge density in the central region of the channel
P, = P(x; < x < x,), bracketed by the macrodipole,
probably comes from the hydroxyl groups of the serine
residues of LS.'® But it might also come from other local
properties of the LS channel protein (Agvist et al., 1991;
Sitkoff et al., 1994, and references cited therein).

The fixed charge of the LS protein is, of course, shielded
by surrounding ions, as discussed semiquantitatively by
Kienker and Lear (1995); in general, we use the PNP
equations to quantitatively understand and predict the
shielding of the fixed charge by (mobile) ions in the bathing
solution and in the channel’s pore.'” Poisson-Boltzmann
theory also describes such shielding, but PNP is valid away
from equilibrium, in the presence of flux, where channels
usually work, and Poisson-Boltzmann is not.
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i.e., the transmembrane potential for several different solutions. [KCl] means the concentration of [KCl] on the N-terminal or inside of the channel, [KCl]
means the concentration on the C-terminal or outside. The theoretical curves, labeled PNP, were computed from the least-squares fit of the PNP equations
as described in the text and the caption to Fig. 7. IV curves were measured by Kienker and Lear (1995) as more or less continuous functions, and 201
samples were taken from each for our analysis. Only a subset of these 201 points is shown in each graph for appearance’s sake.
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FIGURE 5 Current-voltage relations in asymmetrical solutions. (a) The
current flowing through a single open LS channel is shown as a function of
Vappr 1.€., the transmembrane potential for several different solutions.
[KCl], means the concentration of [KCl] on the N-terminal or inside of the
channel: [KCl]- means the concentration on the C-terminal or outside. The
theoretical curves, labeled PNP, were computed from the least-squares fit
of the PNP equations as described in the text and the caption to Fig. 7. IV
curves were measured by Kienker and Lear (1995) as more or less con-
tinuous functions, and 201 samples were taken from each for our analysis.
Only a subset of these 201 points is shown in each graph for appearance’s
sake. (b) The currents carried by individual ions iy and i, are shown. The
ratio of the magnitude of these currents is one unambiguous measure of
selectivity, although it depends on “driving force” (i.e., gradient of elec-
trochemical potential) as well as on channel properties.
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SVD analysis

An SVD analysis was performed as described in the Theory
and Methods section. The parameters used in the SVD
analysis were the diffusion coefficients, locations, and den-
sities of permanent charge, respectively. In this SVD anal-
ysis, P,, P,, and P are adjustable parameters. They are not
constrained by Eq. 17.

Preliminary parameters of the SVD are {B;(SVD)} =
{Dx, Dqylx,, x,|P,, P>, Py}, with best fit values

{B{(SVD)} ={Dx = 9.7 x 107,

D¢ = 8.4 X 107 7cm’s '|x, = 5.7,
x, =279 AP, =036, - (18)
Py=—0.19, P, = =55 M},

The standard deviation of the fit o; (preliminary) = 0.256
pA (see Eq. 16). Note that these preliminary values are not
final, because two of the singular values were much smaller
than the largest (Press et al., 1992, p. 672):

Preliminary singular values

{1.2 X107, 8.6 X 10, 2.7 x 10% 3.4 X 10%;

2. AQ. (19)
2.7 X 10% 28; 0.94}.

The existence of singular values that are a small frac-
tion'® of the largest shows that the matrix is nearly singular,
i.e., the system is overdetermined. In this situation, the
parameter values and resulting fits are not terribly mean-
ingful, and so it is necessary to trim the number of param-
eters, lest our numerical results be contaminated by the
singular nature of (some of the) matrix operations arising (in
part) from the poorly determined parameters.

On physical grounds we require the channel to be more or
less a macrodipole, with equal but opposite charges at the
two ends (see Eq. 17 and note 12). We see how well this
simple model of the protein can fit the /V relations measured
in 15 solutions. We also choose to delete the locations x,
and x, from the set of adjustable parameters. The reduced
(four-parameter) model is then evaluated by SVD to con-
firm that it is not singular. Finally, we verify that the
reduced macrodipole model can fit the data with reasonable
parameter values. The macrodipole model has four adjust-
able parameters Bj(MD):

Macrodipole parameter set

{Bj(MD)} = {Dx. DC1|P1~ Po}
(20)

= {2.1 X 107%,2.6 X 107" cm’s~'|0.71, 0.47 M}.
The four singular values of this set are

Macrodipole singular values

{6.1x10° 3.8X10% 1.7X10% 3.9X10%}. (21)
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FIGURE 6 Permanent charge density and structure of the LS channel.
(Bottom) Chemical structure of the channel (Wasserman, personal com-
munication; Lear et al.,, 1988), with each thin dark line representing a
chemical bond. The dark wide line represents the structure used by the
theory. (Top) Profile of permanent charge P(x) which fits all the data. P(x)
is a one-dimensional representation of the permanent (i.e., fixed) charge of
the protein. In the curve-fitting procedure, no parameters were changed
from solution to solution or potential to potential, except the solutions and
potentials themselves. The parameters were computed from the least-
squares tit of the PNP equations to all the currents measured in |5 solutions
shown in Table I, allowing four parameters BJ(MD) to vary, the two
diffusion coefficients and the two parameters needed to specity permanent
charge, namely {Dg, D, |P,, P-} as defined in Eq. 11. Table 2 shows the
results. The absolute rms error in the curve fit is 0.25 pA, corresponding to
a relative error of 3.6% rms (see text). Almost all theoretical points are
within 7% of the corresponding measurement. Our best estimates of the
parameters { Dy, D[P, P.} are Dy = 2.1 X 107%and D¢, = 2.6 X 1077
cm?/s, approximately 1/10 or 1/100 of their free solution values. The total
charge at the ends of the macrodipole is =0.12e, giving unequal concen-
trations of 0.71 M = 0.021¢/A on.the N-side (0 < x < 5.7 A) and - 1.9
M = —0.058¢/A on the C-side (27.9 A = x < 30 A). Thus the built-in
potentials ®, (0), P,,(d) are not equal in our macrodipole model. In the
central region (5.7 A < x < 27.9 A), 22 A long and 8 A in diameter, the
total charge is 0.31¢ and its concentration is P, = 0.47 M = 0.014e/A.
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The locations x; and x, were simply set to reasonable
values, close to the SVD best fit (but ill-determined) values
of Eq. 18, namely x, = 5.7 A; x, = 27.9 A. The standard
deviation of the curve fit was o (macrodipole) = 0.256 pA
(four parameters; current-voltage relations measured in 15
solutions: 3015 data points altogether) compared with the
standard deviation of the curve fit made with seven param-
eters 0;(SVD) = 0.256 pA.

The best estimates of the parameters'
macrodipole model are

9 of the reduced

e At the ends of the macrodipole the total charge is
*0.12e¢, giving unequal concentrations of 0.71 M =
0.021e/A on the N-side (0 = x = 5.7 A)and —1.9M =
—0.058¢/A on the C-side (27.9 A = x = 30 A). Thus the
built-in potentials ®;(0), ®,;(d) are not equal in our
macrodipole model in most solutions.

e In the central region, the total charge is 0.31e and its
concentration is P, = 0.47 M = 0.014¢/A in that
region (5.7 A<x<279 A), which is 22 A long and
8 A in diameter.

e The diffusion coefficients are Dy = 2.1 X 107° and
D, = 2.6 X 1077 cm?/s, approximately 1/10 or 1/100 of
their free solution values.

Table 2 shows standard deviation and correlation coeffi-
cients of the parameters. Note the strong correlation p(Dy,
P,) = 0.98 between the estimates of the diffusion coeffi-
cient Dy and the central permanent charge P,.

Results of curve fits

Figs. 3-5 also show representative fits of the theory to most
of the data taken in the solutions defined in Table 1. It is
worthwhile to reiterate the rules of the curve fit. The nu-
merical values of the diffusion coefficients and permanent
charge densities are least-squares estimates; that is to say,
they were found by minimizing the summed-square devia-
tion between theoretical prediction and experimental result.
All data points were treated equally, and no parameters of
the theory were adjusted from solution to solution or poten-
tial to potential,-except the bath concentrations and poten-
tials themselves. Returning to those figures, we see that the
fit is quite satisfactory. The standard deviation of the curve
fit (per point) was o{macrodipole) = 0.26 pA. The rms
value of all of the measured currents was 7.0 pA, showing
that the normalized error was 0.26/7 = 3.7%: some 95% of
the theoretically predicted currents are within 2 SD (i.e.,
within 2 X 3.7 = 7.4%) of the experimental values. The fits
are also quite robust. If some of the data are removed from
the data set, fits are not changed significantly.*

The quality of the fit of theory to data surprised us,
considering the paucity of adjustable parameters and the
difficulties faced by traditional theories (Kienker and Lear,
1995). The PNP equations evidently capture some proper-
ties of the channel reasonably well: the change in shielding
predicted by the theory is enough to explain the measured
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TABLE 1 Solution data

Symmetrical solutions

Asymmetrical solutions

N-side = C-side

KCl1 (mM/liter) KCI (mM/ KC1 (mM/liter) KCl (mM/
Concentration liter) Activity KClI Dilution Concentration liter) Activity
N-side|C-side N-side|C-side N-side|C-side N-side|C-side
1000 605 | 605 2XN 500 | 1000 328608
500 321323 2xC 1000 | 500 608 | 317
250 171]175 4 XN 250 | 1000 169|619
4xC 1000 | 235 625] 165
125 91.5/94.3 8 X N 114 | 1040 86.3 | 625
8 xC 1060 | 115 636 |87.0
70 54.5|56.3 16 X N 69.3 | 1080 55.1|647
16 X C 1070|527 641|42.9
32 XN 35.7] 1120 29.9 | 669
32xXC 1080 | 23.6 646 | 20.4

The activities are calculated in Kienker and Lear (1995). The solutions are named by the side of the channel which is diluted, following Kienker and Lear
(1995). Thus, 8 X N means the solution on the N side is diluted 8 X compared to the solution on the other side.

IV relations without invoking ad hoc mechanisms or struc-
tural or conformation changes described by many adjustable
parameters.

The PNP equations are able to fit these data because the
(average concentration of) ions in the channel’s pore change
automatically as conditions (i.e., bath concentrations and
trans-membrane potential) change (see Figs. 9-11). The
permanent charge on the channel protein does not change;
thus the potential profile must change so it and the concen-
tration profiles can simultaneously satisfy the Poisson and
Nemst-Planck equations (and boundary conditions). A self-
consistent treatment of shielding (which is what PNP is, in
essence) seems sufficient to explain all of the data using a
minimal set of adjustable parameters with quite reasonable
values (see Discussion). Evidently, atomic details of the
structure have little effect on /V relations shown here, but
averages (of some type) of these atomic details presumably
determine the effective parameters we use here to fit the
data.

Inside the channel, the changes in the profiles of potential
and concentration (as experimental conditions are changed)
are substantial, as we shall soon see; the resulting changes
in flux are larger, because flux is an exponential function of
the potential profile.

Inside the channel

The following figures show potential and concentration
profiles in two similar situations. Fig. 7 shows the occu-
pancy of the channel (actually, its absolute value, given in
units of elementary charge); that is to say, it shows the
spatial integral of the concentration, in these same solutions,
at different membrane potentials V,,;. The occupancy var-
ies significantly with membrane potential and thus so does
the total charge within the channel’s pore (i.e., the sum of all
occupancies, weighted by charge).

Fig. 8 shows the concentration profile in and near a
channel in the 8 X N solutions®’ and in its mirror image, the

Occupancy vs Membrane Potential
for 8xN and 8xC dilutions

1.0 ¢ : , .
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FIGURE 7 The occupancy of the channel in various solutions at various
membrane potentials (occupancy given in units of the elementary charge
on one proton). The occupancy is defined as [§ Cx(x)dx or f4C(x)dx, with
the concentrations computed from the PNP equations with parameters
computed from the ieast-squares fit of the PNP equations as described in
the caption to Fig. 4. The occupancy varies significantly with concentration
and potential. The change in occupancy is, crudely speaking, on the order
of 0.1¢ or 5% from one condition to the other. Changes in charge of this
amount generally produce large changes in potential (see Figs. 10 and 11).
The theoretical curves, labeled PNP, were computed from the least-squares
fit of the PNP equations, as described in the text and the caption to Fig. 7.

8 X C solution defined in Table 1. In the 8 X N dilution, the
channel has 114 mM KCl on the N-terminus (here left or in)
side, and 1040 mM KCI on the C-terminus (here right or
out) side. The equilibrium potential for K*/Cl1~ is +/—132
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FIGURE 8 The concentration along the channel in two different solu-
tions. The concentration is shown in the baths, as computed by Gouy-
Chapman theory, and in the channels, as computed by the PNP equations,
using the parameters determined from the least-squares fit of the PNP
equations, as described in the text and caption to Figure 7. The profiles of
concentration vary significantly from solution to solution.

mV (inside-outside) and the reversal potential observed by
Kienker and Lear was + 18 mv, i.e., the channel was a K*
channel. The solutions and equilibrium potentials are (ap-
proximately) interchanged to make the 8 X C dilution, but
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the reversal potential found by Kienker and Lear was —37
mV. The LS channel is a better K* channel in the 8 X C
solution: its reversal potential is larger in magnitude, closer
to the equilibrium potential for K™, in that solution. The
figure shows the concentration profile computed within the
channel by the PNP equations, and the concentration profile
outside the channel in the baths computed by the Gouy-
Chapman theory of the built-in or Donnan potential
(McLaughlin, 1989; Green and Andersen, 1991).%* Note the
substantial difference in the profile in the two solutions.

Fig. 9 a shows the potential profile of a channel.* Fig. 9
b shows the change in the potential profile between the § X
N and 8 X C solutions. The baths are omitted for the sake
of clarity. The change in potential energy (eV) is substan-
tial, particularly compared to the thermal energy, kg7 =
25 meV.

Together, Figs. 8 and 9 explain why the reversal potential
for the channel is different in the interchanged solutions. We
need consider only K* because its (estimated) diffusion
coefficient is so much larger than that for chloride that it
carries most of the current. Fig. 9 a shows that the differ-
ence in potential from one side of the channel to the other is
about the same in the two solutions, but Fig. 8 shows that
the K™ concentrations are very different in the two cases;
the K™ concentration is larger in the 8 X C solution and the
gradient is much less. The CI™ concentrations are more or
less the same in the two solutions, and so the channel is
more nearly a K™ channel in 8 X C solution.

Fig. 10 shows the importance of shielding.”> The panels
are computed for two different transmembrane potentials
Vappt = £100 mV. Each panel shows three potential pro-
files ¢(x) predicted by the PNP equations for different
contents of the channel. The short dashed lines show the
potential profiles ¢(x) predicted for the 62.5 mM symmet-
rical solution listed in Table 1 using the parameters 3;(MD)
of the macrodipole model with the values shown in Eq. 20.
The solid lines show the potential profiles ¢(x) predicted
when ions are absent from the surrounding baths and are
excluded from the channel’s pore. In this case, the perma-
nent charge of the channel protein is not shielded by ions,
but only by induced charge. The long dashed lines show the
potential profile ¢(x) predicted when ions are excluded from
the channel’s pore but are present in the bath. In this case
the Donnan or built-in potentials are present; the permanent
charge of the channel is shielded by the ionic atmosphere in
the baths (and by induced charge) but not by ions in the
channel’s pore. We conclude that shielding changes the
potential profile by several kg7/e in many locations and in
many conditions.

In most theories, flux through a channel is a sensitive
function of potential, i.e., of ®(x) = e@(x)/kgT. For exam-
ple, flux depends exponentially on potential both in the rate
theory usually used to describe open channels (Hille, 1992),
and in traditional diffusion theory (e.g., Cooper et al,
1988a,b). PNP theory is no exception; the integration of the
Nernst-Planck equations is unchanged by the presence of
the Poisson equation, and flux depends exponentially on
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FIGURE 9 Electrical potential as a function of position. (@) Potential in the
baths computed from Gouy-Chapman theory and in the channel computed
from the least-squares fit of the PNP equations as described in the text and the
caption to Fig. 7. () Change in electrical potential as solutions are changed for
different membrane potentials at different locations within the channel (0 =
x = d). The change in potential energy (V) is on the same order as the thermal
energy, kT = 25 meV, at most locations. The potential profile changes
significantly, even dramatically, with experimental conditions.

potential, just as it does in traditional diffusion theory; the
meaning of the result is changed, however, because in PNP
theory the potential within the channel is a sensitive func-
tion of experimental conditions, i.e., ®(x) is a sensitive
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FIGURE 10 Three potential profiles ¢(x) predicted by the PNP equa-
tions for different contents of the channel at two different transmembrane
potentials V., = =100 mV. The short dashed line shows the potential
profile ¢(x) predicted for the 62.5 mM symmetrical solution using the
parameters 3;(MD) of the macrodipole model. The solid lines show the
potential profile ¢(x) predicted when ions are excluded from the channel’s
pore and are absent from the surrounding baths. In this case, the permanent
charge of the channel protein is not shielded by ions, but only by induced
charge. The long dashed lines show the potential profiles ¢(x) predicted
when ions are excluded from the channel’s pore but are present in the bath.
In this case the permanent charge of the channel is shielded by the ionic
atmosphere in the baths (and by induced charge) but not by ions in the
channel’s pore. We conclude that shielding changes the potential profile by
several kgT/e in many locations and it many conditions.
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function of transmembrane potential and the bath concen-
trations @(x; Vo0 C(L), C(R)).

The striking dependence of electric field on experimental
conditions is the most important result of this paper, and is
so large that it is likely to dominate all other effects in the
open channel, even those that are not part of the PNP
equations. Indeed, physical argument would suggest that
this dependence of electrical field on bath concentration is a
property to be expected of channels and proteins, whatever
the theory used to describe them. If the electric field depends
on bath concentration, so will the rate constants of traditional
kinetic theories of enzymes (Hill, 1977, 1985; Walsh, 1979) or
channels (which are nearly enzymes, Moczydlowski, 1986;
Eisenberg, 1990; Andersen & Koeppe, 1992), whether we
consider gating or open channel permeation.

Simplifications failed

It would be helpful if the potential profile could be sepa-
rated into (a linear combination of) components, each with
a definite physical meaning, particularly if one component
represented the properties of the channel protein indepen-
dently of the bath concentrations or applied potential. For
example, in stochastic theories (e.g., Eisenberg et al., 1995;
Barkai et al., 1996), the need to compute the fieild makes an
already difficult problem nearly intractable, at least if ana-
lytical results are desired. Even in pure simulations, the
dependence of the contents of the channel on the field, and
the field on the contents of the channel, greatly complicates
calculations (Venturi et 4l., 1989).

Fig. 11 shows this separation is probably impossible; the
reduced potential

Constant field Offset

U(x) = @(x) = (1 = 2/d)[ Vo + ¢,(0) = ri(d)] = ri(d)
(22)
remains a sensitive function of experimental conditions,
even though we have subtracted the built-in potentials that
depend on ionic strength in the bath and the constant field
terms describing the dielectric component of V.. We con-
clude that the nonlinear properties of the PNP equations are
strongly embedded in the physics of the system and thus the

theory.

DISCUSSION

Our results show that the LS channel behaves more or less
as a macrodipole, with added central charge, shielded by
ions in the bath and in the channel’s pore, if the shielding is
predicted by the PNP equations. The theory fits all of the
data using just four adjustable parameters: two diffusion
coefficients to describe the movement of ions in the pore of
the channel; one parameter to describe the permanent
charge at the ends of the channel; and another parameter to
describe the permanent charge in the central region of the
channel protein.
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Nonlinear component of the electric potential profiles
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FIGURE 11 Nonlinear component y(x) of the electrical potential under

several conditions as a function of location, computed from the PNP
equations with parameters determined by the least-squares fit of the PNP
equations as described in the text and caption to Fig. 7, using the definition

Constant field Offset

Y(x) = @(x) = (1 = (Jd)[Vopp + 0i(0) = rild)] = @ui(d)

This definition subtracts the dielectric or constant field component of the
potential and the offset of the built-in or Donnan potentials, in the hope of
defining a residue characteristic of the channel protein, independent of
experimental conditions. The hope is not fulfilled: this residue varies
substantially in shape and size with quite mild changes in experimental
conditions.

It seems unlikely that any profile of charge (or any
theory, for that matter) will be able to fit the IV data
considered here, from 15 solutions, with fewer than four
adjustable parameters. The permanent charge of an asym-
metrical channel probably needs to be described by (at least)
two parameters; the diffusion of two permeable ions needs
to be described by two parameters (in the absence of an a
priori theory of selectivity). The four parameters we use in
the PNP equations are likely to form a minimum description
of the LS channel, at least in this range of solutions, and of
its selectivity, as we shall soon see.

The atomic details of the channel determine these effec-
tive parameters, of course, but (evidently) only some aver-
age of those details is important in determining open-chan-
nel IV relations. To the extent that those /V relations are the
natural function of a natural channel, only those averages of
atomic detail would be important in determining natural
function. More than one atomic structure would give the
same average parameters, and thus biological property of
open channel current. Presumably, those averages would be
the main phenotype of evolutionary adaptation and not the
details of the atomic structure themselves.
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The PNP equations fit many IV relations, with few pa-
rameters and so with little atomic detail, because the shield-
ing of the permanent charge changes so dramatically as
solutions and membrane potential are changed (Figs. 9 and
10). The contents of the channel (i.e., the permeating ions)
and its potential profile change automatically when concen-
tration and transmembrane potential change (because C(x)
and ®(x) satisfy the Poisson and Nernst-Planck differential
equations and boundary conditions), and this change has a
significant effect on flux. The size of this effect is so large,
and its physical origin is so fundamental, that a general
conclusion seems inescapable: any theory of the open chan-
nel must compute the electric field—not assume it—when
describing a range of experimental conditions.

Of course, PNP is not the only self-consistent theory; nor
is it the best we can imagine.”* A mean field theory (or
much better, one with atomic resolution) that was computed
in three dimensions, that constrained ions to a single file, or
that included dehydration/resolvation would clearly be bet-
ter, for example. Our work shows, however, that much
atomic detail is not necessary to explain the current through
single open channels: only a few parameters suffice to
explain those properties in a wide range of solutions and
potentials. Regrettably, no one yet knows how to compute
those parameters from the atomically detailed structure of
the channel and its pore.

Selectivity redefined

The ability to distinguish between different ions is one of
the fundamental properties of channels (Hille, 1992). The
selectivity of channels is not, however, a thermodynamic
(i.e., zero flux) property of channels, but rather depends on
the kinetic mechanism of permeation: substantial fluxes of
different types of ions flow in channels (even at the reversal
potential when total current is zero), unless the channel is
perfectly selective. A quantitative treatment of selectivity
requires a nonequilibrium theory of permeation (i.e., a the-
ory predicting J; as a function of V., in any pair of
solutions Cj(R) and Ci(L); see Fig. 5 B), as has been said
many times in the literature (e.g., Eisenman and Horn, 1983,
and references cited there). To be meaningful (as opposed to
phenomenological), the theory must fit the experimental
data and be self-consistent. If the theory does not fit exper-
imental data from a channel, its parameters are not a mean-
ingful description of the channel. If the theory is inconsis-
tent, the significance of its parameters is unclear, at best.
Traditional constant field theory is inconsistent because
its derivation and solution require P, and Py to be con-
stants, independent of concentration and potential, whereas
experiments require P, and Py to be variables that depend
significantly on concentration and potential. Constant field
theory is also inconsistént with our results, which show that
the electric field is not constant at all (Figs. 9 and 10), and
that it cannot be expected to be constant in any self-consis-
tent theory (arguments made in Eisenberg, 1996a,b). Any
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spatial variation of the permanent charge will make the field
change with location; any change in experimental condi-
tions (such as bathing concentrations, the transmembrane
potential, the geometrical conformation of the channel pro-
tein) is likely to change the field as well.

The PNP equations allow a more satisfying treatment of
selectivity, when, as here, they fit a large and diverse data
set with few parameters (four in our case). The value of
those four parameters are then the best (and minimum
characterization of both the channel and selectivity. More
atomic detail is not necessary to characterize the /V mea-
surements fit here. The ratio of diffusion coefficients is the
best estimate of the (frictional) selectivity. In this way
(diffusional or frictional) selectivity can be defined by a
single number independent of bath concentration and mem-
brane potential analogous to the permeability ratio of con-
stant field theory. But this number measures only frictional
selectivity. The selectivity produced by differences in
charge on the permeant ion or its spatial distribution (in
asymmetrical ions) should not be forgetten, because such
electrical effects can be much larger™ than the effects of
differences in friction.

Unfortunately, estimating the selectivity—i.e., the ratio
of diffusion coefficients—is not easy with the PNP equa-
tions. It requires measurements of /V relations in many
solutions and curve fitting and SVD analysis, as we have
seen. In our experience the estimates of diffusion coeffi-
cients are not particularly well determined by the data. The
estimates change substantially when different structures of
the permanent charge are input into the curve fitting process
(compare Eq. 18 and 20; also note the estimates of corre-
lation coefficients in Table 2). If one wants an easier esti-
mate of selectivity—that can be determined from a single IV
curve without curve fitting or much analysis—the tradi-
tional operational definition can be used, and indeed has
surprisingly general validity (see Syganow and von Kitzing,
1995, eq. 38 and following discussion), provided one un-
derstands that the resulting parameter must be a variable—
indeed, a function—depending on bath concentrations and
membrane potential, as well as the properties of the channel.
In particular, selectivity defined this way says nothing
unique about the ratio of diffusion coefficients (i.e., “per-
meabilities”) of individual ions in the channel. Nor does it
say anything unique or simple about the underlying prop-
erties of the channel protein, e.g., the permanent charges P,,
P,, or the size of potential barriers for different ions.

TABLE 2 Parameter estimates for the macrodipole model
means, variance, and correlations

Correlation coefficient Parameter estimate

Dy D¢ P, P, (= SD)

1 -086 —085 098 D, = 211X 107°cm?s (£0.02)
-0.86 1 0.55 =079 Dg = 2.62 X 1077 cm%s (+0.05)
-085 055 1 -0.84 P, = 0.71 M (=0.004)

098 -079 —0.84 | P, = 047 M (20.012)

The standard deviations of the estimates were determined by Eq. 32.
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Role of structure

It seems clear that the PNP equations (viewed as an inverse
operator; see Fig. 1) and the /V measurements of Kienker
and Lear (1995) do not in themselves provide enough in-
formation to determine the shape of the profile of permanent
charge P(x).® However, once that shape is known from
structural measurements (Akerfeldt et al., 1993; Lear et al.,
1988; Wada, 1976; Hol, 1985), the data and theory deter-
mine the parameters reasonably well (see later Discussion).

The need for structural informat.on should not be a sur-
prise. Even if charge and potential are related (in a simpler
physical system) by just Poisson’s equation, and experimen-
tal data are perfect, the same potential profile can be pro-
duced by a range of distributions of charge in many cases
(i.e., for many boundary conditions). If charge and potential
are related in a more complex way (as here), or data or
structural information is imperfect, the ambiguity is much
greater. In these situations, more than one charge distribu-
tion can produce the same potential profile across the chan-
nel. Thus, knowledge of the potential profile does not imply
knowledge of the profile of permanent charge.

We, of course, have no direct way of measuring the
profile of potential within a channel. But we may know it
nonetheless. The observed current is a sensitive function
(indeed, exponential function) of the potential profile in
PNP and most other theories. If a theory predicts the ob-
served currents at many potentials, and in many solutions,
with different concentrations, the potential profiles of that
theory (which it uses to calculate the current) are likely to be
quite accurate if its diffusion coefficients are known and
correct.

All of this presumes no knowledge of structure. But if
structure is known, everything changes. If, for example, the
structure of LS were fully known, and the shape of its
charge distribution were determined experimentally to be
that shown in Fig. 6—by x-ray diffraction, for example—
there would be no ambiguity about the form of the perma-
nent charge, only about the magnitude of the charge itself.
The ambiguity in our analysis would be greatly reduced.

One might think that sufficient structural knowledge
could in fact predict the values of the charge as well as the
shape of its profile. And such might be the case, if the time
scale on which charge were measured (by, say, crystallog-
raphy) were the same as the time scale on which charge
moves through a channel. The time scale of structural mea-
surements is, however, usually seconds, minutes, or hours;
the time scale of permeation is some 100 ns. The ratio of
time scales is then some 108, and so the two measurements
may see quite different distributions of charge. In particular,
ions moving through channels are likely to drag charge
along with them, both in adjacent waters and in nearby
carbonyls (or other charged or polar groups) of the protein,
forming a moving ionic atmosphere, like a “dressed ion” in
free solution (reviewed in Kjellander, 1995, also see Ennis
et al., 1995), together making a quasi-particle we have
called a permion (Elber et al., 1995). The charge on the
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permion is presumably less than the charge on the perme-
ating ion because the permanent charge on the ion is par-
tially shielded by its “dressing,” i.e., by the ionic atmo-
sphere it drags along. For similar reasons, the charge on the
protein that interacts with the permion is different from that
which interacts with the ion. It too is probably reduced in
magnitude because (some of the) protein charge is part of
the permion; that protein charge forms some of the dressing
of the ion as it is dragged along. Thus the protein charge that
is effective in interaction with the permion is expected to be
different, perhaps quite different from the protein charge
that is effective in interaction with x-rays.

Values of parameters

Despite these caveats, we cannot resist the temptation to
compare the parameter values estimated by curve fits with
those expected from a simple static picture of atomic struc-
ture.

The best fit estimates of the diffusion coefficients within
the channel are reasonable, being reduced some 10 or 100
times from free solution (for K* and C17, respectively), as
are most estimates of diffusion coefficients in cation-spe-
cific channels (Dani and Levitt, 1981; Hille, 1992), al-
though the large value of the correlation coefficient (e.g.,
p(Dx, P,) = 0.98; see Table 2) limits one’s confidence.

The estimates of charge in the central region are also
reasonable, although it is clearly different from the zero
value expected in a macrodipole, most strictly defined. The
0.014 e/A we estimate probably arises from the hydroxyls of
the serine amino acid residues of the LS protein.?’

The estimate of the total charge at the ends of the channel
(£0.12¢) is also reasonable, although quite different from
the =2.4 or *3.0¢ found by Kienker and Lear (1995) for a
channel (0.4 and *0.5¢ for each of the six polypeptides)
and quite different from the *0.5 to *£0.75¢ predicted by
classical macrodipole theory (Hol, 1985) for a single
polypeptide.

The disagreement in values of charge at the ends is large
and might have no particular significance, of course, if it
arose from the errors in PNP theory or in curve fitting. Or
the disagreement might simply reflect our ignorance of the
structure of the LS channel (which has not yet been crys-
tallized or studied by x-ray crystallography) and of its
distribution of charge. Or the protein may not be the sole
bearer of permanent charge; adjacent lipids of the bilayer
(e.g., that have surprisingly mobile headgroups; See-wing
Chiu, personal communication) might contribute to P(x),
particularly at its ends.

The largest source of disagreement, however, probably
comes from the theory of the macrodipole itself; it is not
obvious that a molecular dynamics simulation or Poisson-
Boltzmann calculation of LS will give the charge distribu-
tion predicted by Hol (1985) or used by Kienker et al.,
(1994) and Kienker and Lear (1995). Detailed calculations
from Warshel’s group, which have been confirmed by a
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good deal of experimental work and several more sophisti-
cated calculations (see Sitkoff et al., 1994, and references
cited there), allowed them to conclude that “previous model
calculations have drastically overestimated the helix effect”
(Aquist et al., 1991, p. 2026).®

In any case, direct measurements of structure would
allow more reliable estimates of parameter values.

Reliability of parameter values

The parameter values reported here are reliable in some
ways and not in others, as is typical in nonlinear curve
fitting (Graupe, 1972; Gelb, 1986). General conclusions
about the charge distribution or diffusion coefficients are
difficult. and conclusions independent of the assumed struc-
ture are probably impossible. Nonetheless, specific conclu-
stons can be drawn by comparing parameter values or
structures of permanent charge. using objective statistical
criteria (Hamilton. 1964; Valdiosera et al., 1974) or more
subjective examination of the resulting parameter values
and (predicted) IV curves.

We have compared the curve fit and parameter values
reported in Eq. 20 with a number of special cases and
conclude that

1. The permanent charge might be a linear function of x.
The permanent charge was assumed to be a linear func-
tion of position P(x) = (P, — Py)ld]x + P,, where d is
the length of the channel. In this case, the fit was only a
little worse than that reported here, but the parameters
are unreasonable in the sense that they do not naturally
describe the chemical structure proposed by Akerfeldt et
al. (1993) and Lear et al. (1988).

2. The values of the dielectric constants cannot be deter-
mined by fitting the PNP equations to the Kienker-Lear
data set. If the dielectric constants are made an adjustable
parameter in the curve fitting process, least-squares min-
imization does not determine their value reliably; stan-
dard deviations of the estimates and correlations with
other parameters are too large. We must therefore use the
customary values of the dielectric constants &, = 2 and
en.o = 80, as is often done in Poisson-Boltzmann cal-
culations (Sharp and Honig, 1990: Gunner et al., 1996:
Antosiewicz et al., 1994, 1995, 1996). Calculations with
atomic resolution would help considerably our treatment
of this issue.

3. Ditfusion coefticients of ions are not equal, i.e.. Dy #
Dc,. If diffusion coefficients were constrained to be
equal. Dy = D¢, the theory could not fit the data at all
well. even when the full set of parameters of Eq. 14 were
allowed to vary and take on optimal values. Thus we can
reliably conclude that Dy # D¢, even though the values
of the diffusion coefficients are not particularly well
determined by the data. as we have seen.

4. Diffusion coetticients of ions in the channel are not equal
to their bulk value. If diffusion coefficients were con-
strained to their values in bulk solution (which happen to
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be nearly equal for this anion and cation), the theory
could not fit the data at all well, even when the full set of
parameters of Eq. 14 were allowed to vary and take on
optimal values. Thus we can reliably conclude that the
diffusion coefficients of ions in the channel are not equal
to their bulk value, even though the values of the diffu-
sion coefficients are not particularly well determined by
the data, as we have seen.

. The permanent charge density on the N (in)side of the

channel is not zero. A finite value is needed to fit the
data. If the permanent charge were constrained to zero,
P, = 0, theory could not fit the data at all well, even
when the full set of parameters of Eq. 14 were allowed to
vary and take on optimal values.

. The permanent charge density at the ends of the channel

protein is not equal to *(6 X 0.483)e or (6 X 0.366)e.
If the permanent charge is set to these values (reported
for the whole channel protein by Kienker and Lear,
1995). the theory could not fit the data at all well, even
if the full set of parameters of Eq. 14 were allowed to
vary and take on optimal values. Thus we can reliably
conclude that a macrodipole of this sort will not fit the
data.

. The charge P, in the middle region of the channel is not

zero if the macrodipole has equal charge at its two ends.
If the charge at the ends of the channel were forced to be
equal, and the charge in the middle were constrained to
zero, the theory could not fit the data with sensible
parameter values; indeed, the best-fit value of x, was
negative.

. The charge P, in the middle region of the channel cannot

be zero, even if the macrodipole has unequal charge at its
two ends. If the charge P, in the middle region of the
channel is constrained to zero, but all other parameters of
Eq. 14 were unconstrained, the theory could fit all of the
IV data, but only by dragging x, (see Fig. 6) most of the
way across the channel, thereby putting some charge in
its middle!

. The induced charge term of PNP (see equation 1 of

Eisenberg, 1996a) is insignificant. If this term is set to
zero, the theory fits the data well and the parameter
values are unchanged from the values reported in Eq. 18.
The induced charge is too small to have a noticeable
effect.

Most biological channels are likely to be more polar
than the LS channel, which is made of nonpolar amino
acids with no formal charge. We find that the permanent
charge of this nonpolar channel is much larger than its
induced charge. The permanent charge of most biologi-
cal channels will be larger still, judging from our pre-
liminary work (see note 23) and models that have been
proposed of other biological channels (which usually
contain large numbers of formal charges).

It seems safe to conclude that the induced charge term
is likely to be insignificant in biological channels; de-
spite the significant efforts needed to analyze it (Bar-
cilon, 1992; Barcilon et al.. 1992; and Chen et al., 1992).
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Improving estimates of parameters

More measurements of IV relations, in more bathing solu-
tions, would obviously improve the estimates of parameter
values (if the resulting data were not statistically redundant,
i.e., if it were taken in “interesting” solutions). But more
structural information is not needed to explain the IV mea-
surements studied here: only a few (effective one-dimen-
sional) parameters and the simplest self-consistent theory
are needed to explain them, not a great deal of atomic detail.
L. is the interpretation of these parameters in terms of the
detailed properties of the protein that requires more detailed
theory and more detailed experiments. Different types of
measurements (beyond measurements of simple [V rela-
tions) are probably needed to provide significant new ex-
perimental insights into atomic details of the channel’s pore.

High-resolution measurements that depend sensitively on
the distribution of charge and potential within the pore over
a range of bathing solutions would be ideal. Such sensitivity
might make these measurements hard to predict by the PNP
equations, but if the theory did fit, that very sensitivity
would allow accurate estimation of the parameter values.
For example, measurements of open channel noise, over a
range of frequencies, in the presence of “slow” (e.g.,
blocker) ions, of various concentrations, perhaps different
on different sides of the channel, might provide a rich trove
of experimental phenomena and data, and thus a good deal
of extra information concerning the parameters of the chan-
nel, once an adequate stochastic theory of single filing is
available.?’

More structural information also would help pin down the
meaning and values of the effective parameters of the chan-
nel. Ideally, simulations of molecular dynamics could use
this structural information (in atomic detail) to predict ex-
perimental measurements of open-channel current. But no
one knows how to perform simulations of adequate (i.e.,
5-50 ws) duration (given the accumulation of round-off
error that occurs when the fundamental time step is femto-
seconds) and no one knows>® how to perform simulations of
adequate (spatial) size, that would allow flux and be self-
consistent, i.e., that would compute the electric field from
all of the significant charges in the system, including those
that maintain the transmembrane potential, those in the
baths 10 to 100 A from the channel, those on the bath
electrodes, and those that maintain the potential profile
across the lipid membrane far from the channel.

Perhaps a more modest approach is both feasible and
sufficient. Perhaps the three-dimensional structure of the
channel can be used with a three-dimensional version of
PNP to predict current. If such a calculation is not feasible,
even a one-dimensional theory may be enough, if it is used
along a curvilinear reaction path of permion motion, deter-
mined directly from the atomic detail structure (Elber et al.,
1995), and not aleng a straight line across the membrane.

The adventure of fitting PNP to data from real channels has been shared
with Wolfgang Nonner. He showed us the SVD, and we are mindful of his
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many insights and thankful that he has shared them with us. Dirk Gillespie,
Paul Kienker, Eberhard von Kitzing, Gerhard Meissner, and Mark Ratner
corrected the manuscript and made most useful suggestions, for which we
are grateful.

We are ever appreciative of the steadfast support of Dr. Andrew Thomson
and the National Science Foundation.

NOTES

1. By “self-consistent™ we mean a theory in which the potential is
computed from all the charges present—including the mobile ions, the
induced (or dielectric) charge, and the permanent charge of the protein.
In such theories the total charge and the electrical potential are related
by Coulomb's law, or its mathematical equivalent, Poisson’s equation.
In one dimension, this means that the second spatial derivative of
potential is equal (at every location under every condition) to the sum
of all the charges at that location, scaled by the permittivity of free
space. Of course, PNP is not the only or the best possible self-
consistent theory. See Discussion and note 24,

2. Lauger (1991), Hille (1992), Andersen and Koeppe (1992), and Eisen-
man and Hom (1983) describe some of the many traditional rate
constant models that assume the electric field. Levitt (1986), Cooper et
al. (1988a.,b), Chiu and Jakobsson (1989), Barcilon et al. (1993), and
Eisenberg et al. (1995) describe diffusion theories that assume the
electric field.

3. These Vlasov equations do not include permanent charge and so
cannot in themselves serve as a useful description of channels, or
semiconductors, for that matter. Syganow and von Kitzing (1995)
generalize the Vlasov equations to include some distributions of per-
manent charge and use them to describe open channels.

4. Permanent charge is defined precisely as the charge present at a
location: when the electric field at that location is zero. In the PNP
equations flux is determined by a few effective parameters: the distri-
bution of permanent charge, the shape and size of the pore, its
dielectric constants, and the diffusion coefficients of individual ions
(within the channel’s pore). One of the surprises of this paper is that
only a handful of parameters are necessary to describe the IV relations
measured under many conditions. Evidently, detailed (atomic) knowl-
edge of the structure is not needed to predict the function of the open
channel. Regrettably, the relation of the effective and atomic param-
eters is not yet known.

5. The hydroxyl oxygen of serine has a charge of some —0.4 to —0.7¢ in
the molecular dynamics programs CHARMM and MOIL (Brooks et
al., 1983; Elber et al., 1993).

6. The solutions considered here are made of K* and Cl~, respectively,
ie,j=1& K" andj =2 & CI” and have valences 7, = | and
= —1.

7. See note 24.

8. Written here in dimensional form, but with labels of vague dimension.

9. Note the dependence of & on radius, resuiting from the distinguished
limit used by Barcilon (1992), Barcilon et al., (1992), and Chen et al.
(1992).

10. See note 4.

1. Regrettably, neither we nor our colleagues have found a paper defining
precisely what “zeros in the vector {s,}” means, although such a paper
may well exist somewhere in the mathematics literature. We hope the
forthcoming second edition of Golub and van Loan will discuss this
important matter.

12. Note, however, that our macrodipole model is not symmetrical in all
respects. The charge densities P(0) and P(d) and thus the built-in
potentials @, (0). @(d) are not equal in what we call the macrodipole
model.

13. “Tested.”

14. The N-terminal side is the left or inside of the channel in our nomen-
clature, which preserves the usual sign conventions of channology: the
potential difference VV of Ohm’s law VV = RI_, uses the backward
difference operator V, ie., VV = V(x|) — Vix,) = V(inside) —
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16.
17.

18.
19.

20.

21.

22

23.
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V(outside), and so the differential form of Ohm’s law dV/dx = —i,r
contains a minus sign, because it uses forward differences dV ~ AV =
V(x,) — V(x,) = —VV, by the conventional definition of the derivative.
Here x, is larger than x,; R and r are positive; outward current is
positive and is named i,,,; and the resting potential of most cells is a
negative number fairly close to the Nernst or equilibrium potential for
K*. namely Vi = (RT/P)log[Cx(R)Y/Cy(L)], where Cx means the
activity of potassium. The LS channel is then both an inward and
N-ward rectifier, passing more N-ward current than outward current
for a given transmembrane potential difference |V(x,) ~ V(x,).

. Chen et al., (1992 pp. 1390-1391) and Chen and Eisenberg (1993a,

pp. 1417-1420) show how P(x) arises from the cross-sectional average
of the three-dimensional equations.

See note 5.

And to predict and understand the shielding produced by charge
induced in the polarizable matter of the lipid bilayer, channel protein,
and contents of the bath and channel pore.

See note 11.

No attempt was made to optimize the radius r = 4 A orlength d = 30
A of the pore. The value of dielectric constants could not be deter-
mined by curve fitting (see Discussion), and so they were assumed to
be g, = 2 and &y,0 = 80. The induced charge has little effect on our
results: if the entire induced charge ferm is set to zero (see equation 6
and discussion in Chen et al., 1992), the standard deviation o(J) of the
curve fit changes by less than 1%. That curve fit was done with seven
adjustable parameters B;(SVD).

Historically, in fact, that is what was done in this collaboration.
Kienker and Lear provided Chen and Eisenberg with only a subset of
their data and challenged them to predict the other results. Of course,
some data sets are more important in determining parameters than
others. In particular, data from asymmetrical solutions are needed, in
our experience, if parameters are to be reasonably determined.

The solutions are named by the side of the channel that is diluted,
following Kienker and Lear (1995). Thus, 8 X N means the solution on
the N side is diluted 8X compared to the solution on the other side.

PNP theory is in fact independent of the shape of the profiles of
concentration or potential in the baths. It describes the potential
produced by ions in the bath using the formalism of the built-in
potential (see Eisenberg, 1996a, and references cited therein). We
show the bath profiles here only as a visual indicator of the size and
significance of the charge in the “ionic atmosphere” near the channel.
The profiles were calculated using the usual Gouy-Chapman formula.
We are fortunate and grateful that Benoit Roux suggested and Mark
Ratner insisted we do this calculation. The permanent charge of most
biological channels will be larger still, at least judging from our prelim-
inary work on the neuronal background anion channel (Chen et al., 1995b)
and calcium release channel of sarcoplasmic reticulum (Chen et al.,
personal communication) where the permanent charge seems to be more
than 5 M (1.

. The limitations in the PNP theory are extensively discussed in reviews

(Eisenberg, 1996a,b) and in original papers (e.g., Barcilon, 1992:
Barcilon et al., 1992; Barcilon et al., Ratner 1993; Chen and Eisenberg,
1993a; Chen et al., 1995a; Eisenberg et al., 1995; Elber et al., 1995;
Barkai et al.. 1996). The treatment of the dielectric term is not a
problem because it is so small (see note 19). The treatment of the
entry/exit steps is more problematic because the dehydration and
resolvation accompanying ion entry/exit are nearly phase changes for
the permeating ion. The resulting change in energy of the ion may
depend in complex ways on the shape of the permanent and mobile
charge profile in the channel; indeed. it might depend on flux itself
(Chen and Eisenberg, 1993b). We imagine that the simple approxima-
tion used here to describe the ends of the channel suffices to fit the /V
data because shielding has a much larger effect on /V curves than the
entry process (or most anything else; see Figs. 9-11), and. PNP
describes shielding more or less correctly, even when it uses just a few
parameters to describe the channel protein.
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25. The correlation p(Dy, P,) = 0.98 in Table 2, between the estimates of
the diffusion coefficient and the central permanent charge, would
refresh our memory, if we were ever to forget.

26. For example, the data can be fit with a profile of permanent charge linear
in distance; see later Discussion.

27. See note 5.

28. They suggest that the overestimate is a factor of 10 or so for the energy
of stabilization of HIS-18 in barnase.

29. Barkai et al. (1996) is a step in that direction.

30. If the system is an aqueous solution. Evidently, someone does know
how in another system; simulations of submicron MOSFETS have
computed the potential self-consistently (in atomic detail on the fem-
tosecond time scale) for some years (e.g., Venturi et al., 1989).
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