

Ion 'Binding' in Crowded Channel

Classical Donnan Equilibrium of Ion Exchanger

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

'Side Chains' are Spheres <u>Free to move</u> inside channel

Crowded lons

Ion Diameters Pauling Diameters	
Ca++	1.98 Å
Na+	2.00 Å
K+	2.66 Å
'Side Chain' Diameter	
Lysine K	3.00 Å
D or E	2.80 Å
Channel Diameter 6 Å	

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Ca and Na Channels

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Size Selectivity Na⁺ vs K⁺ in the DEKA Na Channel Nothing was changed in the model

Size Selectivity (ratio) Depends on Channel Size, not Protein Dielectric Coefficient

Size Selectivity *ratio* does <u>not</u> depend on protein dielectric Occupancy # Depends on Protein Dielectric

Protein Dielectric 'Amplifies' Charge & Electrostatic effects

Selectivity is in the Depletion Zone not the binding site

Size Selectivity is in the Depletion Zone Na⁺ vs. K⁺ Occupancy

Charge Selectivity

<u>Charge</u> Selectivity Na⁺ vs Ca⁺⁺ Depends on Dielectric

Dielectric Boundary Force = DBF

