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Abstract 
 

Ions in water are important throughout biology, from molecules to organs. Classically, ions in 
water were treated as ideal noninteracting particles in a perfect gas. Excess free energy of 
each ion was zero. Mathematics was not available to deal consistently with flows, or 
interactions with other ions or boundaries. Non-classical approaches are needed because ions 
in biological conditions flow and interact. The concentration gradient of one ion can drive the 
flow of another, even in a bulk solution. A variational multiscale approach is needed to deal 
with interactions and flow. The recently developed energetic variational approach to 
dissipative systems allows mathematically consistent treatment of the bio-ions Na+, K+, Ca2+ 
and Cl− as they interact and flow. Interactions produce large excess free energy that dominate 
the properties of the high concentration of ions in and near protein active sites, ion channels, 
and nucleic acids: the number density of ions is often > 10 M. Ions in such crowded quarters 
interact strongly with each other as well as with the surrounding protein. Non-ideal behavior 
found in many experiments has classically been ascribed to allosteric interactions mediated 
by the protein and its conformation changes. The ion-ion interactions present in crowded 
solutions—independent of conformation changes of the protein—are likely to change the 
interpretation of many allosteric phenomena. Computation of all atoms is a popular 
alternative to the multiscale approach. Such computations involve formidable challenges. 
Biological systems exist on very different scales from atomic motion. Biological systems 
exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve 
flow and trace concentrations of messenger ions (e.g., 10-7 M Ca2+). Energetic variational 
methods can deal with these characteristic properties of biological systems while we await 
the maturation and calibration of all atom simulations of ionic mixtures and divalents. 
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Life occurs in ionic solutions. Pure water is lethal to most cells and biomolecules. The 
properties of most proteins depend on the details of the mixtures of ionic solutions found 
outside and inside cells. Trace concentrations (<10-6 M) of Ca2+ and other signaling 
molecules actually provide physiological control of many biological pathways and proteins 
inside cells. 

Understanding the properties of living systems depends on the understanding of 
properties of ionic solutions: indeed, the early history of physical chemistry and physiology 
overlap remarkably probably for that reason. (Volta, Galvani and Fick were physiologists as 
much as physical chemists.) Biologists have, however, not kept up with advances in the 
understanding of ionic solutions, particularly ionic mixtures, understandably enough in my 
view, given how hard they have worked to provide the magnificent insights of structural and 
molecular biology. 

Biophysicists are taught ideal equilibrium physical chemistry in which ions are points 
and flows are zero. Biophysicists have been taught this idealization for good reason: until 
recently the mathematics of interacting ions (of finite size) in flowing systems was not 
available. The mathematics of closely related (1) charge transport in semiconductors (2-6) 
could not be used—in its original form, despite initial enthusiasm (7,8)—because the charges 
that flow in semiconductors are points, with no diameter. Points cannot be crowded as bio-
ions Na+, K+, Ca2+ and Cl− often are in channels and active sites of enzymes (9). This 
situation has changed because of a recent development in mathematics.  

Variational mathematics is now available to deal with ions of different diameters, 
interacting in solutions, as they flow. Historically, variational mathematics dealt with multiple 
types of forces in conservative systems (with Hamiltonians) that are difficult or impossible to 
describe with other methods. A generalization of this variational approach can now be used to 
describe systems that involve dissipative as well as conservative forces. 

The purpose of this paper is to bring this energy variational approach to the attention 
of biophysicists, and to discuss the consequences for our classical understanding. Along the 
way, I point out the challenges that all atom simulations face as they try to deal with the 
realities of biological function.  

Why do we need this mathematics? My biological colleagues at this stage often wonder 
why they need this new mathematics? Why can’t they use the classical approach they learned 
in school? Many physical colleagues wonder what is different about this variational 
mathematics, why the big fuss?  

The reason different mathematics is needed is that biological systems use the special 
properties of crowded spherical ions as they interact and flow in a tiny system say twice as 
wide as the ions themselves. Ions obviously interact electrically and by steric exclusion in 
such a system. Classical chemical approaches assume no interactions and no flow (i.e., 
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equilibrium). There is no excess free energy from either non-ideal property. Classical 
mathematics of nonequilibrium electrical systems (like semiconductors) do not deal easily 
with crowded spheres of different diameter. The biology itself shows that the classical 
approaches of chemistry and semiconductors need to be extended. 

Excess free energy of the crowded ions cannot be ignored because biology uses that excess 
free energy to perform its essential function of selectivity and perhaps other things as well. 
Evolution uses the properties of crowded ions to produce the selective properties that it needs 
in enzymes and channels. The ions are so crowded in and near enzymes (9) and channels (and 
nucleic acids) that their behavior is highly correlated. The classical references describing the 
properties of ions in non-ideal situations are (10,11) and excellent textbook treatments are 
(12-31). Reference (32) compares enzymes and channels. Other samples of the enormous 
literature are (33-47).  

The new variational mathematics allows consistent treatment (with minimal adjustable 
parameters) of interacting spheres as they conduct and diffuse (48-55). It can easily be 
extended to deal with convection or heat flow in a mathematically consistent way, as it has in 
closely related problems (51,56) and problems of greater apparent complexity (57,58). 

To summarize, the new variational mathematics are important in biology and biophysics 
because ions are crowded into a tiny space in and near protein (enzyme) active sites, ion 
channels, and nucleic acids. One can hardly imagine systems of greater biological 
importance. The crowding is dramatic, producing number densities often larger than 10 M 
(using classical chemical units of concentration, in which the number density of NaCl is 
~37 M and liquid water is ~55 M). 

Crowded Ions as a biological adaptation. These crowded conditions of ions are so special 
and so unusual that a sensible biologist would guess they are an ‘adaptation’.  

Evolution often uses unusual conditions or structures to perform life’s functions. When a 
biologist finds an unusual condition or structure, it is usually productive to study how that 
condition allows the structure to perform biological functions. Study of such adaptations is 
useful, whether the study is of the panda’s thumb or the flamingo’s smile (59,60), the 
capillary of the squid that turned out to be a giant nerve fiber (61-63), or the twisted 
fabulously long sticky viscous polymer called DNA, eventually found to be the genetic code. 

Unusual things in biology often turn out to be unusual for a reason. It is best to 
investigate and not ignore them.  

Enormous number densities of crowded charges in and near ion channels and active sites 
are unusual, found in only a few other places I know of. Enormous number densities are also 
found in crucial locations in our electrochemical technology, suggesting a generalization, as a 
productive working hypothesis, for both electrochemistry and biophysics: I suggest that 
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where ions are important they are likely to be highly concentrated (so ‘conductances’ and 
currents are large) or very depleted (so resistances are large and flows can be controlled). We 
note that many of the most important properties of semiconductor devices are produced by 
depletion zones (2-4,6,64-67).  

Interactions are important in enzymes, ion channels, and transporters, because they can 
produce coupling of fluxes usually attributed to proteins, even in the absence of a protein. 
When interactions dominate, ions in bulk solution can flow uphill against their own gradient 
of activity (e.g., p. 377 of (68)). The energy for uphill flow of one ion comes from the 
downhill gradients of other ions.  

Free energies of steric exclusion are significant in ordinary Ringer’s solutions as well as 
in and near macromolecules: Na+ and K+ differ because they have different diameters. The 
different diameters of Na+ and K+ is why the activity of these solutions does not equal their 
number density as shown by a large literature of physical chemistry previously cited. Great 
attention has been paid to ionic interactions in chemical engineering 
(13,15,16,21,24,25,28,30,69-74) and geophysics (75-78). To oversimplify, Na+ and K+ are 
identical when they are ideal. They differ because they are non-ideal. The different roles of 
Na+ and K+ are essential for a wide range of biological function. Na+ and K+ cannot be treated 
as ideal ions in the context of biology. Theories and simulations must compute the (non-ideal) 
properties of Na+ and K+ with reasonable accuracy. 

Interactions define channels and transporters. In classical physiology, the interactions of 
ionic flux have central importance. Indeed, Hodgkin used the interactions of ion fluxes to 
define channels and separate their properties from fluxes in bulk solution, on the one hand, 
and transporters (79,80), on the other, before channels were known to be proteins, before 
anyone had glimpsed the structure of any protein let alone a channel protein. Bass (81-84) 
provided a mathematical analysis based on Hodgkin’s approach to channels. Hodgkin and 
Bass assumed independent behavior in the baths and neglected both steric interactions and 
the role of the charge of ions in creating the electric fields they move in. (A more modern, 
more realistic analysis might be helpful.) 

In classical physiology, interactions in channels were treated by rate models of single 
file systems (85,86). These sadly did not compute electrostatics and do not deal with friction 
or thermal Brownian motion. Thus, it is hard to know what to make of the results, since 
electrostatic and frictional forces (87,88) dominate such small highly charged systems which 
move ceaselessly in thermal motion (88-90). Difficulties with biophysical rate theories have 
been extensively discussed in the biological (7,91-99) and physical (100-105) literature. 
Models of single filing that deal with electrostatics and friction consistently are just now 
emerging (106), as far as I know. The anomalous mole fraction effect was once thought to be 
a sure sign of single filing (85,86). We now know otherwise (107-110). 
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In transporters, enzymes and binding proteins, interactions were assumed to arise in the 
molecular mechanism of the protein(s) that make up the system. When a flux of K+ was 
sensitive to Na+, we thought of allosteric interactions as in enzymes. See the comparison of 
enzymes and channels in (32). The possibility of ions interacting themselves, electrically and 
from steric exclusion, was not considered, probably because the ions were treated classically, 
without excess free energy being included in the relevant equations. 

Allostery plays a large role in classical and contemporary biochemistry and biophysics, 
as reviewed recently (111,112). Theories of allostery assume ideal properties of substrates 
and rarely include ‘background’ ions at all. Theories rarely if ever include excess free energy 
terms of the substrate.  

If substrate and ions are crowded together in binding or active sites, it is hard to see how 
they could avoid interactions. It is hard to believe that all the interactions ascribed to 
allosteric properties of the protein are independent of the substrate-substrate, ion-ion, and ion-
substrate interactions.  
Interpretations of allosteric phenomena will need to be reconsidered with theories that 
allow all components to interact, in my opinion. It will be necessary to make an explicit 
model of each binding interaction, and conformation change, computing the free energy 
change of all components using a model that allows them all to interact. This daunting task 
has barely begun. One can expect general principles and simplifications to emerge only from 
analysis of many specific cases (as in much of biology (59,60)). 

Interactions in Ion Channels. In one area of biology, studying the interactions of ions has 
been surprisingly successful. The selectivity of the calcium channel CaV, the sodium channel 
NaV, and the ryanodine receptor RyR have been understood quite well using a primitive 
model of the channel structure and an implicit model of solvation, in the spirit of the implicit 
solvent primitive model of ionic solutions.  

The primitive model of ionic solutions accounts for the fundamental property of ionic 
solutions—activity or chemical potential—over a wide range of conditions in a variety of 
solutions, as well reviewed by (17,18,28,47). The free energy per mole, or the excess free 
energy per mole, or the activity, or the activity coefficient of solutions are accounted for 
better than in many high resolution calculations of the properties of ionic solutions 
(20,21,30,47,54,113-118), although a great deal of work is going on to improve these higher 
resolution models (48,50,52-54,119-126). (I am purposely imprecise with the complex 
nomenclature and units of physical chemistry. Textbooks define these precisely (17,18) and a 
most useful set of standard symbols and definitions is available in the ‘green book’(127)).  

Nonner and Eisenberg introduced (128-132) primitive models of channels in which the 
protein is described by a few of its amino acid side chains confined to a tiny selectivity region 
(‘filter’) in the channel. An early review is (133). Solvation by water and by the channel 
protein are described by dielectric coefficients, as in the implicit solvent model of ionic 
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solutions (24,134-139). These models were then studied with the Monte Carlo methods 
developed—and extensively tested—for physical systems by Boda and Henderson (140-143) 
in a series of more than thirty papers, reviewed in (98); see (125,144) for more recent 
references. The key papers describing the CaV channel are (145,146). The key paper 
describing the NaV channel is (147), extended by (144). The ryanodine receptor is described 
in a series of papers led mostly by Dirk Gillespie (107,109,125,148-163) with key results in 
(158) and its supplementary material.  

Surprising success of simple models. Nonner and Eisenberg were greatly surprised at the 
success of such simple representations. (Some details of the success are discussed below.) 
After all, these simple models omit most atomic and molecular details, but the utility, even 
necessity, of reduced models is now widely recognized, judging by their increasing use (164-
172), even in simulations involving quantum and molecular mechanics. 

The reduced models of the calcium channel account for most of the selectivity properties 
known in a wide variety of solutions of variable composition. These properties arise from 
strong interactions between ions and side chains. Rate constants and free energies computed 
from this model vary enormously (rate constants by more than a factor of 1,000) as 
conditions are changed (125,129,132,133,144,158,161,162,173-175).  

Success Depends on Computing Interactions. Indeed, the model is successful because it 
computes the changes in interactions successfully. Simulations or theories that use a single 
value of rate constants or binding free energies do not allow changes in interactions with 
conditions. They do not even allow Debye-Hückel shielding (7,97,176) which is a general 
and unavoidable property of physical systems with mobile charge (177). 

Ions and side chains of the protein are described in the successful reduced models by 
spheres with their ‘crystal radii’. Radii are never changed as solutions are changed. Few 
parameters are needed to compute the binding curves of the channel over six orders of 
magnitude of concentration, just the effective diameter and dielectric coefficient of the 
protein and surrounding baths.  

Channels have been built using the primitive model. Calcium selective channels can be 
constructed as suggested by the theory. OmpF porin, a hardly selective beta barrel bacterial 
channel that has no similarity to the calcium channels of eukaryotes, becomes calcium 
selective when glutamates are introduced by mutation (178) in a suitably narrowed space 
(178-180). Interactions produce the selectivity. Narrowing the space increases the interactions 
and the selectivity. 

One theory and one set of parameters describes very different channels. If the side 
chains of the model are changed, the selectivity of the channel changes from that of an EEEE 
or EEEA calcium channel to that of a DEKA sodium channel, as found in experiments 
(181,182) discussed in detail in (98,147,175,183).  
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It is thus possible to account for the main selectivity properties of two of the most 
important voltage sensitive channels with a single model without changing parameters, just by 
changing side chains, as in experiments. It is important to note that the properties of DEKA 
and EEEA channels are very different and occur on different scales of concentration. I am 
unaware of any other models of selectivity in channels that can account for such dramatic 
changes in experimental properties without changing parameters. 

Different parameters change different properties. Reduced models of this type use 
effective parameters, much as molecular dynamics uses effective force fields, that use 
macroscopic properties to estimate (and to represent) atomic scale forces. These parameters 
usually are composites and for that reason one expects changing a (composite effective) 
parameter like dielectric coefficient to change ‘everything’ that is observed and not to have a 
simple effect. One does not expect simple relations between selectivity and a single 
composite or effective parameter. And that is what usually happens. There is no (known) 
simple relation between parameters of the calcium channel models and selectivity. There is 
no simple relation between parameters of the sodium channel and selectivity between (for 
example) Ca2+ and Na+.  

Simple relations are not found even in the most thorough analysis of selectivity in 
calcium or ryanodine channels. Boda’s analysis (174) used Monte Carlo methods combined 
with Widom’s insertion method. Gillespie’s analysis (158) used Rosenfeld’s density 
functional theory to determine components of free energy of binding. Both methods are ‘state 
of the art’ and did not produce a simple explanation of the selectivities examined. Neither 
method has yet been generally applied to other selectivity problems, probably because of the 
difficulty of implementing them properly.  

The DEKA sodium channel, however, is different when we consider selectivity of Na+ 
over K+ : 

(1) The selectivity of the DEKA sodium channel for Na+ vs. K+ in fact depends only 
on a structural parameter—the diameter of the channel—and not on a meaure of 
solvation—the dielectric coefficient. In the primitive model, solvation appears 
as a dielectric coefficient. See Fig. 1, redrawn from Fig. 8 of (147). 

(2) The contents of the DEKA channel depends only on the solvation (dielectric 
coefficient). See Fig.2, redrawn from Fig. 9 of (147).  

(3) The selectivity of the DEKA channel depends on the structure—the diameter of 
the channel. But selectivity does not depend on solvation (dielectric coefficient) 
and contents do not depend on structure (channel diameter).  

(4) Solvation and selectivity operate independently (to the amazement of the 
authors of (147)). Dielectric coefficient and diameter have separate effects. One 
parameter determines one thing and not the other. They are orthogonal. 
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The reduced model evidently captures the (free) energies used by this system to control 
selectivity and contents. These energies are controlled by simple reduced variables. It seems 
as if the reduced model has captured the adaptation used by evolution to control selectivity 
and conductance in this case.  

Gillespie’s model of the ryanodine receptor provides another example in which the reduced 
model can compute the non-ideal interactions that determine selectivity and (in this case) 
conduction. Here, Gillespie has been able to calculate current voltage curves in more than one 
hundred solutions—(158): many results are in the supplementary material—predicting subtle 
mole fraction effects before they were measured (107,109,125,158,163). Most strikingly, 
mutations involving drastic changes in the density of permanent charge (from some 17 molar 
to zero) are accounted for in several solutions.  

Interactions can be calculated in reduced models with realistic complex properties. 
These successes show that computation of interactions is feasible in some biological 
situations and lend hope that similar approaches may be successful in the future in dealing 
with other biological systems that have selectivity and crowded charge, like active sites of 
enzymes.  

Given the success of this work, one may wonder why new mathematics is needed. The 
answer is that a general method of dealing with interactions can be extended to situations not 
accessible to the Monte Carlo simulations used for calcium and sodium channels, and hold 
significant advantages over the methods used in dealing with the ryanodine receptor (details 
in (97-99,176)). 

A different approach: the transistor tradition. The work described above arose in the 
chemical tradition, emphasizing the thermodynamic properties of systems at equilibrium, 
doing statistical mechanics in the thermodynamic limit, where boundary conditions are not 
involved. The theory of simple fluids is a magnificent example showing what the classical 
tradition can do when exploiting the simplifications produced by the thermodynamic limit 
(184-187).  

Quite a different tradition is used to analyze systems that depend on flow and we turn to 
that tradition now in the context of semiconductor physics. The new variational mathematics 
will be used to unify the two approaches later on. There, we will view ionic solutions as 
complex fluids (48,50,51,54,122), and advocate (97,176,188) the use of mathematical 
methods designed to deal with the flows and interactions of complex fluids.  

Transistors are a system of charge transport closely related to ion channels (1). Charge 
transport in transistors allows most of our modern technology. Integrated circuits and thus our 
digital technology depend on the flow of charged quasi-particles, holes and ‘electrons’. The 
electrons of semiconductors are quasi-particles that I like to call ‘semi-electrons’. Quasi-
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particles have only a faint resemblance to the isolated electrons of high school physics, 
despite their identical name.  

Quasi-particles are most useful mathematical constructions that help us understand 
current flow in semiconductors because quasi-particles follow laws much like those an ion 
would follow if it were a point. But the quasi-particles—holes and semi-electrons—do not 
exist outside of semiconductors like silicon and germanium. Bio-ions exist permanently.  

Bio-ions do not recombine, although of course weak acids (e.g., glutamic acid) and 
bases (e.g., lysine) do, including acidic and basic side chains of channel proteins. I have 
speculated that such recombination may be important in the function of transporters (7,8). 
Protonation of side chains would change the electric field and thus might create or control the 
correlated gates responsible for the ping-pong, alternating access mechanisms of transporters. 
I hasten to say this remains an idea, not a worked out model, let alone a fact.  

Field effect transistors FETs contain channels in which the flow of quasi-particles follow 
the drift diffusion equations (4,6,64,189-191) with forces calculated from all the charges 
present, using Poisson’s equation of the electric field. Quantum mechanics creates the 
underlying properties of semiconductors (and biological solutions, for that matter), but 
quantum mechanics enters indirectly in the classical theory of semiconductors (2-
4,6,64,66,67,192). It determines the band structures and the properties of holes and semi-
electrons. Direct computation of quantum effects are not needed. The drift diffusion equations 
are enough to deal with most properties of interest (4-6,193-195).  

Quasi-particles and real ions flow under the influence of electrical forces created by 
their own charge, in large measure. Poisson or Maxwell’s equations—that relate charge and 
electric forces—must therefore be solved along with the drift diffusion equations. Treatments 
that solve both equations together are called consistent. Treatments that do not, are called 
inconsistent. Classical Langevin equations of thermal motion are inconsistent for example 
when applied to ions in water because they assume a constant electrical field and do not 
compute it (196). Molecular dynamics simulations of thermal motion on the other hand are 
consistent, if the electric field is computed correctly so charges and electric potentials are 
related by Maxwell’s equations. 

Drift diffusion equations are a part of a multiscale analysis. In a multiscale analysis, a 
different set of (high resolution) equations are used to describe atomic properties. The high 
resolution equations can be used to show the existence of intermediate scale properties—for 
example, holes and semi-electrons—but they rarely allow direct computation of the 
properties of devices. The equations that describe practical properties of devices are at an 
intermediate scale. The intermediate scale drift diffusion equations are used very widely to 
construct (197-199) and describe semiconductor devices (6), although of course higher 
resolution models are needed and used (2,3,66,67,192,200,201) in some situations. 
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PNP and Drift Diffusion. The drift diffusion equations are called PNP in biophysics to 
emphasize the importance of computing the variable spatial distribution of potential from the 
much less variable distribution of fixed (‘permanent’) charge, using the Poisson equation 
with boundary conditions (for bath concentration and potential), as extensively discussed in 
(7,8,52,54,95,106,120,123,144,148,202-253). 

The name PNP for Poisson Nernst Planck (254) was introduced deliberately as a pun in 
a Biophysical Society Workshop (255) to emphasize (a) the analogy between ions in 
channels, and quasi-particles in transistors; and (b) the importance of computing the electric 
field, as opposed to assuming that the electric field is constant (256-258) in space, or as 
conditions, concentrations, or solutions change. 

The electric field of PNP—like the electric field in transistors—is not constant as 
conditions change. Electric forces must be computed from all the charges present, including 
the ions and quasi-particles, as a consistent mathematical solution of the entire system. Most 
previous work on Nernst-Planck equations in biology and chemistry (for example, 
(91,230,241,259-262)) (a) did not mention the analogy with transistors (however, see (263-
265)); (b) did not mention the importance of permanent charge (i.e., ‘doping’); and most 
importantly (c) did not mention the crucial role of the variable shape (i.e., ‘conformation’) of 
the electric field and its large changes when bath concentrations or potential is changed.  

The title of the early paper ‘Computing the Field’ (7) was chosen to contrast with earlier 
approaches that used more or less constant fields (85,256-258), or unchanging potentials of 
mean force (266,267), free energy barriers (85,267-269), and rate constants (85,268,269). 
Fields describing forces must change as conditions are changed in consistent models and so 
cannot be assumed to be constant in shape, let alone constant in space. Fields describing 
forces are outputs of a consistent theory or simulation. Fields must be computed. Electric 
fields in channels and proteins cannot be assumed to be constant (7) if the electrical potentials 
in the system are to be consistent with the charges in the system.  

Transistors function by changing the conformation of the electric field produced by 
doping and boundary conditions. The change in shape of the electric field is crucial for the 
function of transistors. Drift diffusion without doping, Poisson, or variable shapes of electric 
fields has a limited range of behaviors. With doping, Poisson, and variable shapes of fields, 
PNP can do everything a transistor and thus everything a computer can do. For example, 
elementary texts show how a single FET can be an amplifier, limiter, switch, multiplier, 
logarithm or exponentiator (6,65,270,271). Arrays of FETs provide all the logic, memory, and 
display functions of a computer. Solutions of the PNP equations can do everything a 
computer can do! 

Evolution needs devices as much as engineers do. It seems unlikely that evolution would 
entirely ignore the devices that (ionic) PNP equations allow. It seems likely that evolution 
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uses electric (and steric) fields that change shape to help with the function of proteins, 
channels, transporters, and enzymes (8). It seemed (7,8)—and seems (106)—possible that 
some functions of proteins customarily attributed to changes in the conformation of mass 
might actually be produced by changes in the conformation of their electric (and steric) 
fields. Transistors function by changing the conformation of their electric field without 
changing the conformation of their masses. 

PNP equations are not enough because the diameter of ions has important effects. The finite 
diameter of ions introduces correlations not found in the PNP equations. The PNP equations 
are just early members (i.e., low order terms) of an hierarchy of equations (272-278) like the 
BBGKY hierarchy (184,186,187) of equilibrium statistical mechanics. The correlations are 
important in ionic solutions and biology as we have discussed at length. Correlations produce 
nonideal behavior. 

Ionic Solutions are not dilute gases. It seems clear that classical models of ionic solutions 
taught to biophysicists need to be replaced. Ionic solutions have interactions not found in 
uncharged, noninteracting ideal gases (279). Classical models of ionic solutions are poor 
models for that reason.  

A poor model of this sort cannot explain interactions seen in experiments. If interactions 
are found experimentally, classical models will attribute them (mysteriously) to a single file 
in a channel protein, to the channel protein itself, to the transporter, the enzyme, or the 
nucleic acid. The explanations will be vague because they will not fit measurements over a 
range of conditions. Classical models have no other way to explain interactions. They will 
necessarily attribute interactions to the protein or to mysterious ‘chemical effects’ and rate 
constants because classical models do not consistently calculate interactions between ions or 
between ions and side chains of proteins.  

What model should we use to deal with interactions? It seems clear from the previous 
presentation that the primitive model does well with some types of ion channels, and should 
be used as the initial approximation in similar cases, in which side chains of the channel 
protein mix with ions in the pore of the channel.  

What is not so clear is what model should be used for bulk solutions (or for other 
biological systems, for example). The unfortunate reality is that physical chemists today have 
not yet found a good model for pure solutions with ionic strengths greater than 100 mM, like 
those found in biology, let alone for solutions of divalents, or for solutions like the ionic 
mixtures (of cytoplasm and ‘Ringer’s solutions’) in which almost all life occurs.  

Understanding of bulk solutions is limited to special cases. A recent summary paper (280) 
of a definitive book (25) summarizes present knowledge of specific ion effects. It says (p.11) 
“It is still a fact that over the last decades, it was easier to fly to the moon than to describe the 
free energy of even the simplest salt solutions beyond a concentration of 0.1M or so.”  
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These feelings of contemporary physical chemists are not very different from those of 
the 1950’s. Then, the standard textbook (12) of Robinson and Stokes—still widely used and 
in print—said, when talking about ionic solutions like seawater or Ringer solutions, 
“… many workers adopt a counsel of despair, confining their interest to concentrations below 
about 0.02 M, ... ” (p. 302 of reference (12)). Note that very little biology occurs in solutions 
with concentrations below 0.02 M. 

These feelings of despair arise out of frustration, in my view. Nowadays, as in the 
1950’s, data is available but understanding is not. Tremendous compilations of experimental 
data have been published (10,12-15,21,24,25,28,281). Two (15,21) are the result of large 
governmental projects, yet many workers use huge look up tables (21) because of the 
inadequacy of phenomenological models and their inability to predict behavior in conditions 
different from those used to generate the models. The models do not produce ‘transferable’ 
results in the jargon of the trade. Results measured in one set of conditions do not transfer to 
other conditions, because interactions are different in the two cases.  

The need for understanding is great, the understanding is little, so frustration and despair 
are the predictable result. 

Response to despair: atomic simulations. The constructive response to despair in academic 
as in real life (often) is to move along and try something—anything—new and different.  

Atomic simulations are something new. Most efforts, for several decades, have focused 
on simulating the properties of ionic solutions by computing the motions of individual atoms 
on a time scale of 10-15 sec. The fantastic improvement of semiconductor technology—by a 
factor of some 400 billion in 68 years—called Moore’s Law (282,283) has made it possible to 
compute some 2(2013-1955)/1.5 faster and better in 2013 than in 1955 (284). It is only natural to 
hope that direct simulation will do better than the counsels of despair. (It is interesting that 
the technological triumph of transistors was catalyzed by the PNP equations. PNP allows 
optimal scaling of semiconductor properties and device characteristics, as devices are made 
smaller (197,198). PNP speeds technological development because it often replaces slow, 
expensive trial and error experimentation with direct computation.) 
 The problems in reaching the biological scales of function are much harder, however, 
than commonly realized (285). In biology, not only does one face extrapolations of 1010 in 
time scale and length scale, but one also faces severe problems in dealing with the trace 
concentrations of messenger molecules (Ca2+, hormones) so important in biology. These 
problems must be solved all at once, in one calculation, because biology deals with these 
issues all at once. 

Problems of calibrating simulations of ionic solutions are just now being faced in a 
(fortunately if belatedly) growing literature. Recent contributions include 
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(22,37,47,118,167,286-295). As far as I know, no one has attempted to calibrate simulations 
of seawater or its close relatives, intracellular and Ringer’s solutions. 

Even the issue of calculating the electric field has not been faced forthrightly in 
molecular dynamics simulations of ions or proteins. Few papers actually show that the 
electric field estimated by molecular dynamics is in fact that which would be produced by all 
the charges in the system being simulated, using Maxwell’s or Poisson’s equation. Arguments 
abound, concrete calibrations are scanty.  

Calibrations are frequent and automatic in simulations of computational electronics. 
Transistor simulations and codes are routinely calibrated and checked to be sure the potentials 
and charges are consistent, in my experience (201,229,296-301). 

All these problems of molecular dynamics can be solved, I suspect, with decades of 
future work. Future work must deal explicitly with the unavoidable problems of calibrating 
atomic simulations of macroscopic systems. Avoiding problems rarely solves them. 

It is important to keep in touch with all atom simulations in semiconductors (see (302) 
and references cited there and in (6) and at website (2)). It seems that progress is possible but 
slow. Calibrated simulations of the tiniest semiconductor systems and transistors are possible 
(303-305). It is important to try to extend such methods from crystalline semiconductors to 
more disordered fluid systems like ionic solutions. 

Different models at different scales. The central issue in ionic systems is the need for 
different models at different scales. Direct computation cannot fill 10 orders of magnitude in 
time, and space, and concentration, all together, all at once. Interactions among ions make 
this task essentially impossible if each interaction is computed one by one (as in molecular 
dynamics simulations) because ions interact on the macroscopic scale of millimeters to 
meters as they produce physiological behaviors like an action potential, that depend in an 
essential way on the dielectric properties of membranes.  

Dielectric problems have more than pairwise interactions. The electric field in the 
presence of dielectric boundaries (i.e., lipid membranes (306-308)) cannot be described by 
pairwise interactions, as a matter of simple mathematics. The induced charge at the boundary 
couples every particle to every other particle making the number of interactions beyond 
astronomical and jeopardizing even the usual statistical mechanical definition of the state of 
one atom. If the ‘state’ of one atom depends on the coordinates of a macroscopic number of 
other atoms, it is not clear that the idea of state (as usually used in statistical mechanics) is 
useful or well defined.  

Action Potentials link atomic and macroscales. Biophysicists have known for more than 
thirty years (since Neher and Sakmann (309-311)—and suspected for more than 60 years 
(since the work of Hodgkin and Huxley (312) if not Cole (313-316)—that the action potential 
is produced by atomic scale changes in structure controlled by electrical potentials far away, 
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millimeters or centimeters away (in squid axon). They have known that action potentials 
propagate over meters and depend on properties of small groups of atoms (‘selectivity filters’ 
and ‘gates’) of individual molecules of channel proteins. They have known that statistical 
properties of single channel molecules (‘the open probability’ for example) control 
macroscopic potentials and also depend on those potentials. Thus, biophysicists have known 
‘forever’ that computations of action potentials (along with many other biological functions) 
must involve both atomic length scales and biological time and length scales. What they did 
not, and do not know is how to span the gaps between atomic and biological time scales.  

In fact, it seems clear to me that there can be no general way to deal with these gaps in 
scales. I think it is easy to create counterexamples to any attempt at a general approach. One 
simply has to add a process that is invisible on one scale. Measurements in the invisible 
region can never detect the invisible process. But the invisible process can dominate on 
another scale. Think of an added linear resonance process for a trivial example in a linear 
system. Added nonlinear processes can obviously have even more dramatic effects. 

Guess and Check. Instead of a general multiscale theory, it seems to me that one needs to 
guess simplifications and check them, hoping to find the simplifications that evolution has 
chosen to fill these enormous gaps. The simplifications imposed by evolution may make 
primitive models of biological systems more useful than primitive models of physical 
systems, as they seem to make primitive models of calcium channels more useful than 
primitive models of bulk calcium solutions. 

Atomic scale structures control most of biology. We all know that atomic scale structures 
control most of biology. We all should know that these atomic scale structures move (102) 
more or less at the speed of sound (angstroms in 10−12 sec). We all know that most biology 
occurs on a millisecond to second time scale. What we do not usually know is how evolution 
spans these gaps, except in a few cases, like the propagating action potential just described, 
where the electric field spans the gap because the electric field exists on all scales. It is 
inherently multiscale. 

Multiscale analysis and the action potential. Multiscale analysis is familiar to classical 
biophysicists but under a different name. The classical analysis of the action potential spans 
scales by using the cable (i.e., telegrapher’s) equation (317).  

Multiscale analysis of the action potential is dramatically simplified because most ionic 
channels function independently (85,311). The currents from separate channel molecules can 
be simply added to produce the macroscopic response. Markov models are not needed. Any 
complete summation of the currents through single channels—e.g., by nested convolutions of 
single channel records—will do fine, as long as the summations include all behaviors and 
openings. 
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Biology requires explicit intermediate scale models. Thus, I would argue in general that 
working out biophysical mechanisms will require explicit intermediate scale models linked 
together in an hierarchy starting with atomic structures, winding up with the biological 
function itself. 

These models must of course include the substances known to flow and to modulate 
flow in the biological function. And here we are back to interactions and ions. Almost all 
properties of membrane proteins and nucleic acids are sensitive to the type and concentration 
of salts in their environment. Most enzymes behave differently when K+Cl− in surrounding 
solutions is replaced by Na+Cl−. Most enzyme reactions have different rates when Ca2+ is 
added to the surrounding solution or when concentrations of any of the bio-ions Na+, K+ or 
Ca2+ are changed substantially. If rates of enzymatic reactions depend on concentrations, 
(free) energies depend on concentration. Thus, some of the energies of the enzymatic reaction 
depend on the concentration of interacting ions of non-ideal ionic solutions. The energies are 
not ideal. Excess free energy is significant. 

Incomplete models are unlikely to be useful. If such excess (i.e., non-ideal) energies and 
interactions are not included in the description or models of enzymatic activity, the models 
are incomplete. In my opinion, the models are unlikely to allow understanding and control if 
they are so incomplete. Much biological control comes from trace concentrations of Ca2+ and 
other messenger molecules perhaps concentrated a great deal in selective binding sites. It 
seems very likely indeed that evolution will use interacting ions to control and energize 
protein function. Part of the power supply of enzymes is likely to come from the enormous 
concentration of interacting ions nearby. 

For these reasons, bio-ions and messenger molecules must be included in the hierarchy 
of models. Bio-ions and messenger molecules interact with each other through electric and 
steric fields. Ionic interactions, both steric and electrical, must be naturally included in the 
hierarchy of models. 

Here the power, precision, and generality of the laws of electricity are an enormous help. 
Maxwell’s equations describe the flow of current no matter what the chemical nature, or 
atomic or macroscopic (or nuclear or astronomical) scale of the current carrier. Where 
electrical phenomena are involved, it is often possible to ignore chemical and atomic detail. 
Appropriate approximations (like Kirchoff’s current law and the telegrapher’s equations of 
cable theory) can be used to link scales. The power and importance of Kirchoff’s law can be 
appreciated when one realizes that it implies perfect correlation (within the accuracy of 
Maxwell’s equations, something better than 1 part in 1018) of ion motions, in contrast to the 
perfect independence of motion of the ideal particles assumed in classical models.  



Ions in Solutions Interact April 29, 2013 2012BIOPHYSJ302199R 
 

17 
 

Models must include flow. The hierarchy of models needed to link atomic structure and 
biological function must also include macroscopic flows and current because most biological 
function requires flow. Flows cease only at death.  

Classical models and approaches do not include interactions, current, or flows. 
Fortunately, classical mathematics has been extended so we now know how to deal with 
interactions and flows without guessing. 

Mathematics has recently been developed to do what Onsager (318-324) and Curran 
(325) and Katchalsky (326) tried to do so valiantly. It is now possible to write the free energy 
and dissipation (i.e., friction) of components of a system, combine them in a natural way, and 
then uniquely derive the mathematical description of the behavior of this interacting system.  

This new energy variational method is a generalization of the variational methods long 
used by physicists to describe mechanical, friction-free systems. The breakthrough is the 
inclusion of friction and flow in a well-defined way consistent with remarkably successful 
work in computational and theoretical fluid dynamics (327-331). The methods of this 
energetic variational calculus allow a (nearly) unique set of predictions given a model of the 
free energy and friction of a system.  

Energetic Variational Methods EnVarA are discussed in tutorial detail in (48) which extends 
to ionic solutions the earlier work of other authors on more complex systems (49,56,332-
341). Variational methods of this sort (50-53,58) and others (119,120,122,138,250,342) have 
been applied to a range of problems involving ionic solutions. These methods have been 
used, in a somewhat less general form, in the work on liquid crystals (343,344) that help 
makes possible the LCD technology we use every day.  

The energy variational methods are not magic, of course; the predictions are no better 
than the physical models themselves. If we use an inadequate physical model, we will get an 
inadequate result, but we cannot know what part of the model is inadequate until we correctly 
compute the model, under a range of conditions and compare those computations with 
experiments. The new mathematics allows one to compute models including friction and 
predict—by mathematics alone—what the model will give in a variety of conditions, 
including interactions and flows. Models can be tested and improved much more quickly if 
predictions can be made (with minimal adjustable parameters) and tested over a wide range 
of experimental conditions. Otherwise, comparing models tends to be an ill posed problem. 

Energetic Variational Approach. The methods of the energetic variational calculus are a 
promising new approach. These methods allow natural and mathematically consistent 
treatment of interactions and of flows but they depend on models of ions in solutions and 
proteins and these are not general. In the case of some ion channels, exceedingly simple 
models work, but there is no reason to believe such success will apply to other systems until 
the models actually succeed. The problem is the models, not the methods: numerical 
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procedures (52,120,122,250,345) are now available to allow computations of interacting 
crowded systems without too much trouble, even in very complex cases (51,56-58).  

If we use an inadequate physical model, we will get an inadequate result, but we cannot 
know what part of the model is inadequate until we compare with experiments under a range 
of conditions. Then, we can appropriately improve the model and move along towards our 
goal of understanding and controlling of biophysical systems. 

This view of ionic solutions may be new to many biophysicists and so seem 
idiosyncratic. This view, however, has been presented to (and refereed by) communities in 
applied mathematics and physics (1,188), physical chemistry (97,98,176,285), physiology 
(99), and biophysical chemistry (98).  
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Figure Captions
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Fig. 1. Control variables. Diameter controls selectivity of the DEKA Na channel. The 
selectivity (the ratio of the Na+ and K+ contents) contents of the DEKA Na channel depends 
on the diameter but not on the dielectric coefficient. The structural parameter (diameter) 
determines the selectivity. The solvation energy parameter (dielectric coefficient) determines 
the content. Each variable has an effect on one biological characteristic and not on the other. 
Thus, there are two independent (‘orthogonal’) control variables in the model. Loosely 
speaking, structure (diameter) control selectivity; solvation (dielectric) controls contents and 
thus conductance. This figure is redrawn from Fig. 8 of (147).  
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Fig. 2. Control variables: dielectric coefficient controls contents, i.e., conductance of the 
DEKA Na channel. Note the different scales on the ordinate for Na+ blue and K+ red. The 
solvation energy parameter (the dielectric coefficient) determines the contents and thus the 
conductance. The structural parameter (the diameter of the channel) determines the selectivity 
(the ratio of Na+ to K+). Each parameter has an effect on one biological characteristic and not 
on the other. Thus, there are two independent (‘orthogonal’) control parameters that control 
the biological characteristics of the model, independently. Loosely speaking, structure 
(diameter) control selectivity; solvation (dielectric) controls contents and thus conductance. 
The data shown are unexpected results of 12 simulations, each taking billions of calculations 
and several days. This figure is redrawn from Fig. 9 of (147).  
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