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Abstract 
 

The flow of current through an ionic channel is studied using the energetic variational 
approach of Liu, et al., applied to the primitive (implicit solvent) model of ionic solutions. This 
approach allows the derivation of self-consistent (Euler Lagrange) equations to describe the flow 
of spheres through channels. The partial differential equations derived involve the global 
interactions of the spheres and are replaced here with a local approximation1, we call steric PNP 
(Poisson-Nernst-Planck). Kong combining rules are used and a range of values of steric 
interaction parameters are studied. These parameters change the energetics of steric interaction 
but have no effect on diffusion coefficients in model and simulations. Calculations are done for 
the calcium (EEEE, EEEA) and sodium channel (DEKA) previously studied in Monte Carlo 
simulations with comparable results. Biological function is quite sensitive to the steric 
interaction parameters and we speculate that a wide range of the function of channels and 
transporters, even enzymes, might depend on such terms. We point out that classical theories of 
channels, transporters, and enzymes depend on ideal representations of ionic solutions in which 
nothing interacts with nothing, even in the enormous concentrations found near and in these 
proteins, or near electrodes in electrochemical cells, for that matter. We suggest that a theory 
designed to handle interactions might be more appropriate. We show that one such theory is 
feasible and computable: steric PNP allows direct comparison with experiments measuring flows 
as well as equilibrium properties. Steric PNP combines atomic and macroscales in a computable 
formulation that allows calculation of the macroscopic effects of changes in atomic scale 
structures (size ≅ 10-10 meters) studied so extensively in channology and molecular biology. 
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Introduction  

Ion channels are protein molecules that conduct ions (like Na+, K+, Ca2+, and Cl– that might be 
named ‘bio-ions’ because of their universal importance in biology) through a narrow pore of fixed charge 
formed by the amino acids of the channel protein.2 Membranes are otherwise quite impermeable to 
natural substances, and so channels are gatekeepers for cells, natural nanovalves that control a wide 
range of biological function.3 Channels open and close stochastically, allowing ionic current to flow, 
forming a path for solute movement, when they are open.4-6 Only electrodiffusion moves ions through 
channels, and so this biological system is like a hole in a wall that we should be able to understand 
physically.7-9 

Ion channels are responsible for signaling in the nervous system, coordination of muscle 
contraction, and transport of dissolved substances, and water, in all tissues. Each of these functions has 
been so important for so long that evolution has probably produced a nearly optimal adaptation within 
physical constraints, and conserved it, using the same design principle again and again.  

Investigation of the physical mechanisms of current flow has just begun, although there is no 
shortage of descriptive metaphors in the literature of structural, molecular biology and biophysics.2 The 
fundamental problem in a physical analysis is one of scales.10 Mutations in single amino acids, that 
sometimes change only a handful of atoms, involving perhaps just one permanent charge (radius of ~0.1 
nm), have dramatic biological effects. Such sensitivity comes as no surprise to the biologically oriented 
chemist or physicist.  

Theories and simulations must account for the sensitivity of macroscopic function to atomic 
detail. Ion channels are nanovalves designed so a few atoms, coded by the genetic blueprint of the 
protein, can control macroscopic function: that is what nanovalves (and channels) are all about. Theories 
and simulations must deal with 0.1 nm structural changes in charged groups that produce changes on the 
macroscopic scale of function. Structures as small as 0.1 nm move—and cannot be stopped from 
moving—in thermal (nearly Brownian) motion in 10-16 sec. Their trajectories reverse direction 
‘infinitely’ often, while biology moves on time scales of 10-3 second or so in much simpler trajectories. 
The central physical issue is how to preserve this sensitivity to tiny structures while averaging over 
trajectories with such complex behavior, over a 1013 range of time. Other scales also pose problems. 
Physics and biology—and simulations of physics and biology—must cope with the wide range of time 
scales and concentrations10 as well as the immense range and strength of the electric field.11-15  

The extremes of length, time, and concentration scales are all involved in the natural function of 
ion channels (or any nanovalve) so theory and simulations must deal with all these extremes together. It 
is not likely that atomic scale simulations, by themselves, will be able to deal with these, all together in 
finite time. Rather, reduced models, of the type used widely in the physical sciences, are more likely to 
be helpful for the foreseeable future.  
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A useful reduced model will include atomic scale structural variables that determine macroscopic 
function. Sensitivity functions, determined by the theory of inverse problems, can help evaluate and 
construct reduced models. Biological function will be sensitive to important parameters and insensitive 
to others. The utility of these models can be evaluated by solving the relevant inverse problem for 
channels16-18 using general methods.19,20  

So far, the most studied reduced model for ion flow in bulk and channels is the 
Poisson-Nernst-Planck (PNP) equation.11,12,21-26 Although this model has some success in dealing with 
experimental data.22,27-51 it does not include correlations introduced by the finite diameter of ions,52 and 
these are of great importance in determining the selectivity of channels9,53,54 and the properties of ionic 
solutions in general.55-69 Crudely speaking, PNP is to nonequilibrium systems (like channels) what 
Poisson Boltzmann is to static systems: both are first approximations, useful to show the crucial role of 
the electric field11,12,14,70, the ionic atmosphere, and screening.71 Neither are adequate models for ionic 
solutions like sea water or the related solutions inside and outside biological cells.52,72-74 

Recently, work by Eisenberg, et al.,75-78—built on the energetic variational theory of complex 
fluids77,79-86—has developed a new set of PNP equations to implement and generalize an approach to 
selectivity started by Nonner and Eisenberg.87-92 Nonner and Eisenberg (et al.) considered a simplified 
model with ions (and side chains of the channel protein) represented as spheres of different finite sizes. 
They have shown in a long series of papers that important (static) selectivity properties of some 
significant types of ion channels can be explained with this model (reviewed in9,53,93). They have in fact 
constructed a single model, with two adjustable parameters (diameter of channel, dielectric coefficient 
of protein, both set only once to unchanging values), using a single set of (crystal) radii of ions that fits 
the detailed and complex selectivity properties of two quite different types of channels, the CaV calcium 
channel90,94-98 of heart and the NaV sodium channel of nerve9,91,99. The theory accounts for the properties 
observed in solutions of different composition, with concentrations ranging from 10-7 to 0.5 Molar. 
When the ‘side chains’ in the model are amino acid ‘residues’ Asp-Glu-Lys-Ala, the channel has net 
charge of −1 although it is very salty (the magnitude of net charge is three). The channel then is a DEKA 
sodium channel. When the side chains are Asp-Glu-Glu-Ala, then channel is even saltier (the channel 
has net charge −3). It is a DEEA calcium channel, with quite different properties, although no 
parameters in the model are changed whatsoever, except the side chains that determine selectivity. 

Most importantly, channels have been built according to the prescription of this theory and they 
behave as predicted.100-102 Studying another channel, the ryanodine receptor (of enormous biological 
importance as the final regulator of Ca2+ concentration in muscle and thus of contractions), Gillespie, et 
al, have successfully predicted subtle and complex properties of selectivity and permeation before 
experiments were done. Gillespie, et al., predicted the properties of drastic mutants in a wide range of 
solutions before the experiments were performed,103-112 extending work on an earlier unsuccessful 
reduced model of the receptor that did not deal with the finite diameter of ions. 30,32,113,114 One of the 
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Meissner/Gillespie mutants reduces the permanent charge from 13 M to zero, and yet Gillespie’s theory 
fits current voltage relations in several solutions with nearly the same ~8 parameters as wild type.  

The calculations reported here extend the pioneering calculations of Hyon75,76,78 applying the 
energy variational approach to ion channels.115 The treatment of the baths and boundary conditions are 
somewhat different. A full three dimensional treatment is needed before the appropriate one dimensional 
approximation (particularly boundary conditions) can be determined without ambiguity.25,43,88,116-121 

Here, we simulate the properties of the family of calcium channels CaV (reviewed in9,98) and 
sodium channels NaV

91,99 using parameters already shown to fit a wide range of stationary (time 
independent) experimental data in a variety of ‘symmetrical’ solutions, solutions designed so current 
does not flow. Our results agree with previous equilibrium binding results and extend them to the world 
of current voltage relations using a model and numerical methods that can be easily implemented on 
inexpensive computers. Current voltage relations compute in a few hours of time on a notebook system. 
 
 

Mathematical model 
 
Poisson-Nernst-Planck (PNP) equations with size effects. The energy functional and the procedures 
for handling it with the variational calculus are central to the Energetic Variational Approach (EnVarA) 
formulated by Chun Liu, more than anyone else. Liu’s approach is described in 
references.75,79-82,84,115,122-126 The ‘energy’ of EnVarA is shown to correspond to the Helmholtz free 
energy of classical thermodynamics (in applicable equilibrium systems) in the recent article127. The 
application of EnVarA to membranes128, biological cells and tissues77, and ions—in channels and bulk 
solution—is described in detail in references,1,75-78, hopefully in a way accessible to physicists and 
chemists without extensive experience with variational methods. 

The energy functional for the ion channel is defined by 
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where ,  i ic z  are concentration and valence for thi  ion ( )1, , 1i N= − ; 1/2N Oc c −= is the concentration 
for side chain 1/2O−  (as in the glutamate side chain) with valence 1/2

1
2N Oz z −= = −  located in the filter 

only; φ  is the electrostatic potential; Bk  is the Boltzmann constant; T  is the absolute temperature; 
N  is the number of ions; e  is the unit charge; 0ρ  is the permanent charge density; 1/2Oc −  is the 
concentration for the spherical ‘side chain’ with valence 1/2

1
2Oz − = −  located in the filter only; V  is the 

Journal of Physical Chemistry B (in the press)



Tzyy-Leng Horng, et al, File Name: pnpsteric_July_31-1_2012.docx 

 6 

restraining potential that keeps the side chain inside the filter at all times; ia  and ja  are radii for ion 
i  and j ; ijε  is then energy coupling constant between ion i  (including side chain 1/2O− ) and j  
(including side chain 1/2O− ). The last term is the repulsive part of the hard sphere potential that keeps 
ions apart.  

The hard sphere repulsion characterizes the finite-size effect of ions and side chains inside the 
filter. These repulsive terms obviously depend on the chemical species and are called combining rules 
when they describe interactions of different species. We discuss the combining rules later. 

The basic reasoning is that the ion filter is so narrow that extra energy is needed to crowd ions 
into its tiny volume.9,53,54,87,89,95-97,99,101,102,104,129-131 Without finite size effects, the total energy will yield 
the traditional PNP equations.  

The Euler-Lagrange equations of eq. (1) will introduce the PNP equations with size effects that 
depend on the global properties of the problem, in the following way 

 0
1

( ) ,
N

i i
i

e z ece φ ρ
=

−∇⋅ ∇ = +∑  (2) 

 0,i
i

c J
t

∂
+∇ ⋅ =

∂



 (3) 

where flux iJ


 is 

 ( )12

12
1

( ) ,   for  1, , 1
N

ij i ji i i i
i i i i j

jB B

a aD c D cJ D c z e c y d y i N
k T k T x y

e
f

=

+
= − ∇ − ∇ − ∇ = −

−

⌠

⌡

∑
d

d d



d d

 (4)  

There is extra flux from the restraining potential that keeps side chains within the selectivity filter 
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These equations are very similar to the drift-diffusion equations of semiconductors11,12,23,24,116,121,132-149 
with the first term in the flux being the diffusion term and the second one being the drift term driven by 
electrostatic potential of the field.  

The third term involves a mutual repulsive force and inter-particle hard sphere potential that is 
not typically found in semiconductor equations (although the semiconductor literature is so large that 
volume exclusion of finite size holes and electrons is probably found somewhere we do not know). This 
term includes forces usually called ‘Lennard Jones’ and depends globally on the properties of the 
solution everywhere, because of the range of the integral on the right hand side of eq. (4) and (5).  
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We call attention to the important role that the coefficients of these steric terms will have in 
determining biological function. The role of these steric terms will be somewhat different in our 
calculations from those in classical equilibrium analysis of ionic solutions using Monte Carlo 
simulations, for example. The cross terms in our expression appear as part of partial differential 
equations. These terms will then have effects on all terms in the solution of those partial differential 
equations. The integration process ‘spreads out’ the effects of the cross terms. They propagate into 
everything as the partial differential equations are solved. The usual classical equilibrium treatment of 
Monte Carlo simulations is likely to produce different radial distribution functions different from those 
produced by our differential equations, but detailed comparison of MC and EnVarA calculations of 
absolutely identical models is necessary to check the significance (or even existence) of this effect. 

The steric cross terms—often called combining rules—turn out to have significant effects on the 
properties of ion channels. As mentioned, we use the Kong combining rules,150 to describe repulsion 
between ionic spheres, since they seem more accurate and justified151,152 than the more common 
Lorentz-Berthelot rules. It will turn out that the biological properties of ion channels are quite sensitive 
to these terms, but the choice of parameters seems to require detailed fitting to the properties of specific 
biological channels and transporters. We do not know what the effects of attractive terms (known to be 
present in bulk solutions) will be when we include them. We reiterate that these terms do not change 
diffusion coefficients in our model. 

One might think that simulations in full atomic detail (of molecular dynamics) would give good 
estimates of combining rules, but sadly that is not the case. These simulations of molecular dynamics 
use combining rules (similar or identical to what we use in our reduced models) in the force fields of 
their own calculations. Without particular justification beyond that provided in standard references,150-152 
we cannot use molecular dynamics to justify (or check) our combining rules that it also assumes as 
much as we do. It is possible that no one knows what cross terms to use in bulk solution. It seems likely 
that no one knows what cross terms should be used inside a channel, or between side chains and ions. 
Indeed, it is difficult to conceive of experiments that might measure these inside channels with 
reasonable reliability. (We suspect, from several conversations, that designers of force fields for 
molecular dynamics simulations have no more idea how to calibrate combining rules, inside a protein, or 
perhaps anywhere, than we do.) 

Returning to the mathematical issues, we note that the singular convolution integral term can be 
regularized by a cut-off in integration domain or simply letting the integrand be 0 when jix y a a− ≤ +

  . 
However, the regularized term still produces numerical difficulty and is very time-consuming to 
compute, particularly in high dimensions, even if fast Fourier transform methods are used. We have tried. 

Journal of Physical Chemistry B (in the press)



Tzyy-Leng Horng, et al, File Name: pnpsteric_July_31-1_2012.docx 

 8 

In addition, computing the convolution term generates an artificial boundary layer with length of several 
grid spacings that needs to be filtered out and may have troublesome qualitative effects not so easy to 
remove by any local filtering since it has some of the properties of aliasing. Aliasing has devastating 
effects if not handled properly in both temporal and spatial systems which are treated as periodic when 
they are not. 

We turn now to a simplified steric model that is much easier to compute because it uses only a 
local representation of interatomic forces. As we shall see, this steric model allows computation of a 
large range of interesting phenomena, despite this simplification. 

Local PNP equations with steric effects (PNP-steric equations) 
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where δ  is a small number for the cut-off length and cδ  is a dimensionless integrating factor 
associated with δ  and d  is dimension. Here the symmetry ij jiεε =  has been assumed for notational 
convenience. To get this model, we have two important considerations: 1) the localization of the 
nonlocal size effects, and 2) the finite truncations, which make the term local. Compared to the standard 
PNP equations, the PNP-steric equations have extra nonlinear differential terms (in the spatial variables) 
called steric effects. These represent the effective averaging/coarse graining of microscopic size effects 
for the macroscopic/continuum scales.  

It should be clearly understood that coarsening terms of this sort are used throughout the chemistry 
literature, including within the simulations of molecular dynamics. The ‘potentials’ of molecular 
dynamics simulations of proteins are not transferrable from quantum mechanical simulations of 
interatomic forces. The force fields that are used in every time step of an atomic scale simulation include 
terms like our ijε  justified only the way we have. Thus, molecular dynamics simulations depend on 
effective parameters as do ours. Molecular dynamics simulations are no more derivable from quantum 
mechanics, for example, than are our models. 

The main difficulty of the equations (2)-(5) comes from the convolution integral of the energy 
functional E with the following form  

( ) ( )12
1

jix y c x c y dydx
−∫∫ d d

d d d d

 (8) 
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Usually one would approximate the above integral by truncating the kernel 121 x y−
   with the cut off 

length δ  which makes the kernel 121 / x y−


 have a flat-top when x y δ− ≤
δδ  . To approach the kernel 

121 x y−
  , the length δ  must be set as a small number tending to zero. One may expect that the 

smaller the cut-off length δ , the better the approximation. However, due to the effect of high-frequency 
Fourier modes, the approximation may lose the accuracy of numerical computations and makes 
numerical simulations difficult and inefficient.153  

To deal with the effect of high-frequency Fourier modes, band-limited functions are used to cut 

off high-frequency Fourier modes. The functions act like optical filters selectively transmitting light in a 

particular range of wavelengths. Band-limited functions play important roles in the design of signal 

transmission systems with many applications in engineering, physics and statistics.154 See also any 

textbook on digital signal or image processing. In reference,1 a class of band-limited functions 

depending on the length δ  is found to approximate the kernel 121 x y−
   and allow the derivation of 

the PNP-steric equations. The same approach can be used to modify the Poisson-Boltzmann equations 

used widely in physical chemistry, applied mathematics, and molecular biology.70,155 Once modified, 

these new steric Poisson-Boltzmann equations are particularly useful for the study of crowded boundary 

layers near charged walls, including the special behavior usually attributed to Stern layers. As the length 

δ  goes to zero, the singular integral (8) can be approximated by the integral ( ) ( )i jS c x c x dxd ∫
d d d  with 

12 dSd d − +
− . Hence, the energy functional (1) can also be approximated by 
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( )12
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The PNP-steric equations (2), (3), (6) and (7) are convection-diffusion equations having the 

energy dissipation law:  
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= ∑  is the chemical potential.  

Note that the equations (6) and (7) contain no singular integrals like the equations (4) and (5) but 
have extra nonlinear differential terms. These extra nonlinear terms are crucial to simulate the selectivity 
of ion channels that cannot be found by simulating the standard PNP equations. Hence, the (local) 
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PNP-steric equations are more useful than the standard PNP equations and are significantly more 
efficient and easy to work with than the global equations of the EnVarA treatment (2)-(5) discussed in 
the Introduction and Discussion sections of this paper. These extra local terms in differential equations 
(6) and (7) have global effects when the differential equations are solved. Thus, pair correlation 
functions described by solutions to differential equations (4) & (5) may have properties not present in 
classical equilibrium analyses containing local steric forces. (Classical analyses often deal only with 
forces and not with solutions of differential equations containing the forces.) Detailed fitting to specific 
experimental data is needed to compare the solutions of the local steric differential equations (6) and (7); 
the solutions of the more general differential equations (4) and (5); and the actual nonlocal phenomena 
of experiments. 

We adopt the PNP-steric equations. We replace eq.’s (4) & (5) with the more approximate eq.’s (6) & 
(7) from now on. The real three dimensional geometry of an ion channel shown in Fig. 1 is replaced with 
a simple axis-symmetric geometry shown Fig. 2 with the eqs. (2), (3) and (6) valid in Ω , and eq. (7) 
valid only in fΩ , where fΩ  is the filter part of channel and fΩ ⊂Ω . The associated boundary 
conditions are also shown in Fig. 2 with Dirichlet boundary conditions specified for both ionic 
concentration and potential at channel’s inlet (left end) and outlet (right end); no-flux boundary 
conditions are set for both ionic concentration and potential at the side-wall of channel. Extra no-flux 
boundary conditions are set for the side chains 1/2 0OJ − =  at the interfaces (  and z a β= ) between filter 
and the other part of channel, since side chain molecules are only free to move inside the filter.  

This model is meant to be nearly identical to that used in the many papers using Monte Carlo 
methods reviewed in reference9 particularly the key papers.54,90,93-96,99,156 The treatment of the region 
outside the channel and thus buildup phenomena are different from those in references.75,76,78 

Since no-flux boundary conditions are implemented for both ionic concentration and potential at 
the side walls (orthogonal to the direction of current flow), this two dimensional problem, eqs. (2), (3) (6) 
and (7), can be well approximated by a reduced one dimensional problem along the axial direction z , 
with cross-section area factor ( )A z  included as done in references25,43,88,116-121 described succinctly in 
reference119 and perhaps most carefully in the three dimensional spectral element calculations of 
Hollerbach.34,43 Of course, some phenomena cannot be reproduced well in one dimension. See Fig. 7 of 
reference.99 

The resulting one dimensional equations are 
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with boundary and interface conditions  
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i i i ic t c t c a t c a tφ φ φ φ= = = =  (13) 

 ( , ) ( , ) 0.N NJ t J tα β= =
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The no-flux interface conditions for the side chains guarantee that side chains are not allowed to leave 
the filter. Mass conservation is preserved inside the filter: 

1/2( ) ( , ) 0, .
O

d A z c z t dz t
dt

β

α

− = ∀∫  

Also, in eqs. (11)-(12), the Einstein relation is used for both drift current and hard-sphere-potential flux, 
which is ( ) ,, ,,  1, , 1 , ,V N Ne i i B LJ i i B BD k T D k T i N D k Tµ µ µ= = = − =  where ,e iµ  and ,L J iµ  are 
electrical mobility and the mobility associated with hard sphere potential for ionic species i; ,V Nµ is the 
mobility associated with restraining potential for glutamate. Note that ,  ,iD i∀  do not have to be 
homogeneous in space. Nor do the dielectric coefficients of solution and channel protein. We have not 
yet studied the effects of variation in these parameters, however. Usually, ,  ,iD i∀  is set to 1 20th  of 
its bulk solution value inside the channel filter, while set to bulk solution value in the rest of channel as 
discussed at length in the supplementary material and body of reference.109 

Dimensionless equations Non-dimensionalization of governing equations is especially important in 
discovering the structure, such as boundary or internal layer, of the solution of PNP type equations, in 
advance, and so perturbation methods21,24,25,135,157—including now some using the powerful and rigorous 
methods of geometrical perturbation theory24,147,148—have been used. We follow this work, and scale the 
dimensional variables by physically meaningful quantities.  

:

0
0

max max

2 2
,

, ,   ,  ,   ,    
/

,   ,   ,   , ,
/

iji
ij

B B B

i
i

Na Na bulk

c Vc V
c c k T e k T k T

Ds A ts A t D
L L L L D D

eρ φρ φ e

δδ

= = = = =

= = = = =

 

 

  





 

where s  denotes all length scale, and minL r=  (the narrowest radius in channel shown in Fig. 2) 
unless specified otherwise. Note the scaling with respect to the physical dimension and not to the Debye 
length. The Debye length varies with concentration and concentration varies with location and 
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conditions. Eq. (8) becomes  

 0
1

1 ,
N

i i
i

A z c
A z z

φ ρ
=

 ∂ ∂
− Γ = + ∂ ∂ 

∑




 



 

 (15) 

where 2 2LλΓ = , and the Debye length 2
maxBk T c eλ e= . Γ  is the reciprocal of the length of the 

channel in units of Debye lengths. Note that Γ  can vary dramatically with location and conditions if 
the contents of the channel vary with location or conditions.. In the channels dealt with here, the 
contents of the channel are ‘buffered’ by the charge of the side chains of the protein, most clearly in the 
calcium channels EEEE, and EEEA, but also for the salty DEKA channel. Such buffering is not 
expected in all channels, e.g., potassium channels. 

 Eqs. (9-11) then become 

 ( )1 0,i
i

c AJ
t zA

∂ ∂
+ =

∂ ∂


 







 (16) 
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1
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i i i i i i ij
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z z z

ccD D c z D c g
z z z

δ
φ εδ

φ

−

=

=

∂∂ ∂
= − − − +

∂ ∂ ∂

∂∂ ∂
= − − −

∂ ∂ ∂

∑

∑








   

   

  







  

  

  

 (17) 
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− −
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=
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∑

∑




 


    

    

   








   

   

   

 (18) 

We remove all the tilde decorations ~ and rewrite the dimensionless governing equations (15)-(18) for 
the mixture of 2 1/2Na , Ca , Cl  and O+ + − −  as follows:  

 1/2 1/20
1 ,Na Na Ca Ca Cl ClO O

A z c z c z c z c
A z z

φ ρ − −

∂ ∂ − Γ = + + + + ∂ ∂ 
 (19) 

 ( ) 2 1/21 0, Na , Ca , Cl  and O ,i
i

c AJ i
t A z

+ + − −∂ ∂
+ = =

∂ ∂
 (20) 

   1/2

1/2 ,  Na, Ca, Cl,i Na Ca Cl O
i i i i i i i iNa iCa iCl iO

cc c c cJ D D c z D c g g g g i
z z z z z z

φ −

−

∂ ∂ ∂ ∂ ∂ ∂
= − − − + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

 (21) 

 

1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 2 1/2           

O
O O O O O O O

Na Ca Cl
O O O Na O Ca O Cl

c dVJ D D c z D c
z z dz

c c cD c g g g
z z z

φ−

− − − − − − −

− − − + − + − −

∂ ∂
= − − −

∂ ∂
∂ ∂ ∂ − + + ∂ ∂ ∂ 

 (22) 
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Note that ( )129
jij ic a aδεδ  − +

    in eq. (17) is lumped into ijg  along with 9cδδ
−
  and it is assumed to be 

the same for all species. The Lennard-Jones parameters ijε  are obtained from literature for alike 

species ( i j= ), and computed by Kong’s rule for unlike species ( i j≠ ). They do not change diffusion 

coefficients in our model or calculations. 

Channel wall shape function. The wall shape function ( )g z  in Fig. 2 can be arbitrarily specified, for 

example, 
( )

2
max min

min2( ) ,
2/ 2

p

p
r r ag z z r

a
−  = − + 

 
 or non-dimensionalized as  

 
( )

2
max min min

2

/ /( ) ,
2/ 2

p

p
r L r L rg z z a

L L L La L
−  = − + 

 
 or 

( )

2
max min

min2( ) ,
2/ 2

p

p
r r ag z z r

a
−  = − + 

 

  

  



 

We remove all the tilde decorations ~ and rewrite  

 ( )

2
max min

min2( ) ,
2/ 2

p

p
r r ag z z r

a
−  = − + 

   (23) 

In our calculation, we choose 4.p =  The geometrical parameters are typically 50Åa = , min 3.5År = , 

maxr = 40Å, 5
, 1.334 10Na bulkD D −= = ×  2 /s .cm  We set 030εε =  inside the filter; in the rest of channel, 

080watere e e= = . For typical max 100mMc = , the Debye length 8.48Å,λ =  5.87,Γ =  inside the filter; 
13.8Å,λ =  15.65,Γ =  outside the filter. The above Γ ’s are based on min 3.5L r A= =  .  

 The fact that Γ  is not small implies that no internal or boundary layer is expected in the radial 
(transverse) direction. However, we sometimes choose 50ÅL a= = , 0.0288Γ =  inside the filter; 

0.07668Γ =  outside the filter. Though Γ  is not then as small as in semiconductor devices, an 
internal/boundary layer is still expected in lateral (axial) direction. We must not forget that the non-local 
hard sphere potential term (present in ionic solutions but not semiconductors) may produce internal 
layers as well. See Fig. 7 of reference.99 

 A noticeable problem in all PNP (and Poisson Boltzmann) theories without finite size are internal 
boundary layers near all boundaries with charge (permanent or induced). Such layers are customarily 
removed by introducing a SINGLE distance of closest approach for all ions, however ill defined. Of 
course, no single distance of closest approach can deal with ions of quite different diameter, a 
problem that Debye, Hückel, and Bjerrum were quite aware of, evidently. The need for multiple 
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distances of closest approach (different for each ion, and highly nonideal, depending on each other and 
everything else in the system) means that the complex layering phenomena seen near walls of charge 
can have counterparts in channels. Indeed, complex layering is expected when ionic solutions are 
mixtures, like the salt waters of oceans or biology, and spatial inhomogeneities are present. Reference158 
is a gateway into the enormous chemical literature on layering phenomena near walls of charge. 
Reference78 is a mathematical approach. Layering in ionic solutions might be able to produce nonlinear 
phenomena as important as pn junctions or even pnp junctions in semiconductors. 

One might argue the authenticity of choosing min 3.5År = , and wonder if an exclusion zone 
adjacent to channel side wall for ion sphere center with thickness of ion radius should be put into extra 
consideration. In 3D models, this may be necessary, and requests extra care in computation because the 
radial exclusion zone is different for ions of different size or charge: see Fig. 7 of reference99. However, 
in the 1D continuum model studied here, which ignores such ion specific radial effects, our single radial 
zone would only change the value of min .r .Since all the governing equations are scaled to be 
dimensionless, the effect of changing minr  would only change the value of Γ  in eq. (19). That in turn 
would only change the distribution of electric potential. Γ  is proportional to 2

min1/ r . The permanent 
charge concentration 0ρ  in eq. (19) is also proportional to 2

min1/ r . The net effect is simply reduced to 
the amplification or shrinking of the influence of contribution of electric potential exerted by ion 
distributions. The permanent charge concentration 0ρ  is generally much larger than all ion 
concentrations and dominates the distribution of electric potential, we imagine. We then reason that 
minor change of minr  would not affect our results significantly. 

Numerical methods Now we apply the multi-block Chebyshev pseudopectral method153 together with 
the method of lines (MOL) to solve eqs. (19)-(22) with the associated boundary/interface conditions 
eqs. (13)-(14). These governing equations are semi-discretized in space together with boundary/interface 
conditions.  

 The resulting PNP delta representation is a set of coupled ordinary differential algebraic 
equations (ODAE’s). The algebraic equations come from the boundary/interface conditions which are 
time-independent. The resulting ODAE’s are index 1, which can be solved by many well-developed 
ODAE solvers. For example, ode15s in MATLAB is a variable-order-variable-step index-1 ODAE 
solver, that can adjust the time-step to meet the specified error tolerance, and integrate with time 
efficiently. The numerical stability in time is automatically assured at the same time. The spatial 
discretization here is performed by the highly-accurate Chebyshev pseudospectral method with 
Chebyshev Gauss-Lobatto grid and its associated collocation derivative matrix. To cope with the 
computational domain of side chains being strictly within the region [ ],a β , and the conformation of 
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grids, we need to use domain decomposition. We decompose the whole domain into [0, ]a , [ , ]a β  and 
[ , ]aβ .  

 The extra interface conditions from this domain decomposition for ions are implemented simply, 
by continuity of ion concentration and the associated flux. Finally, the Poisson equation for electric 
potential is solved by direct inverse at every time step, which is easy since it is only one-dimensional. 

Results 

Here we consider a calcium channel (EEEE) with 4 glutamate side chain, 8 1/2O−  particles, free 
to move inside the filter, essentially the model introduced by Nonner and Eisenberg53,87-89 and used by 
them and their collaborators since then (reviewed in references9,72). Our goal is to demonstrate the 
feasibility of a PNP-steric model and the range of phenomena that can be calculated despite its local 
approximation. Note that the effects of a local approximation on the right hand side of partial differential 
equations is not the same as the effects of a local approximation in a classical analysis of the BBGKY 
hierarchy. The much needed detailed comparison with experimental results lies in the future. We are 
particularly interested in the effects of the steric parameters we call ijε  in eq. 1, and then the effects of 

ijg  as well, so we concentrate on steady state results. Transients of the type previously reported75 have 
been computed and will be reported separately. 

The channel geometry used for the current 1D simulations is shown in Fig. 3, and the parameters 
used are shown below. These parameters are not changed in the calculations, e.g., the diffusion 
coefficients are always the same and are not changed as interaction (Kong) parameters are changed. 

Parameters 
Filter radius: 3.5 A . Filter length: 10Å. Diffusion coefficients in 2cm /s : non-filter region: 

2 1/21.334e 5, 0.792e 5, 2.032e 5, 0.76e 5.Na Ca Cl OD D D D+ + − −= − = − = − = − Filter region: 
diffusion coefficients 1/20 of the above values (see Gillespie109 particularly Supplementary 
material). Ion radii: 0.95Å,Naa + =  2 0.99Å,Caa + =  1.81Å,Cla − = 1/2  1.4ÅOa − = . Relative 
dielectric constant: 30 in the filter region, 80 in the non-filter region. 

Dimensionless restraining potential for 1/2O−  inside the filter required by eq. (22):  

2
max ( 0.5 )V V z aγ= −  (24) 

where γ  is a scaling constant that makes V  reach maxV  at z α=  and β . Boundary conditions are: 

Boundary Conditions 
Voltage at both reservoirs: 100 mV. Na+ concentration in both reservoirs: 100 mM. 
Ca2+ concentration at both reservoirs: 0.001 to 10 mM. Cl– concentration at both 
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reservoirs is chosen to keep the whole solution electrically neutral.  

To measure selectivity, as it is reported in the biological literature of calcium channels, we need to 
compute the Ca binding ratio: 

2

2
Number of Ca  ion inside the filterBinding ratio

Number of Na  ion inside the filter     Number of Ca  ion inside the filter

+

+ +=
+

 (25) 

Turning to the precise description of the spherical ions, we need to specify many ‘Lennard Jones’ style 
parameters. There are 10 parameters of the ijg ’s that must be chosen, without specific experimental data 
relevant to the interior of a channel. (We note that this problem is not ours alone. The same situation is 
faced for any atomic scale model. No one knows how to choose the force fields of molecular dynamics 
suitable for the special conditions inside an ion channel. If one follows the convention of molecular 
dynamics, and use force fields that depend only on the distance between two atoms, this problem is 
particularly serious. Note that dielectric boundary forces are almost always of great importance in 
confined systems like ion channels.159,160 It is not likely that dielectric boundary forces acting on two 
ions can be well approximated as a function of only the distance between two ions.)  

We use the energy well ijε  data from the traditional Lennard-Jones (12-6 rule) potential as a 
reference. From the work of151,152, we choose , , , ,: : : 1:1:1:1.56Na Na Cl Cl Ca Ca O Oεεεε    = . Kong’s 
combining rule150 seems the best for ionic solutions151,152, with ( )ij i ja aσ = + . This gives us the ijε ’s 
for the rest of the cross hard-sphere potential terms. 

, , , , , , , , , ,: : :  :  : :   :  :  :  
=   1   :   1  :  1       : 1.56 : 0.955 : 1.00   : 1.28  : 0.961 :  1.21 :  1.28

Na Na Cl Cl Ca Ca O O Na Cl Na Ca Na O Cl Ca Cl O Ca Oεεεεεεεεεε        
 

and similarly 

, , , , , , , , , ,:      :   :   :  :  :  :  :  :
1    :    2280   : 1.64     :  164  :  42.2  :  0.642 : 8.20 :  50.4 :  327 :10.0
Na Na Cl Cl Ca Ca O O Na Cl Na Ca Na O Cl Ca Cl O Ca Og g g g g g g g g g

=
 

We can see that ,Cl jg  (especially ,Cl Clg ) are much larger than the other ijg ’s because their additional 
size is increased so dramatically by the exponent in ( )12

i ja a+ . These large values would make the 
governing equations very stiff in numerical properties and hard to integrate in time. To resolve this 
numerical difficulty, we remove all the hard sphere forces involving Cl–, which means , 0, .Cl jg j= ∀  
This approach can be rigorously justified because Cl– is usually very dilute inside the filter, as are all 

Journal of Physical Chemistry B (in the press)



Tzyy-Leng Horng, et al, File Name: pnpsteric_July_31-1_2012.docx 

 17 

co-ions in ion exchangers161, because of the electrostatic repulsion from the highly concentrated 
permanent charge of eight 1/2O− .  

Choosing self coupling coefficients Na,Nag : The above coupling terms ijg ’s are derived as ratios, and 
we still need to determine actual ijg ’s by choosing the ‘self ’ quantities ,Na Nag . The self-coupling 

,Na Nag  is only known from its relationship to its effective ion radius: it is proportional to ( )12
Na Naa a+ . 

Larger ,Na Nag  implies stronger hard sphere potential and more pushing among particles. Smaller ,Na Nag  
implies less interaction and pushing among particles. If we choose ,Na Nag  too small, the finite-size 
effect will be trivial and (judging from previous work cited above), the correct selectivity of calcium ion 
will not be found. If we choose ,Na Nag  too large, repulsion will be too strong and the profile of 
concentration of all species (inside the filter) will be flat. Selectivity, as biology knows it, will not be 
present.  

A numerical experiment (Fig. 4 and Table 1) shows how ,Na Nag  changes the Ca binding ratio. 
Conditions of each case are stated in figure captions. Note that many of the cases considered below 
correspond to different physiological states that may have profound implications for function. Cycling 
between such states has been the explanation of most behavior of channels and transporters for some 
60 years, since Hodgkin and Huxley (who, one notes, did not use such explanations themselves). But the 
states in those explanations are ad hoc, arising as inputs of models from wisdom and experimentation on 
macroscopic systems, not from direct physical knowledge of channels. The states shown here in our 
calculations arise without human intervention or wisdom. Rather, they arise as outputs of direct 
self-consistent calculation. Sometimes it is better to be wise, sometimes it is not. The choice between 
handcrafted traditional models of states and direct calculations of ions that are sometimes in definite 
states should be made, in our view, by success or failure in explaining and predicting experimental 
results with models. The models should be parsimonious and specific, of course, so they can be falsified, 
at least in principle. Otherwise, they are more poetry than science. 

 
We can summarize the observations in the following. 
(1) From eqs. (21) & (22), the flux of ion species consists of diffusion, migration (i.e., electrostatic 

drift driven by electric potential), and particle-to-particle steric-effect interaction. The typical 
steric-effect flux

 

j
i i ij

c
zD c g ∂
∂− 





   can be seen as a chemical-potential drift exerted on ion species i by 
species j, in which i j=  is also allowed. The steric-effect flux generally includes a flux coupling 
between species i and j, and this coupling is not captured in plain PNP and DFT-PNP theory, where 
fluxes of one species are driven only by gradients of the chemical potential of that one species. Here 
‘everything interacts with everything else’: the flux of one species is driven by gradients of the 
chemical potential of another species, even though we use (nearly) the same constitutive (NP) 
relation for transport as in classical PNP or DFT-PNP. Our chemical-potential drift term is not like 
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electrostatic drift. The electrostatic drift can flow uphill or downhill along the electric potential, 
depending on the sign of the valence iz  being negative or positive. The chemical potential drift, on 
the other hand, always flows downhill along the chemical potential unless i ijD g   is negative, which 
is impossible if particle-to-particle steric-effect interaction is always repulsive (not attractive). If 
particles push each other away, peaks of ion concentrations (of different species) tend to separate 
from each other as best they can, unless frustrated or overcome by additional electrostatic force. 
Here, in the present case, Na+ and Ca2+ chiefly feel a strong push from 1/2O−  as ,Na Nag  gets larger 
(because 1/2Oa −  is large and 1/2O−  is kept inside the filter) as well as the electrostatic attractive 
force from 1/2O− . This can be clearly seen in Fig. 4. Note 4× scaling of [O-1/2] concentration. In Fig. 
4(a), , 0,Na Nag =  concentration profiles of 1/2O− , Na+, and Ca2+ reach equilibrium (at the minimum 
of total energy) simply by diffusion and electrostatic force because the extra restraining force is felt 
by glutamate 1 2O−  only. 1 2O− , Na+, Ca2+ all form single-peak concentration profiles in the same 
region of the channel, the same range of z. Physically, Na+ and Ca2+ are attracted to the focused 

1 2O−  by electrostatic force. The attraction for Ca2+ has larger effect than the attraction for Na+ 
because Ca2+ is divalent. Also, Na+ and Ca2+ at the same time repel each other by electrostatic (and 
steric) forces.  

This complex balance of forces can produce a wide range of behavior that varies a great 
deal as concentrations and conditions are changed. The biological function of channels and 
transporters has been defined experimentally for many decades by their behavior in complex ionic 
mixtures of variable composition, as different voltages are applied across the cell membrane. We 
have not yet investigated the properties of our model as concentrations of ions are made unequal on 
either side of the channel, as electrical potential is varied, or most importantly as different species of 
ions are included in ionic mixtures on both sides of the channel.  

The interaction forces (without the attractive component) may be responsible for many of 
the single file properties of channels. More complete descriptions of Lennard Jones forces include an 
attractive component. The interaction forces with the attractive component might (conceivably) 
produce the phenomena that define transporters, whether they are co-transporters or counter 
transporters.  

(2) As ,Na Nag  becomes larger in Fig. 4(b-f), the primary force is still the electrostatic attraction of 
Na+ and Ca2+ by 1 2O−  but modified by finite-size effect (hard-sphere force). This electrostatic force 
will make peak(s) of Na+ and Ca2+ occur in the ‘selectivity filter’ i.e., in the same region of the 
channel which contains the side chains 1 2O .−  For Na+, Ca2+, and 1 2O− , the hard-sphere forces 
between ions of the same species will make the concentration profiles flatter as ,Na Nag  gets larger, 
when particles feel push from alike particles. Flattening is clearly seen in Fig. 4(b-f).  

(3) As ,Na Nag  gets larger in Fig. 4(b-f), Ca2+ pushes Na+ away from the middle part of filter and 
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forms a depletion zone and double-peak profile for Na+ in Fig. 4(c-e). Depletion zones of this sort 
have profound effects on the selectivity of ion channels in Monte Carlo simulations, see Fig. 6 of 
reference99 and 54. Depletion zones have profound effects on the behavior of transistors132-135,162 and 
the selectivity of channels9,54,99. A single transistor can have qualitatively distinct properties (e.g., 
gain, switch, logarithm, exponential) for different boundary electrical potentials (‘bias’ for one 
transistor; ‘power supply’ more generally) because the different boundary potentials produce 
different arrangement (‘layering’) of depletion zones. Each arrangement of layers or depletion 
zones makes the same transistor a different device, with a different device equation, corresponding 
to a different reduced model for the transistor. Different reduced models are appropriate for 
different conditions and have different functions. The function of the depletion zones found here is 
not yet known, nor is the pattern or effect of cycling through structures known, but the complex 
properties of the Ca/Na exchanger, wonderfully characterized by Hilgemann,163-166 immediately 
come to mind.  

The major mechanism in Fig. 4(c-e) is still that Ca2+ is more attracted to 1 2O−  than Na+. 
However, with extra help from the inter-species hard-sphere force between Na+ and Ca2+ (in addition 
to the electrical repulsive force between Na+ and Ca2+), Ca2+ is able to push Na+ out of filter. Note 
that again Fig. 4(f) is an exception because all concentration profiles in it are very flat. In Fig. 4(f), 
the inter-species repulsive forces are greatly reduced and Na+ resides in the middle of filter along 
with Ca2+. Note that Ca2+ forms a single-peak concentration profile in all these cases, without 
splitting into two peaks. Na+, however, can form a double peak when ,Na Nag  increases. The splitting 
occurs when the electrostatic attraction by 1 2O−  is large enough to survive the push of 
different-species from 1 2O−  and Na+ in addition to the repulsive electrostatic force from Na+.  

The singular behavior in Fig. 4(f) may have direct functional significance. Splitting of a 
single peak into a double peak can create a depletion zone that can dominate channel behavior (even 
though it is very small) because it is ‘in series’ with the rest of the channel. A depletion zone can 
block flow and create switching behavior as it does in transistors.  

The depletion zones could help create the many ‘states’ of a channel, identified as activated, 
inactivated, slow inactivated, blocked, etc.2 The depletion zones could be responsible for many of 
the similar (but correlated states) identified in classical experiments on transporters. In our 
calculations, of course, states arise as outputs of a self-consistent calculation and as a result of theory 
and computation, not as handcrafted metaphors summarizing the experimental experience and 
perspectives of structural biology and classical channology.2  

Despite our enthusiasm and focus on our work, it must be clearly understood that our 
treatment of correlations is incomplete. We leave out many of the correlation effects of more 
complete variational treatments1,75,76 and the more subtle correlations in the BBGKY hierarchy, 
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derived for nonequilibrium systems268 like PNP (without finite size ions) from a Langevin 
description of trajectories in references167,168. Our treatment is mathematically fully self-consistent 
but physically incomplete in its treatment of correlations and of course chemical interactions as well. 
The classical discussion of the BBGKY hierarchy and its treatment of correlations is not directly 
applicable to our analysis, however. The correlation forces of the hierarchy appear as driving forces 
in our partial differential equations and so the results of those forces are spread through all the terms 
of the solution of our partial differential equations. Thus, the effects of the correlations are likely to 
be more widespread than the effects in classical equilibrium analysis. Only detailed fitting of theory 
to data will show what correlations must be included in our model to explain which experimental 
data. Conclusions from equilibrium analysis may not apply. 

(4) From Table 1, Ca2+ binding ratio starts from 0.60214 when the finite size effect is zero, i.e., 
,Na Nag = 0. Affinity for Ca2+ in the filter region shows itself, even without the finite-size effect. This 

is obviously because Ca2+ feels a stronger electrostatic force than Na+ because of the larger valence. 
The valence effect dominates even though the concentration of Ca2+ is much lower than that of Na+ 
in reservoirs. The fact that valence effects overwhelm concentration effects when studying divalents 
has been known for at least one hundred years. The binding ratio of Ca2+ decreases, increases, and 
then decreases again as ,Na Nag  increases, which shows the influence of the finite-size effect. The 
Ca2+ binding ratio roughly reaches its maximum at , 0.01Na Nag =  with the value 0.861. This is far 
larger than the 0.602 that occurs when the finite size effect is zero and helps generate the affinity of 
Ca (selectivity). These effects can be further seen from computational results shown later, when 

, 0.01Na Nag = .  
We have not yet studied the effects of gradients of concentration. Note that in biological systems, 

gradients of Ca2+ are large and have profound effects in experiments. Calcium concentrations outside 
cells are typically ~2 × 10-3M, while those inside cells (cytoplasm) are < 10-7M. There are many 
compartments within cells (vesicles, mitochondria, endoplasmic reticulum, sarcoplasmic reticulum) 
essential to living function that maintain distinctive concentrations of Ca2+ without which they 
cannot function. We anticipate complex behavior of concentration profiles of ions within the 
selectivity filter when our model is studied in realistic ionic mixtures. It seems unlikely that these are 
uninvolved in biological function, however obscure that involvement seems today, and however 
difficult it is to discover. It seems wise to do calculations in conditions in which the systems can 
actually perform their natural function, and unwise to simulate conditions in which biological 
systems are known not to function properly. 

Ca binding curve. In these calculations, we first studied how finite size effects changes the Ca binding 
curve, and the results are shown in Table 2 and its associated Fig. 5. We choose , 0Na Nag =  and an 
appropriate finite size effect by choosing , 0.01Na Nag =  to calculate the binding curves of Na+ and Ca2+ 
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respectively. max 200V = mV as above and boundary conditions 100mVL Rφ φ= = , and concentration of 
Na+ inside and outside 100 mM.=  

The results are shown in Table 2 and its associated Fig. 5. The finite-size effect enhances 
selectivity very much as observed previously in Monte Carlo simulations. The concentration profiles for 
different species is shown for both cases are shown in Figs. 6 and 7 respectively. Note 2× scaling of 
[O-1/2] concentration in both figures. Fig. 6 shows that the increase of Ca2+ and decrease of Na+ as Ca2+ 
concentration increases (in the baths on both sides of the channel). Increases are totally due to the 
interplay of diffusion and electrostatic force. There are no special chemical forces in our calculations. 
Binding forces are the output of our calculation, not inputs as in so many treatments of selectivity.  

In our model, Na+ and Ca2+ are both attracted to the confined 1/2O− . They repel each other at the 
same time. Na+ and Ca2+ both form only single-peak concentration profiles, and therefore depletion of 
Na+ in the middle of filter only occurs at the largest as Ca2+ concentration increases (on both sides).  

Fig. 7 shows the extra influence of finite-size effect compared with Fig. 6. The single-peak 
profile of Ca2+ found in all cases means the pull from 1/2O−  by electrostatics survives the electrostatic 
repulsive force from Na+ as well as the hard-sphere pushes from both 1/2O−  and Na+. The pull is so 
strong that there is no splitting and no double-peak profile.  

However, the electrostatic pull for Na+ from 1/2O−  is much smaller than its counterpart for Ca2+. 
The combination of the hard-sphere pushes from both 1/2O−  and Ca2+ and also the electrostatic 
repulsive force from Ca2+ has qualitative effects. The concentration profile of Na+ changes from a 
single-peak profile to a double-peak, as Ca2+ concentration increases (on both sides of the channel). Also, 
a depletion zone of Na+ inside the filter is observed as Ca2+ concentration increases (on both sides of the 
channel). A depletion zone—as arises when a peak splits in two—can have profound functional 
consequences, because it is ‘in series’ with the entire channel. A series barrier can entirely block current 
flow. 

DEEA Ca2+ binding curve. We have also computed the Ca2+ binding curve of a mutant sodium channel 
(DEEA) with 3 glutamate side chains. These are represented as 6 1/2O−  particles, free moving inside 
the filter as in previous work, mostly Monte Carlo simulations previously cited. Fig. 8 shows the effect 
of a − 4e side chain in EEEE and a − 3e side chain in DEEA on the Ca2+ binding curve. Obviously, 
EEEE with a − 4e side chain has slightly larger affinity of Ca2+ than DEEA with − 3e side chain. This 
DEEA binding curve, employing the PNP-steric model, agrees well with its counterpart in75 using the 
PNP-LJ model and in99 using Monte Carlo simulations. 

DEKA Ca2+ binding curve. Here we compute the Ca2+ binding curve of sodium channel (DEKA) with 
two glutamate side chains (4 1/2O−  particles) and one lysine side chain (one 4NH+  particle) free to 
move inside the filter. The Ca2+ binding curve is shown in Fig. 9, and the associated species 
concentration profiles are shown in Fig. 10. Note the scaling of [O-1/2] is the same as the scaling of other 
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concentrations in Fig. 10, unlike Fig. 4, Fig. 6 and Fig. 7. The loss in affinity with Ca2+ is obviously due 
to the existence of lysine side chain with + 1e charge, though the net charge of glutamate and lysine side 
chains taken together is still − 1e. We also computed an artificial EAAA channel with only one 
glutamate side chain (2 1/2O−  particles), in which the net permanent charge in the filter is − 1e, to 
correspond precisely to the experimental situation, as discussed in99 and references cited there. EAAA 
still has much higher affinity to Ca2+ than Na+ (data not shown). The DEKA binding curve, employing 
the PNP-steric model, agrees well with its counterpart in75 computed using the PNP-LJ model and also 
with its counterpart in99 computed using Monte Carlo simulation. The concentration profiles of 
individual species shown in Fig. 10 also resemble those in.99 We have not yet performed the calculations 
with multiple ion species needed to evaluate the selectivity of the DEKA model to K+ ions.  

 
Discussion 

 
Ion channel function depends on the properties of ionic solutions and ions in channels, along 

with the properties of the channel protein itself, and so it is necessary to relate our work to previous 
work in each field, emphasizing the properties of ions in bulk solutions, ions in proteins, and proteins 
that determine biological function in our models of channels, if not in the real world. 

Relation to classical work on ionic solutions, Poisson Boltzmann and PNP. The limitations of 
Poisson Boltzmann and PNP models of ionic solutions have been known a very long time to the physical 
chemistry community but seem not to be so well known to either applied mathematicians or 
biophysicists. Exhaustive references to the literature are in52,59,65,169-171. Applied mathematicians 
understandably are attracted to the simplicity of the Poisson Boltzmann/PNP equations and view them as 
a starting point for more realistic treatments.70 Biophysicists2 use the ‘independence principle’ that 
worked so well172,173 when applied to membranes in which ions flow through separated and independent 
protein channels.174-177 When channels that are not selective178,179 or two types of ions flow through one 
channel, as in classical ligand gated acetylcholine channels nAChRs,180 the independence does not 
apply.  

The independence principle is a restatement of Kohlraush’s ‘law’ of a century ago, that does not 
apply to bulk ionic solutions of the type found in biology (see eq. 3.27a,b on p. 125 of67) References to 
the physical chemistry literature include21,57-63,66-69,74,129,158,169,171,181-230. Many of these papers are strictly 
experimental, presenting compilations of physical chemistry data. These papers also show that ionic 
solutions are not well described by Poisson Boltzmann or PNP, if they contain divalents, multivalents, or 
mixtures of monovalents. (All biological solutions231 are mixtures mostly involving divalents.) 
Interactions are strong in all ionic solutions, because they all satisfy global electroneutrality. Thus, ionic 
solutions are nothing like ideal, so the law of mass action (for example) does not apply as usually used 
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with rate constants independent of concentration. Note that rate constants in complex models will 
depend on each other as well as on concentration, because the electric field in one part of a channel 
(described by one rate constant) will interact with charges in another part of the channel (described by 
another rate constant). It is that variation of the electric field that allows Kirchoff’s current law (and its 
generalization the Maxwell equations232-234) to be true. The electric field is long range and cannot be 
broken into independent spatial components as it is in most classical treatments.2 

Classical work on channel proteins: permeation. Currents permeate biological membranes by flow 
through channel proteins that are either open or closed. A single ionic channel controls current by 
opening and closing (spontaneous ‘gating’),5,6,235-237 thereby making a random telegraph signal238 
studied in enormous detail for many (hundreds or thousands) of channel types178,179,239,240 using the 
wonderful techniques of single channel recording, patch clamp,6,241-245 or bilayer reconstitution.246  

Sadly, the structures and mechanisms that produce this gating are still mostly unknown. 
However, progress is at hand.247-251 Special structures modulate spontaneous stochastic gating in most 
channels to produce the macroscopic gating properties of classical electrophysiology.2,4,5,252,253 The 
properties of macroscopic modulated gating are complex, as is clear from the variety and number of 
complex schemes in the classic text2, Ch. 18-19, e.g., Fig. 19.11. Some of these schemes involve nearly 
one hundred ill determined rate constants (Fig. 18-11 & Fig. 18-12 of 2) and have attracted the attention 
of literally hundreds of investigators over many decades.239,240 So far, no theoretical model can explain 
gating and selectivity using the fundamental physics that is described (crudely) in the PNP equations, 
but this situation may change. 

Despite our ignorance of the mechanism of gating, the phenomena of spontaneous gating is 
remarkably clear, one might even say crystalline in clarity despite our amorphous structures involved. 
Once the single channel is open, the current through the single channel is remarkably stable. Single 
channel (mean) currents are independent of time from say 10 µsec to 10 seconds or longer, strongly 
suggesting that the channel protein has only one structure over a range of (at least) 106. A glance at an 
MD simulation of channels, or the numerical values of energies computed from Coulomb’s law, or 
Lennard Jones potentials, suggests that the structure of the pore of the channel and the wall of the pore 
must be very constant indeed over these time scales. A change of radius of 3% would produce a change 
of current of at least (and probably much more than) 9%. Single channel currents are routinely resolved 
to within 2% (and can be resolved much better5,242,243,254-256 if necessary since stability is nearly perfect 
and signal to noise ratios are often larger than 50). The complexity and ignorance of gating mechanism 
reappears when we consider the time course of the opening and closing processes themselves (e.g., on a 
much faster time scale,244 or in cooled systems245). The opening and closing processes do not in fact 
have well defined time courses; and nothing seems to be known about their physical origin, in either 
case. 
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Classical work on channel proteins: permeation: selectivity. Once open, channels select between ions 
of different chemical type. Channels allow only some types of ions to flow, even though the different 
chemical types are quite similar. For example, Na+ and K+ ions differ only in diameter; Na+ and Ca2+ 
ions differ only in charge. Simple models do surprisingly well in dealing with the selectivity of some 
types of channels. This work was reviewed in the Introduction of this paper and elsewhere.7,9,72 

Dealing with biological reality. It is important that the study of permeation and selectivity be made in 
the context of specific channels, using parameters known to properly fit a wide range of experimental 
data.9,16-18,90,94-97,99-112  

It is a surprise, particularly to structural biologists and traditional channologists, who customarily 
deal with metaphors257-259 and not quantitative fits to data, that powerful results, with quantitative fits to 
data in important cases, can arise from the Nonner & Eisenberg models with their very simple structure. 
We do not know why these models work, but one reason may be that the structures are the computed 
consequences of the forces in the model, so the structures of the channel protein and of the ionic 
solutions are always exactly self-consistent. Even tiny deviations the location of side chains from their 
free energy minimum produce large energetic and functional effects.54,93 ‘Exact’ self-consistency 
between channel protein and ionic solution seems to be necessary to make reasonable models. We 
suspect exact self-consistency is why some simulations fit some data so well.  

If ‘exact’ self-consistency is necessary to make reasonable models, classical models in much of 
molecular biology260-264 will need to be reconsidered, even in much of chemistry,73,74 since classical 
chemical and biochemical models are almost never self-consistent. They almost never calculate the 
electric field from the charges present, let alone deal self-consistently with boundary conditions, steric 
forces or the resulting interactions of ‘everything’ with everything else. Our approach in this paper 
represents the ionic atmosphere around an ion consistently in a simplified way using the approximated 
LJ potential instead of the original LJ potential. Surely, we have not included all correlations among ions. 
Only detailed fitting to large amounts of data will show whether we have captured enough correlations, 
and captured them well enough. 

It is also possible that the Nonner and Eisenberg models work well because the community of 
scientists working on them has recapitulated evolutionary history. Perhaps, those scientists have 
stumbled on the adaptation that biological organisms found eons ago, as evolution selected mutations 
that allowed cells to live and reproduce. It is even possible (for the same reason) that simple nearly one 
dimensional models will capture most of what we need to understand about time dependent 
nonequilibrium properties of channels.  

Nonequilibrium treatments. An important advantage of the methods considered here is their extension 
to nonequilibrium in a mathematically precise and defined way, always fully self-consistent. Other 
approaches depend on physical approximations that are not self-consistent. They were the best that could 
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be done at the time, but cannot substitute for self-consistent treatments, in our view. For example, the 
DFT-PNP method18,105,107,108,110-112 is not self-consistent (i.e., does not precisely satisfy ‘sum rules’ of 
statistical mechanics265,266 or Poisson’s equation and boundary conditions), and apparently leaves out, 
relaxation and dielectrophoresis terms of the (more or less) self-consistent Debye-Hückel-Onsager 
equation. See the classical work267-278 and the textbook207 (p. 282 Fig. 7.7). DFT-PNP indeed assumes 
local equilibrium, as do other approaches using combinations of simulation and PNP equations279-281, 
although it computes global flux. 

It must be clearly understood that any assumption of local equilibrium is also an assumption of 
local zero flux. It is not clear how a system can have zero local flux and long range substantial flux, as 
does DFT-PNP, particularly when the system is a nanovalve connected in series with a high impedance 
entry process, and macroscopic baths. DFT-PNP is inconsistent in both its treatment of flux and 
electrostatics. Adopting models that are inherently inconsistent is dangerous because the results of 
calculations can depend on how the inconsistency is resolved and that resolution may be presented sotto 
voce, or chosen without conscious thought.  

It is striking that highly successful PNP calculations in a closely related field—computational 
electronics—do not use inconsistent assumptions (like local equilibrium and global nonequilibrium) and 
always satisfy Poisson and boundary conditions with great accuracy. Simulations in computational 
electronics directly solve the relevant equations and so are fully self-consistent. Otherwise, they have 
difficulty accounting for the function of semiconductor devices that arise from small differences of large 
forces. Calculations of computational electronics account for macroscopic function using atomic scale 
models.8,9,11,12,134,136,149,282-284 Most treatments of ions in water and channels have been much less 
successful, perhaps because they are inconsistent. 

Resolving inconsistencies can be a difficult task. It took a detailed stochastic analysis (lasting 
many years) of a second order Langevin equation with doubly conditioned non-differentiable Brownian 
trajectories285,286, to resolve a similar inconsistency in an analysis of noninteracting particles. And the 
results of that analysis were not at all what had been anticipated, although they were pleasingly simple, 
when interpreted correctly with the classical theory of mass action.74 The stochastic analysis allowed one 
to derive the law of mass action, but with variable rate constants that were specific functions of 
‘everything’ in the system, as given by the analysis. It is not clear how one can evaluate or resolve the 
paradox of local equilibrium and global flow in DFT-PNP. 

Flows in complex mixtures. An important advantage of the methods presented here is their indifference 
to flow. The methods work at thermodynamic equilibrium, and when flows are vigorous. Thus 
calculations can be done in the nonequilibrium situations and mixed ionic solutions used nearly always 
in experimental work. Such calculations require some further numerical work, because they involve 
many species of ions and of ionic tracers (radioactive ions with properties identical to non-radioactive 
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isotopes but present in trace amounts) that must be included appropriately in our Euler Lagrange 
equations. Such calculations will allow the direct simulation of the experiments used historically to 
define ‘single filing’ by ratios of unidirectional fluxes (e.g., which are estimated by net fluxes of tracers), 
and most importantly to define the properties of transporters of every type, whether they transport 
species in the same direction, or in opposite directions, or in both. It is likely that some of the properties 
attributed to interactions of ions with the channel protein actually occur between ions themselves.73,74 
After all, interactions between ions had been ignored almost entirely in classical theories, because ions 
were treated as ideal solutions264,287,288 even when present at enormous concentrations.9,260 The effect of 
nonideality on the very definition of transporters remains to be investigated. This investigation can be 
done abstractly in general, but much better it can be done by realistic simulations of actual experimental 
setups using the steric PNP model and other models that deal even more realistically with interactions.  

Future work: inverse problems. The distribution of permanent charge within the channel can be 
determined reliably from measurements of current voltage relations. Surprisingly, the inverse problem to 
determine the charge within the channel of the Nonner and Eisenberg model has been solved.16-18 The 
sensitivity to noise and errors is small when the problem is solved by standard methods of inverse 
problems. The inverse problem of interest to biologists has a well posed solution and can be used to 
determine the internal structure of the model channel, from the kind of experimental information 
recorded in hundreds if not thousands of laboratories every day. The inverse problem for steric PNP 
model needs to be studied so that experiments can be designed to reveal properties of interest. 

Future work: one dimensional models. The forward PNP problem has in some ways been more 
difficult to compute than the inverse problem because it has had to deal with the complex geometry of 
the channel protein. The inverse problem hides much of this geometrical complexity in effective one 
dimensional parameters. In fact, most numerical work assumes simple geometry for the ion channel and 
reduces the problem to one dimension. These papers all assumed the pore diameter had some simple 
dependence on location, either parabolic or some kind of funnel shape that is easier to deal with 
analytically.24,25,47,48,51,88,116,143,147,148,167,289,290 Though some two dimensional and three dimensional work 
has been reported,24,35-40,43-45,49,50,281,291-295 many results have not been as well converged as one might 
wish, and others simply were not checked as carefully as references26,43,230 showed was necessary, as the 
semiconductor community had learned earlier (reviewed in136, see149). Very few computations have been 
reported using the real shape of channels and even then the accuracy of the electrostatic treatment was 
not sufficient to be sure that important details were resolved (Claudio Berti, personal 
communication139,296). Obviously, the difficulty is expected to be much more when extending the 
traditional PNP equations to the modified ones of Eisenberg, et al., and others.26,75-77,230  

The difficulties in deal with the full structural complexity of an ion channel should not be 
underestimated. The spatial resolution needed can put severe burdens on the memory bandwidth of even 
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modern day computers. The relation of structures determined by x-ray analysis of crystals to the spatial 
distribution of mass density of each species, spatial distribution of (effective) diffusion coefficient (of 
each species) and the spatial distribution of polarization (i.e., induced dielectric) charge cannot be 
determined by presently available methods. But these distributions must be specified with precision in 
three dimensional calculations. The issues of temporal properties are hardly ever discussed, yet the 
polarization properties of electrolyte solutions change tremendously in the time range from biological 
function to atomic motion. It is not clear how these effects are involved in protein function or how to 
include them in models. It may be that these issues are less important in one dimensional models than in 
three dimensional models because the lower dimensional models smooth over them in an appropriate 
way.  

Time Dependence: future work. Future work needs to study each of the time dependent phenomena to 
see what part of the classical properties of ion channels, studied in innumerable experimental papers, 
might arise from a model as simple as that used here. Obviously, many of those classical properties will 
involve conformation changes of the channel protein not described by our simple model. But just as 
obviously, those conformation changes will be coupled to ions in the channel, by the electric field, and 
probably by steric interactions as well, and so everything must be analyzed together, ions, channel 
conformation, bathing solutions, ion flux, and current flow, as is usually the case in complex fluids 
flowing through complex spatial domains. Theory and simulations must allow everything to interact 
with everything else. They must not assume nothing interacts with nothing, as in ideal solutions. 

 
Conclusions 

 
Traditional PNP equations do not include the finite-size effect which is known to be significant in 

ionic solutions containing divalents, containing mixtures, and even in pure monovalent solutions more 
concentrated than say 50 mM. The concentration of ions in sea water, in and around cells, and inside 
channels is much higher than that. Therefore, classical PNP cannot describe the specific ion properties 
of bulk solutions like sea water and the solutions in living systems, the plasmas of life. It cannot predict 
the ion selectivity behavior of ion channels correctly. Here, we introduce the finite-size effect by treating 
ions and side chain as solid spheres and using hard sphere potentials to characterize this effect. Our work 
shows that selectivity is found in a simple one dimensional analysis and simulations.  

Complex effects of changes in repulsion parameters shows a variety of states and depletion zones 
which are likely to be important in the functioning of channels and transporters. For example, the sudden 
appearance of a depletion zone, because of instability or stochastic fluctuation would surely gate a 
channel closed. If that gating happened on one side of a channel, the properties on the other side would 
be surely affected. ‘Everything interacts with everything else’ in these systems profoundly coupled by 
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Coulomb and steric exclusion forces. If an exclusion zone moved from one side of a channel to another, 
and then back and forth, the channel protein could easily produce a reciprocating ping pong effect and 
mimic the alternating access ‘states’ of transporters discovered with such wisdom and work by 
experimentalists who did not have the help of self-consistent models. The ‘everything interacts with 
everything’ nature of the crowded charge environment inside a channel—or active sites2,260,297—makes 
such nonlinear interactions possible. It is not clear if the correlations included in our model are sufficient 
to produce ping pong effects or not: our model leaves out many forms of correlation, we are sad to say. 
It also remains to be seen whether biology actually uses such interactions at all. Alternating access could 
be produced in quite different ways, as most assume. 

It is very important for the reader from the physical sciences to understand that complex systems of 
states and rates have been used by experimental biologists to characterize the function of the hundreds of 
channels178,179,239,240 and transporters298 studied by thousands of laboratories daily, because of their 
medical and biological importance.  

It is very important for the reader from the biological sciences to understand that an enormous 
wealth of living behavior could be controlled by the physical phenomena described here, as outputs of a 
self-consistent model, as solutions of a set of partial differential equations and boundary conditions, 
without invoking classical vaguely defined effects. Those classical effects are more vitalistic than vital 
in many cases, in our view.  

Early workers in molecular biology of some reputation, including Nobelists299-301, attributed the 
secret of life to allosteric interactions of chemical signals acting on proteins and then channels.2 It is 
striking to the biologists among us that a self-consistent model of ions and side chains in channels 
produces strong interactions over large distances (i.e., more than 1 nm) without invoking the metaphors 
of vitalistic allostery. The calculations of a self-consistent variational theory of the energetics of complex 
fluids seems ready to replace the poetry of our ancestors.  

Self-consistent theory is only useful because it can be evaluated with computers. Those computers in 
turn are only possible because of the successful treatment of complex physical interactions by 
self-consistent mathematics. It is amusing that physicists learned to use self-consistent mathematics to 
analyze (control, and build) complex interacting systems of holes and electrons302-304 during the same 
years that biologists used poetry to describe complex interacting systems of cations and anions.  

Channels are nearly enzymes9,297 and it is possible that the interactions described by models of the 
sort described here for channels underlie the complex interactions of a wide range of proteins that 
produce the special properties of life. Certainly, a theoretical and computational approach to biology and 
its molecules must allow everything to interact with everything else, instead of assuming that everything 
is ideal, and nothing interacts with nothing. 
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Fig. 1 
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Figure 1. Typical geometry configuration of an ion channel. The usual time scale for an ion passing 
through the channel is ~200 nsec. Specifically, a channel passing 1 pA of current with an occupancy of 1 
ion has a mean passage time of 160 nsec. 
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Fig. 2 

 
 

 

 
 

Figure 2. A cartoon of the configuration of ion channel with specified boundary conditions. Ω  denotes 

the domain of whole channel; fΩ  denotes the filter part of the channel bounded by zα β≤ ≤  and 

side wall; n̂  is the unit outward vector normal to side wall.  
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Fig. 3 
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Figure 3: Channel geometry. A precise specification of the geometry of our model. 
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Fig. 4 
 

 
 

Figure 4: Species concentration distributions with various ,Na Nag . With max 200V = : (a) , 0Na Nag = ; 

Ca2+ binding ratio=0.60214; (b) 4
, 10Na Nag −= ; Ca2+ binding ratio = 0.59418; (c) 3

, 10Na Nag −= ; Ca2+ 

binding ratio = 0.75433; (d) 2
, 10Na Nag −= ; Ca2+ binding ratio = 0.86109; (e) 1

, 10Na Nag −= ; Ca2+ 

binding ratio = 0.82580; (f) , 1Na Nag = ; Ca2+ binding ratio = 0.71644 and the symmetrical symmetric 

boundary conditions: 2 2[ ] [ ]L RCa Ca+ += = 1mM,
 

[ ] [ ]L RNa Na+ +=  = 100mM, L Rφ φ=  = 100 mV. Note 

4× scaling of [O-1/2] concentration. 

Journal of Physical Chemistry B (in the press)



Tzyy-Leng Horng, et al, File Name: pnpsteric_July_31-1_2012.docx 

 35 

Fig. 5 

 
 

Figure 5: Binding curves corresponding to Table 2. 
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Fig. 6 
 

 
Figure 6: Species concentration distributions under various 2 2[ ] [ ]L RCa Ca+ +=  with ,Na Nag = 0 (no 
finite-size effect). max 200V = , 100L R mVφ φ= = , and [ ] [ ] 100L RNa Na mM+ += = : 
(a) 2 2 7[ ] [ ] 10L RCa Ca M+ + −= = ; (b) 2 2 6[ ] [ ] 10L RCa Ca M+ + −= = ; (c) 2 2 5[ ] [ ] 10L RCa Ca M+ + −= = ; 
(d) 2 2 4[ ] [ ] 10L RCa Ca M+ + −= = ; (e) 2 2[ ] [ ] 1L RCa Ca mM+ += = ; (f) 2 2[ ] [ ] 10L RCa Ca mM+ += = . Note 
2× scaling of [O-1/2] concentration. 
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Fig. 7 
 

 

Figure 7: Species concentration distributions under various 2 2[ ] [ ]L RCa Ca+ +=  with ,Na Nag = 0.01 (with 

finite-size effect). max 200V = , 100L R mVφ φ= = , and [ ] [ ] 100L RNa Na mM+ += = : 

(a) 2 2 7[ ] [ ] 10L RCa Ca M+ + −= = , (b) 2 2 6[ ] [ ] 10L RCa Ca M+ + −= = , (c) 2 2 5[ ] [ ] 10L RCa Ca M+ + −= = , 

(d) 2 2 4[ ] [ ] 10L RCa Ca M+ + −= = , (e) 2 2[ ] [ ] 1L RCa Ca mM+ += = , (f) 2 2[ ] [ ] 10L RCa Ca mM+ += = . Note 

2× scaling of [O-1/2] concentration. 
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Fig. 8 

 
Figure 8: Binding curves of EEEE (−4e) and DEEA (−3e). 
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Fig. 9 

 
Figure 9: Binding curves of DEKA (−1e). 
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Fig. 10 
 

 
 
 
 

Figure 10: Species concentration distributions under various 2 2

L R
Ca Ca+ +   =     with ,Na Nag = 0.01 

(having finite-size effect). max 200V = −  for glutamate side chain, max 200V =  for lysine side chain, 

100L R mVφ φ= = , and 
L R

Na Na+ +   =     100mM= : (a) 2 2 7[ ] [ ] 10L RCa Ca M+ + −= = , (b) 

2 2 6[ ] [ ] 10L RCa Ca M+ + −= = , (c) 2 2 5[ ] [ ] 10L RCa Ca M+ + −= = , (d) 2 2 4[ ] [ ] 10L RCa Ca M+ + −= = , (e) 

2 2[ ] [ ] 1L RCa Ca mM+ += = , (f) 2 2[ ] [ ] 10L RCa Ca mM+ += = . Note the scaling of [O-1/2] is the same as the 

scaling of other concentrations in Fig. 10, unlike Fig. 4, Fig. 6 and Fig. 7. 
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Table 1: Effect of increasing globalε  on Ca binding ratio with 2 2[ ] [ ] 1L RCa Ca mM+ += =   

[ ] [ ] 100 ,L RNa Na mM+ += =  100L R mVφ φ= = , max 200V = . 
 

,Na Nag  0 410−  310−  210−  110−  1 

,Na Clg  0 0 0 0 0 0 

,Cl Clg  0 0 0 0 0 0 

,Na Cag  0 
56.41 10−×

 

46.41 10−×

 

36.41 10−×

 

26.42 10−×

 

16.42 10−×

 

,Cl Cag  0 0 0 0 0 0 

,Ca Cag  0 
41.64 10−×

 

31.64 10−×

 

21.64 10−×

 

11.64 10−×

 
1.64  

1/2,Na O
g −  0 

48.19 10−×

 

38.19 10−×

 

28.19 10−×

 

18.20 10−×

 
8.20  

1/2,Cl O
g −  0 0 0 0 0 0 

1/2,Ca O
g −  0 

31.00 10−×

 

21.00 10−×

 

11.00 10−×

 
1.0034  11.00 10×  

1/2 1/2,O O
g − −

 
0 

21.63 10−×

 

11.64 10−×

 
1.64  1.65 10×  21.64 10×  

Ca binding ratio 0.602 0.594 0.754 0.861 0.825 0.72 
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Table 2: Ca binding ratio vs. 2 2[ ] [ ]L RCa Ca+ +=  with ,Na Nag = 0 (no finite-size effect) and 

,Na Nag = 0.01 (having finite-size effect). max 200V = , 100L R mVφ φ= = , and 
[ ] [ ] 100 .L RNa Na mM+ += =

  

2Ca+     

   in mM 

    Ca  
binding 
ratio 

 ,Na Nag = 0 

   Ca  
binding ratio 

 ,Na Nag = 0.01 

610−  69.2286 10−×  34.4525 10−×  
510−  59.2257 10−×  23.1819 10−×  
410−  49.1970 10−×  0.12233 
310−  38.9241 10−×  0.28671 
210−  27.0641 10−×  0.49926 
110−  0.29171 0.70778 

1 0.60214 0.86109 
10 0.82816 0.94502 
100 0.93661 0.98080 
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