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Abstract 
Current voltage (IV) relations were measured from the calcium release channel (CRC) of the 

sarcoplasmic reticulum of cardiac muscle in twelve KCl solutions, symmetrical and asymmetrical, 
from 25 mM to 2 M. IV curves are nearly linear, in the voltage range ±150mV ≈ 12kT/e, even in 
asymmetrical solutions, e.g., 2M║100mM. It is awkward to describe straight lines as sums of 
exponentials in a wide range of solutions and potentials and so traditional barrier models have 
difficulty fitting this data. Diffusion theories with constant fields predict curvilinear IV relations and so 
they are also unsatisfactory.  

The Poisson and Nernst-Planck equations (PNP) form a diffusion theory with variable fields. They 
fit the data using adjustable parameters for the diffusion constant of each ion and for the effective 
density of fixed, i.e., permanent charge P(x) along the channel’s ‘filter’ (7Å diameter, 10Å long). If 
P(x) is described by just one parameter, independent of x, (i.e., P x Pb g = = −0 4 2. M ), the fits are 
satisfactory (RMS error/RMS current = 6.4/67) and the estimates of diffusion coefficients are reasonable 
DK = 1.3 × 10 – 6, DCl   = 3.9 × 10 – 6 cm2/sec. CRC seems to have a small selectivity filter with a very 
high density of permanent charge. This may be a design principle of channels specialized for large 
flux.  

The Appendix derives barrier models, and their prefactor, from diffusion theories (with variable 
fields) and argues that barrier models are poor descriptions of CRC in particular and open channels in 
general. 
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Appendix 
Rate Constants in Channology  

Rate models are used so widely in channology (Hille, 1975; Hille and Schwartz, 1978; Eisenman 
and Horn, 1983; Läuger, 1991; Andersen and Koeppe, 1992; Hille, 1992 are modern references) that 
we think it necessary to show explicitly how they arise in a diffusion theory applied to open channels.  

Rate models of channels grew from the rate theory (sometimes called transition state theory) of 
chemical reactions developed in quantum chemistry in the 1930’s. Despite its popularity then, chemists 
realized that rate theory must be derived (Laidler and King, 1983). It is not a fundamental physical law 
of either quantum or statistical mechanics and its use must be justified by derivation, simulation, and 
experimentation.  

Rate theory was derived in two different traditions, the tradition of equilibrium statistical 
mechanics (Johnson, Eyring and Stover, 1974; Hille, 1975; Pechukas, 1976; Chandler, 1978; Hille and 
Schwartz, 1978; Eisenman and Horn, 1983; Levine and Bernstein, 1987; Steinfeld, Francisco and Hase, 
1989; Läuger, 1991; Andersen and Koeppe, 1992; Hille, 1992), or the tradition of diffusion theory 
(evidently started by Kramers, 1940; see the definitive review of Hänggi et al., 1990, citing some 700 
other references; also see the textbook presentations of Berry et al., 1980 and Robinson and Holbrook, 
1972, and the recent book by Fleming and Hänggi, 1993, which contains a number of articles joining 
the two traditions).  

The tradition of statistical mechanics has difficulty accommodating flux, because flux of all types 
vanishes at equilibrium, where statistical mechanics is derived. Thus, phenomena that occur only when 
macroscopic flux flows (e.g., friction or frictional heating) are not natural components of theories in 
statistical mechanics.  

The tradition of diffusion theory has difficult accommodating atomic detail. Frictional phenomena 
are natural parts of diffusion theories but the equations of molecular dynamics used to describe 
molecular motion in atomic detail do not include diffusion coefficients or explicit treatments of 
friction.  

Statistical mechanics and diffusion theory must both be extended if their relationship is to be 
understood. Equilibrium ideas (like free energy and its components, energy and entropy) must be 
present in the (extended) diffusion theories; and nonequilibrium ideas, like friction, must be present in 
the (extended) equilibrium theories. 

The diffusion theory of channels started historically with the Nernst-Planck equations, the 
diffusion equations describing the concentration of charged particles, each of which follows the 
random trajectory necessarily produced by friction (Goldman, 1943; Hodgkin and Katz, 1949; Hall, 
Mead and Szabo, 1973; Levitt, 1982; Levitt, 1984; Levitt, 1985; Levitt, 1986; Levitt, 1987). Kim 
Cooper—then a graduate student of the biophysicist Eric Jakobsson and physical chemist Peter 
Wolynes—was (as far as we know) the first to use Langevin equations to describe the random 
trajectory of ions in a channel (Cooper et al., 1985; Cooper et al., 1988b; Cooper et al., 1988a). We 
(and others) followed his lead. Eisenberg et al., 1995, provided a stochastic derivation of the Nernst-
Planck equations showing how those equations describe the probability density function for the 
location of an ion moving in a random trajectory. The stochastic derivation rationalized the analysis 
and demonstrated the generality of the simulations of Barcilon et al., 1993.  

The stochastic derivation provides a pleasingly intuitive result. The flux of trajectories (and ions) 
is the sum of two unidirectional fluxes, each the product of a ‘source’ concentration; ‘diffusion 
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velocity’ D djd i ; and the appropriate conditional probability.  
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Note that the total flux cannot itself be described (in any natural way) by a (single unconditional) 
probability, nor can the mean first passage time or contents of an ion in a channel. All these quantities 
must be replaced by the appropriate (pairs of) conditional quantities because a number of the 
unconditional quantities are infinite in perfectly finite and well posed situations as found by Barcilon et 
al., 1993; Eisenberg et al., 1995.  

When the unconditional quantities are replaced by the appropriate conditional quantities, the flux 
through the channel can be described in a simple manner, e.g., as a unimolecular chemical reaction 
(Robinson and Holbrook, 1972) 
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In words: each flux can be described as a (unidirectional) chemical reaction without approximation, for any 
potential barrier Φ xb g,  with rate constants kf & kb  (units: sec – 1) determined by the conditional 
probabilities and diffusion velocities shown in eq. (1), when concentration boundary conditions are in 
force that describe mathematically the constant–concentration/constant–potential conditions of a 
voltage clamp experiment.  

The conditional probabilities of equations (1) & (2) require precise definition, including two 
boundary conditions that doubly condition the underlying trajectories, which must be described by the 
full, not reduced Langevin equation, to allow the double conditioning. It was the assignment of these 
trajectories and boundary conditions that allowed Eisenberg et al., 1995, to specify and solve this 
problem, using the techniques of Schuss, 1980, and Naeh, Klosek, Matkowsky and Schuss, 1990.  

The conditional probabilities of equations (1) & (2) can be determined entirely numerically, by 
computing a random walk, or by simulating a full or reduced Langevin equation. All three numerical 
calculations are shown in Barcilon et al., 1993 e.g., Fig. 4 & 5 (see also Cooper et al., 1985; Chiu and 
Jakobsson, 1989; Eisenberg et al., 1995). The conditional probabilities might also be determined from 
the simulations in atomic detail of molecular dynamics (McCammon and Harvey, 1987; Brooks et al., 
1988; Haile, 1992) or by using the Onsager-Machlup action formulation of Newton’s laws, in the 
presence of thermal agitation (Onsager and Machlup, 1953; see modern application: Elber, 1996). The 
simulations fortunately require much less time than the derivation (Eisenberg et al., 1995) of their 
boundary conditions, which took many of us years of work (Cooper et al., 1985; Cooper et al., 1988b; 
Cooper et al., 1988a; Chiu and Jakobsson, 1989; Barcilon et al., 1993). 

Eq. (1) – (2) are derived using stochastic identities that merely assume the existence of conditional 
probabilities of location and so are true for a wide range of stochastic trajectories. Thus, the derivation 
establishes the chemical reaction as a model of the open channel, and the meaning of the Nernst-Planck 
equations mathematically, without physical argument beyond that used in deriving the model of the 
open channel in the first place.  
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In the general case, we can conclude then that the chemical reaction and Nernst-Planck equations 
are not a (perhaps vaguely derived) continuum approximation but rather are an exact representation and 
description, even in atomic detail, if they use the conditional probability density functions of location 
of discrete particles, as defined above and in the cited references.1  

In a special case, when friction is large (as in channels on the biological time scale) and well 
behaved (characterized by a single number Dj  for each ionic species j), the statistics of the conditional 
trajectories (e.g., mean flux, first passage times, and channel contents of Left and Right trajectories) 
can be determined analytically (Eisenberg et al., 1995), using mathematical techniques developed by 
Schuss. In that special case, the conditional probability and rate constant can be written as 

D
d

k
D
d z x kT

j
f

j

j

z V

dx
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d

d
2 2 1

0

Prob RLm r b g
b g
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The normalized transmembrane potential V is defined as V V kTappl≡ e .  
If the potential profile Φ is dominated by a large barrier, and satisfies certain other criteria, 

expressions for rate constants reduce to exponential expressions (Section VIII of Barcilon et al., 1993; 
and eq. 8.4 & 8.5 of Eisenberg et al., 1995) reminiscent of rate expressions of reaction rate theory used 
widely in channology (Hille, 1975; Hille and Schwartz, 1978; Eisenman and Horn, 1983; Läuger, 
1991; Hille, 1992). However, the prefactor of (the exponential expression derived from) diffusion 
theory is physically very different because it depends explicitly on friction, as noted by many 
biophysicists (see Cooper et al., 1985; Cooper et al., 1988a; Cooper et al., 1988b; Chiu and Jakobsson, 
1989; Läuger, 1991; Roux and Karplus, 1991; Andersen and Koeppe, 1992; Barcilon et al., 1993; 
Crouzy, Woolf and Roux, 1994; Eisenberg et al., 1995). For example, 

xb g

k
D

df j j j
j z x z V z x  high

barrier 

PREFACTOR

    ⎯ →⎯⎯ −2π Φ Φ" expmax max maxb g b g  (4)

There is no controversy in the chemical literature about this expression (4) or its prefactor. Exactly 
this expression is widely used there2 to describe the flux over high barriers.  

At first glance, the typical system of the chemical literature seems quite different from a channel. 
In most chemical experiments involving flux over high barriers, concentrations change as the flux 
flows, in contrast to most channel experiments where concentrations (and potentials) are kept constant 
(as flux flows) by the active intervention of experimental equipment (i.e., by stirring or perfusion and 
by the voltage/patch clamp amplifier). However, in one special case—when barriers are high enough—
these different experimental conditions produce similar fluxes (Barcilon et al., 1993; Eisenberg et al., 
1995): high enough barriers are rate-limiting in both cases, even though experimental conditions are 
different, as are the boundary conditions that describe them mathematically. When barriers are high 
enough, the chemical and channel systems are nearly the same, probably because in that special case 
the system is nearly at equilibrium and experimental and boundary conditions do not matter very much. 

The numerical value of the prefactor of eq. (4) can be estimated easily if the potential profile Φ xb g  
is a symmetrical parabolic barrier spanning the whole length d of the channel, with maximum size 

, much larger than the applied (i.e., transmembrane) potential V. Then, for example,  Φmax maxxb g
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where we use the dimensional potential ϕ x x kTb g b g≡ Φ e  and x dmax = 2 . The diffusion (i.e., 
Kramers’) prefactor depends on the diffusion coefficient and channel length, which do not appear in 
the hopping prefactor kT/h, at all. The diffusion prefactor varies inversely with the (square root of the) 
temperature, whereas the hopping prefactor depends linearly on temperature. The Kramers’ prefactor 
depends on the type of permeating particle; the hopping prefactor is independent of the type of 
particle(!). These different properties have made it easy for chemists to check which prefactor actually 
describes the properties of solutions and condensed phases (Fleming et al., 1986; Schroeder and Troe, 
1993). 

Now, if the barrier is (say) 4kT/e high and 1 nm long and the diffusion coefficient is some 
1.3 × 10 – 6 cm2/sec—as we find for K+ 

 
in the ‘filter’ of the CRC channel, which is not dissimilar to the 

values others find for other channels (Dani and Levitt, 1981; Chen et al., 1995b; Chen et al., 1997; 
Tang et al., 1997)—the numerical value of the (diffusion expression for the) prefactor (for K+) is about 
2.8 × 108 sec – 1. The numerical value of the usual prefactor in the hopping theory is kT/h, which is ∼2.2 
× 104 times larger, about 6.3 × 1012 sec –1 at biological temperatures. As one might expect, ions hopping 
over barriers experience much less friction than ions diffusing over them, and the amount of the friction 
will depend on the identity of the ion.  

The effect of friction (i.e., the ratio of the two expressions for the prefactor, one general, the other 
for K+) is numerically equivalent to a change in the potential barrier of ln (2.2 × 104) ≅ 10 kT/e. For 
example, a barrier of height 13 kT/e, analyzed with the kT/h prefactor produces the same rate constant 
as a barrier of height 3 kT/e, analyzed with the Kramers’ prefactor. Or, in a more ominous example, a 
barrier of 10 kT/e—which barrier is more than large enough to be described by the high barrier 
approximation (4) or (5)—becomes 0 kT/e, which cannot be described by a high barrier approximation, 
because it is no barrier at all. Indeed, almost all barrier models of open channels use kT/h as a prefactor 
and postulate barriers in the range 3 kT/e to 12 kT/e: for example, the barrier heights used to model 
CRC are 5.5 kT/e (Tinker et al., 1992: Table 1, p. 498). Barrier models with such barriers cannot come 
close to fitting the open channel current found in most channels (Conley, 1996a; Conley, 1996b; 
Conley, 1997), if the correct prefactor is used. 

It is evidently quite important to settle on the correct value of the prefactor for channel permeation 
before a high barrier approximation is used. The channel length d is unlikely to be short enough; nor the 
diffusion coefficient Dj large enough, nor the same for different ions; nor the potential barrier ϕmax  

large enough to allow kT/h to approximate the diffusive prefactor 
2

2

D
d

j z e x kTjπ ϕmax maxb g .  

Of course, even if the numerical values were not too different, the meaning of the prefactors would 
be very different, since their temperature dependence is so different, and one depends on friction and 
the height of the potential barrier, the identity of the permeating ion, and the length of the channel, 
while the other looks more like a ‘constant of nature’ independent as it is of the properties of the 
channel and ion. 

Careful reading of the classical theories of barrier crossing in channology (Hille, 1975; Hille and 
Schwartz, 1978; Hille, 1992) shows how to reconcile the two treatments. Those theories have defined a 
barrier height by its free energy (temperature times entropy plus electrical energy), not its (electrical) 
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energy. In that case, the two treatments and prefactors can be reconciled if the frictional prefactor of 
diffusion theory is equated to the ‘activation entropy’ of rate theory.  

Unfortunately, the ‘activation entropy’ is not likely to be small or have a small effect, or be the 
same in all conditions of biological and experimental interest, because the trajectories of the ion (that 
determine the entropy) are quite different qualitatively and quantitatively in the bath and in the 
channel. The motion is three dimensional in the bath but (nearly) one dimensional in the channel; and 
the diffusion coefficient of ions in the bath are generally much higher than in the channel’s pore (Dani 
and Levitt, 1981).  

The activation entropy of traditional barrier theories is more vaguely defined than the prefactor of 
diffusion theory, until the dependence of activation entropy on temperature, friction, and channel 
length is determined. This dependence is not derived or displayed in traditional theories of barrier 
crossing or in most barrier models, either, and so data measured with different permeating ions (and thus, 
most likely, unequal diffusion coefficients), at different temperatures, or in systems with unequal 
channel lengths, cannot be compared using the ‘activation entropy’ or ‘activation free energy’ (Hille, 
1975; Hille and Schwartz, 1978; Hille, 1992) formulation. Measurements of the value and functional 
dependence of the prefactor (on temperature, diffusion constant, etc.) are available in the chemical 
literature (e.g., Fleming et al., 1986; Hänggi et al., 1990; Fleming and Hänggi, 1993; Schroeder and 
Troe, 1993). They are incompatible with the expression kT/h and in fact are close to the Kramers’ 
expression eq. (4), or its generalizations, under a wide range of conditions in many systems. 

‘Barrier heights’ determined experimentally in channology (using rate theory with the kT/h 
prefactor) represent the free energy barrier to ion translocation. Free energies are, of course, a perfectly 
adequate representation of barrier heights (if barriers in open channels are in fact high) as long as the 
free energy is not confused with the potential energy: free energy includes entropy and the entropy 
term changes current by a factor of ∼2×104, as we have seen. Thus, a verbal model or mathematical 
theory (or simulation of molecular dynamics) must compute the entropy as well as the energy if it is to 
be compared with experimental estimates of barrier heights. Otherwise, errors some 10 kT/e will occur 
in estimates of the barrier height, as we have seen. 

If a theory calculates just the barrier of potential energy—using Coulomb’s law or Poisson’s 
equation or a verbal version of either, to describe binding at a charged site, for example—it must not 
ignore the difference between potential energy and free energy, it must not ignore the entropy 
component of free energy, it must not use kT/h as the prefactor, or large errors will occur in predictions 
of the current. In particular, molecular models of binding sites, whether verbal or quantitative, must 
explicitly estimate both the energy and entropy term if serious quantitative errors are to be avoided, as 
we have seen.  

If a barrier model ignores the dependence of the entropy term on the type of permeating ion, or if it 
ignores the dependence on the diffusion coefficient, temperature, barrier height, and channel length, 
serious qualitative errors are likely to occur, as well. In particular, traditional barrier models are likely 
to give qualitatively misleading results (because they use kT/h as a prefactor) if used to compare 
experiments involving different ions (with different diffusion coefficients and thus different prefactors 
and activation entropies); experiments with mutated or modified channels (which have modified 
potential barriers and thus modified prefactors and activation entropies); or experiments with different 
concentrations of ions (which are likely to have different potential barriers (Eisenberg, 1996) and thus 
have different prefactors and activation entropies). 

We have seen that the general expressions (1) – (3) determine the flux and (and its rate constant) 

C:\Program Files\DocWord\CRC\appendix.doc   3/28/04  5:08 AM Page 6 



Biophysical Journal 73: 1349 (1977) Permeation in a Calcium Release Channel 

exactly, for small as well as large barriers without concern about prefactors. The general expressions have 
unambiguous meaning, and their functional dependence is widely accepted in the chemical literature. 
They are simple to compute, using generally available software, that takes virtually no time to execute. 
Presumably for these reasons, a number of chemists do not use the high barrier theories at all (citations 
in last paragraph of footnote 2). Perhaps, channologists should follow that practice, at least when 
studying open channels. 

It seems worthwhile to list the difficulties (documented in this Appendix and the Results Sections) 
facing traditional barrier models of open channels, so scientists can be aware of what they are assuming 
when they use them. 

1) Barrier models of channels are based on a view of the trajectories of ionic motion in condensed 
phases which has been shown to be false, both experimentally and theoretically. Ions do not hop as 
they move in such systems, rather they follow diffusive, nearly fractal paths. 

2) Barrier models of channels assume potential barriers independent of the concentration of ions in the 
baths and independent of transmembrane potential. That is to say, they ignore the effects of the 
charged contents of the channel (and other mobile charges) on the potential barrier. These effects 
are large; indeed, these effects are what allow PNP to fit data under so many conditions from so 
many channels. Thus, ignoring these effects is like to lead to qualitative errors in understanding 
(Eisenberg, 1996). It is important to add that the existence of these effects (and their approximate 
size) do not depend on details or assumptions of the PNP model.  

3) Barrier models of channels assume a prefactor independent of the type of ion, in particular of its 
diffusion coefficient. In fact, traditional barrier models of channels use a prefactor different from 
that derived, simulated, or measured experimentally in condensed phases. The traditional prefactor 
has no dependence on the type of permeating ion, its friction, or on channel length, and it has the 
wrong dependence on temperature. These dependencies are not just theoretical constructs; they 
have been measured by chemists in much experimental work on barrier crossing in condensed 
phases.  

  Thus, it seems unwise to use barrier models (with the traditional prefactor) as they have often 
been used, namely to compare the permeation of different ions, unless one has evidence that 
different ions experience the same friction, and have other identical properties as discussed 
previously. 

4) Traditional barrier models use the wrong numerical value of the prefactor. For CRC the traditional 
prefactor is numerically too large by a large factor, 2.2 × 104 for K+, which produces an 
overestimate of (a single large) barrier of ∼10 kT/e. 

5) Barrier models predict much less current than flows in most open channels, if they use the correct 
prefactor and the barrier is higher than ∼3 kT/e. The conductance of the traditional model of CRC, 
predicted using the correct prefactor, using a parabolic barrier 3 kT/e high, and using the parameters 
of the CRC channel reported here, is some 2 psiemens, in 100 mM KCl, much less than the hundreds 
of picosiemens we find. Evidently barriers are low in most open channels. If that is so, traditional 
barrier theory makes no sense. 

6) Barrier models describe the effects of mutations in channel proteins only vaguely because they do 
not include Poisson’s equation (or, equivalently, Coulomb’s law applied to all charges) to show 
how a mutation in a protein, which often changes the fixed charge lining the wall of the protein’s 
pore, changes the potential profile, barrier height, or rate constant for flux. 

C:\Program Files\DocWord\CRC\appendix.doc   3/28/04  5:08 AM Page 7 



Biophysical Journal 73: 1349 (1977) Permeation in a Calcium Release Channel 

Given these difficulties, it is not surprising that barrier models of channels are unable to fit the currents 
measured in a number of types of channels (if measurements are made over a wide range of potentials 
and in a wide range of solutions) and that they are of quite limited use in understanding the general 
phenomena of selectivity or the specific effects of mutations in channel proteins. 

Conclusion. It seems to us that the time has come to abandon barrier models of the CRC channel, and 
perhaps of other open channels, as well. It seems reasonable to us to see how well PNP can serve as a 
replacement, by checking its predictions over a wide range potentials, in a wide range of ions and 
mixtures of ions.  

On theoretical grounds, it seems unlikely to us that PNP in its present form will be adequate to 
this task. Nonetheless, an adequate replacement is likely to preserve PNP’s main features, namely, the 
description of the channel as a distribution of permanent charge, and the calculation of the potential 
and concentration profiles, and flux, as the self-consistent solution of Poisson and transport equations. 
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Table 1 
Solutions  

 
 

 Concentration (mM)
      

Cis 250 250 250 250 250 250 250 1000 1000 1000 1000 2000
Trans 250 2000 1000 500 100 50 25 1000 500 250 100 100 
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Table 2 

Parameter Estimates 
Uniform Permanent Charge 

 
 
 

 
      Parameter Estimate     Correlation Coefficient 

 (± Standard Deviation)   DK DCl P0

1.25 × 10-6 cm2/sec (± 0.13) = DK 1  – 0.88  – 0.998 

3.87× 10-6 cm2/sec (± 0.44) = DCl  – 0.88 1  – 0.88 

– 4.17 M (± 0.45) = P0 – 0.998 – 0.88 1 

314 data points from 12 solutions were used to estimate the parameters and correlation coefficients  
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Table 3 

Parameter Estimates 
Non-uniform Permanent Charge P(x) 

 
 
 

 
 Parameter Estimate     Correlation Coefficient 

 (± Standard Deviation)   DK DCl β1 β2 β3 β4

1.48 × 10-6 cm2/sec (± 0.2)  = DK 1 -0.91 -0.87 -0.69 -0.01 0.29 

4.12× 10-6 cm2/sec (± 0.9) = DCl -0.91 1 -0.94 0.86 0.097 -0.42 

–  4.82 M (± 1.1) = β1 -0.87 -0.94 1 -0.92 -0.31 0.62 

8.12 M (± 2.0) = β2 -0.69 0.86 -0.92 1 0.15 -0.50 

– 4.09 M (± 8.0) = β3 -0.01 0.097 -0.31 0.15 1 -0.93 

– 9.95 M (± 11.3) = β4 0.29 -0.42 0.62 -0.50 -0.93 1 
 

The permanent charge is P x x d x d x db g b g b g b g= + + +β β π β π β π1 2 0 3 0 02 4 3J J J  
where d is the length of the channel, and  J0 is a Bessel function of the zero order.  
314 data points from 12 solutions were used to estimate the parameters and correlation 
coefficients 
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FIGURES 
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Figure 1. The permanent charge profile adopted as the best estimate of P(x). The current voltage 
relations measured in several solutions, fit with a uniform spatially independent permanent charge, 

 diffusion coefficients DP x Pb g = = −0 4 2. M, K = 1.3 × 10 – 6, DCl   = 3.9 × 10 – 6 cm2/sec, and dielectric 
constants of 2, 5 and 10. Curves for ε = 2 and ε = 5 are indistinguishable. Singular values were {9016, 
306, 14}. The theory fits quite well, with RMS error/RMS current = 6.4/67 summed over all solutions.  
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Figure 2. Current voltage relations measured in the solutions indicated. The lines are the best fits of 
PNP with the parameters shown in Table 2 or Table 3. The fits of the two models are not 
distinguishable by eye. Note that small (5.7%) changes in the value of the uniform fixed (i.e., 
permanent charge) could account for all the deviations between theory and experiment (see text for 
details).  
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Figure 3. Panel A shows the profile of potential in symmetrical 250 mM solutions. Note the large 
region in which the potential in the baths differs from its bulk value (for this reason the scale of the 
horizontal axis is different inside the channel 0 < x < 10Å and outside the channel in the baths, x < 0 & 
x > 10Å). This region is so large because the concentration of permanent charge at the ends of the 
channel is so large (see Fig. 1) compared to the concentration of the bathing solutions. The Debye 
length in the channel is thus much shorter than the Debye length in the bath. The potential profiles are 
clearly sensitive functions of transmembrane potential and bath concentration. See caption of Figure 4. 

Panel B shows the profile of concentration of anions and cations in symmetrical 250 mM solutions 
with a logarithmic vertical axis and different horizontal scales inside and outside the channel. The 
concentration profiles show much less dependence on transmembrane potential and bath concentration 
than the potential profiles. This is to be expected from a channel like CRC with (nearly) linear IV 
relations, and is not found in channels with more complex profiles of fixed charge and thus more 
complex IV characteristics (Chen et al., 1995, 1996; Tang et al., 1997). 
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Figure 4. Panel A shows the profile of potential in asymmetrical 250║50mM solutions. Note the large 
region in which the potential in the baths differs from its bulk value (for this reason the scale of the 
horizontal axis is different inside the channel 0 < x < 10Å and outside the channel in the baths, x < 0 & 
x > 10Å). The potential profiles are clearly sensitive functions of transmembrane potential and bath 
concentration. 

Panel B shows the profile of concentration of anions and cations in asymmetrical 250║50mM 
solutions with a logarithmic vertical axis and different horizontal scales inside and outside the channel.  

Forward and backwards rate constants for permeation of each ion are determined by the potential 
profiles as shown in the Appendix, eq. (1)-(3). The dependence is considerable, as documented in the 
following table. Roughly speaking, in this channel, changing one solution from 250 mM to 50 mM, 
changes rate constants by a factor of 2 to 10; changing transmembrane potential by 100 mV changes 
forward and backwards rate constants by a factor of 10. 

 
Trans-membrane 
potential V 

mV 

K+ Rate 
Constant 

kf(K
+) 

K+ Rate 
Constant 

kb(K
+) 

Cl – Rate 
Constant 

kf(Cl – ) 

Cl –  Rate 
Constant 

kb(Cl – ) 
  µsec-1 µsec-1 µsec-1 µsec-1

KCl:  250║250 mM     
 0 mV 148 8.92 412 6838
 100 mV 585 0.737 34.0 2.70×104

      

KCl:  250║50 mM     

 0 mV 59.7 0.722 828 6.85×104

 100 mV 163 4.12×10 

– 2
47.4 1.87×105
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Figure 5 shows the potential profile of CRC with asymmetric 250||50 salt if (a) there were no ions 

in the channel or bath (the solid-line), (b) if there were ions in the baths but not in the channel’s pore 
(the dashed-line: – – – ), and (c) if the ions are permeable (dot-dash line: — - —). Note that potential 
profiles, vary substantially with concentration and so the rate constants given in eq. (3) will also vary 
with concentration. 
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Figure 6. Comparison of PNP and barrier models in several solutions. Broken lines were obtained 

using the parameters given by Tinker et al., 1992. In particular, the prefactor kT/h was used, although 
the Kramers’ expression (see Appendix) would be a much better choice.  
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Figure 7. Two more complex profile of permanent charge. 
P x x d x db g b g b g= − + −4 8 81 41 20 0. . .J Jπ π  −9 9 30. J πx db g  (in molar, where x is the location in the 
channel of length d;  is a Bessel function of order zero) and the diffusion constants in the pore are 
D

J0

K = 1.5 × 10 – 6, DCl   = 4.1 × 10 – 6 cm2/sec. This profile produces somewhat better fits than a uniform 
profile. Its singular values are {7621, 281, 22.7, 15.7, 1.83, 0.426} and so the parameters shown in 
Table 3 seem quite well determined.  

When an additional term β π5J0 4 x db g  was added to improve the estimate of P(x), the best least 
squares value of its coefficient β5 = – 0.52 was much smaller than the other coefficients, whose average 
magnitude was some 6.7M. The SVD showed that β5 was reasonably well determined: the singular 
values were {7645, 277, 22.6, 15.7, 1.97, 0.569, 0.222} and so it seems that just the 3 Bessel functions 
(and constant) of Fig. 7 ‘exhaust the (information content of) the data’. They describe the permanent 
charge as well as it can be described given the limitations of theory and experiment. 

The data was also fit with a profile of permanent charge made of the sum of 8 step functions. Note 
that it converges to give much the same estimate of diffusion coefficients and profile of permanent 
charge. 
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Endnotes 
 
 
1 See footnote Error! Bookmark not defined.. The meaning of the average potential profile 

ϕ xb g of the Nernst-Planck equations is more subtle, if not problematic, and is discussed at length in 
Eisenberg, 1996. 

2 The large barrier result is derived in the equilibrium tradition in Robinson and Holbrook, 1972; 
Johnson et al., 1974; Pechukas, 1976; Berry et al., 1980; Levine and Bernstein, 1987; Steinfeld et al., 
1989. The prefactor in those expressions is not simply kT/h; it includes a ratio of (factors of the grand) 
partition functions as well, and is in agreement with much experimental data. Fleming et al., 1986, and 
Schroeder and Troe, 1993, both present and cite the large experimental literature.  

The large barrier result is derived in the diffusion tradition in Kramers, 1940; Gardiner, 1985; 
Hynes, 1985; Hynes, 1986; Berne et al., 1988; Hänggi et al., 1990; Fleming and Hänggi, 1993. Many 
derivations (in both the equilibrium and diffusion tradition) are given in Hänggi et al., 1990, as well as 
a detailed discussion of the prefactor, and numerous (∼700) references to the historical and modern 
literature. Fleming and Hänggi, 1993, describes the current state of knowledge: it includes articles 
describing experimental measurement of the prefactor, a succinct reconciliation of equilibrium and rate 
constant traditions using variational theory, and a powerful description of the limitations of any one 
dimensional theory, along with other useful articles. 

It is important to note that many modern books and reviews on transport (McQuarrie, 1976; 
Friedman, 1985; Ma, 1985; Chandler, 1987; Mason and McDaniel, 1988; Smith and Jensen, 1989; 
Spohn, 1991; Balian, 1992; Mahan, 1993; Bird, 1994; Cercignani, Illner and Pulvirenti, 1994; Garrod, 
1995) hardly mention barrier or rate models at all, preferring to deal with the general situation, in 
which barriers can have any shape or size, as some channologist prefer as well (Hall et al., 1973; 
Schuss, 1980; Levitt, 1982; Levitt, 1984; Cooper et al., 1985; Levitt, 1985; Levitt, 1986; Levitt, 1987; 
Cooper et al., 1988b; Cooper et al., 1988a; Chiu and Jakobsson, 1989; Barcilon et al., 1993; Eisenberg 
et al., 1995; Bek and Jakobsson, 1994; Eisenberg et al., 1995). 
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	Parameter Estimates
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	   Parameter Estimate     Correlation Coefficient
	(± Standard Deviation)
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	where d is the length of the channel, and  is a Bessel funct
	314 data points from 12 solutions were used to estimate the 
	FIGURES
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