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Size Selectivity of Narrow Pores
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The selectivity of micropores and ion channels is examined for simple pore topologies within the
framework of density functional theory of highly confined fluids. In an infinite cylindrical pore purely
steric (excluded volume) effects are shown to lead to strong, nontrivial size selectivity, which is highly
sensitive to the pore radius. A crude modeling of electrostatic effects does not alter the relative ab-
sorbance of Na1 and K1 ions in a significant way.

PACS numbers: 87.10.+e, 61.20.–p, 61.25.– f

The structural and transport properties of highly con-
fined fluids differ considerably from their bulk behavior.
This is, in particular, the case of liquids and solutions in
microporous materials which are often found to act as fil-
ters with a high degree of molecular or ionic selectivity.
Much studied examples include zeolites, where selectiv-
ity leads to specific catalytic activity [1], and ion channels
through membranes, whose ion selectivity has consider-
able physiological implications [2]. The distribution and
transport of ions and water molecules in narrow channels
through a variety of membrane proteins have been the ob-
ject of a number of recent Molecular Dynamics (MD)
simulation studies, based on molecular models for wa-
ter, ions and channel topology of various degrees of real-
ism [3–8]. Such simulations provide valuable insight into
mechanisms of ion selectivity and transport for specific
ion channels, in particular the KcsA K1 channel [7], the
crystal structure of which has been recently determined by
x-ray diffraction [9]. The selectivity and stabilization of
ions within channels is expected to result from a sub-
tle competition between steric (size) effects and electro-
statics, which control the hydration and dehydration of
the ions [4].

In this Letter we focus on generic packing aspects by
considering a simple model to show that steric, excluded
volume effects alone lead to an unexpectedly strong se-
lectivity of particle size in cylindrical pores, which is of
purely entropic origin. We consider the situation of an in-
finite cylindrical pore of radius R, with ends opening into
infinite reservoirs containing a solution made up of three
species: the majority component, or solvent, and two sol-
utes. In the case of ion channels, the former would be
water, and the latter would be the competing ionic species,
say, Na1 and K1. In the present simplified model all three
species are merely hard spheres (HS), of different diame-
ters sa (see Fig. 1). No electrostatics is involved at this
stage, but in explicit calculations bare ion and water diame-
ters, sNa1 � 0.194 nm, sK1 � 0.266 nm and sH2O �

0.32 nm were chosen throughout. In the bulk reservoirs,
the reduced free energy per unit volume, f � F��VkBT �,
of the ternary HS mixture depends only on the diameters
sa and packing fractions ha � pnas3

a�6 of the various

species, where na � Na�V is the bulk number density of
species a. f is known to a high degree of accuracy from
the compressibility equation of state resulting from the
analytic solution of Percus-Yevick (PY) theory for HS mix-
tures [10]; the chemical potentials ma of the three species
follow directly from standard thermodynamic derivatives.

Within the cylindrical pore, on the other hand, the HS
mixture becomes a highly inhomogeneous fluid domi-
nated by surface effects, and characterized by position-
dependent local densities ra�r� of each species. In an
infinite cylinder, confinement breaks translational in-
variance in the plane perpendicular to the cylinder axis
(chosen as z axis), so that the density profiles vary rapidly,
over molecular length scales, along any radial direction,
and depend only on the distance r �

p

x2 1 y2 from
the axis. According to the basic principles of density
functional theory (DFT) of nonuniform fluids [11], the
density profiles may be determined by minimizing a free
energy functional of the ra�r�, which generalizes the
usual Helmholtz free energy function of the uniform den-
sities na , valid in the bulk, to inhomogeneous situations.
If F��ra�r��� denotes this functional, and if the confined
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FIG. 1. Schematic representation of the two channel topologies
considered in this paper. Model 1 is an infinite cylinder of radius
R; model 2 is a finite pore with a spherical cavity R0, flanked
by two coaxial cylindrical segments on both sides. The circles
give an idea of the relative sizes of Na1, K1 ions, and H2O
molecules used in this study.
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fluid is in equilibrium with a bulk reservoir, which fixes the
values of the chemical potentials ma of the various species,
then the ra�r� may be determined from the variational
principle:

dF

dra�r�
� ma , (1)

where the derivatives on the left correspond to functional
differentiation.

The functional F is made up of three contributions, the
ideal part Fid corresponding to noninteracting molecules,
(i.e., an ideal gas), which is known exactly [11], an ex-
cess contribution Fexc, arising from correlations between
molecules, and a part describing the coupling to the ex-
ternal field of the confining surfaces, Fext. The nontrivial
excess part is generally unknown and must be approxi-
mated in a way appropriate for a given physical situation.
For multicomponent HS fluids, the most accurate and suc-
cessful approximate functional Fexc is based on Rosen-
feld’s “fundamental measure” theory, which expresses the
functional in terms of weighted (rather than bare) local
densities [12], involving weight functions based on simple
geometric considerations. Under the unconfined homoge-
neous conditions of the bulk, the Rosenfeld free energy
leads back to the PY free energy derived from the com-
pressibility equation of state; the latter allows the chemical
potentials appearing on the right-hand side of Eq. (1) to be
calculated, for a given composition of the reservoir.

The density profiles ra�r� within the cylindrical pore
are calculated by solving the three coupled Euler-Lagrange
equations associated with the variational principle (1) for
a � H2O, Na1, and K1. The contribution of the external
field reduces here to the confinement constraints,

ra�r� � 0, r . R 2 sa�2 . (2)

The purely radial Euler-Lagrange equations for the three
profiles are easily solved numerically, subject to the con-
straints (2) and for given values of the ma . The latter were
chosen to ensure equal concentrations of 1M of Na1 and
K1 ions in the bulk, and a packing fraction of the HS sol-
vent hH2O � 0.41. The resulting radial density profiles
are shown in Fig. 2, for two cylinder radii, R � 0.4 and
0.5 nm, typical of ion channels. For R � 0.4 nm, the three
profiles are dominated by layering near the channel sur-
face. For R � 0.5 nm, the profiles exhibit a second peak
near r � 0, signaling the appearance of an additional layer
along the axis of the channel, as would be expected from
simple packing considerations. These results are in over-
all qualitative agreement with the MD data of Lynden-Bell
and Rasaiah [4] for a more realistic model of water, in the
case where the charge of the ions is set to zero.

To assess the quantitative reliability of the functional
used in the present calculations, which has not previously
been tested under comparable conditions, we have carried
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FIG. 2. Radial density profiles of Na, K ions and H2O
molecules in a cylindrical pore of radius R � 0.4 nm (upper
curves) and R � 0.5 nm (lower curves). The ratios ra�r��na

are shown, where na is the bulk density in the reservoir, i.e.,
outside the channel. The DFT results are the dashed �Na�,
dotted �K�, and solid �H2O� curves, while the corresponding
symbols for the Monte Carlo results are 1, 3, and ±. All data
is for the hard sphere mixture model, where the Na1 and K1

are at a concentration of 1M in the reservoir.

out grand-canonical Monte Carlo (GCMC) simulations of
HS mixtures confined to cylindrical pores, for physical pa-
rameters identical to those used in the DFT calculations.
In GCMC simulations [13], in addition to the usual trial
displacements of spheres, attempts are made to insert par-
ticles of the various species at random positions inside the
cylinder, or to delete randomly chosen particles, accord-
ing to a generalized Metropolis algorithm satisfying de-
tailed balance, until chemical equilibrium is achieved with
a reservoir of given chemical potentials. The present simu-
lations involved cylinders of 20 30 nm length, with peri-
odic boundary conditions along the z axis. Figure 2 shows
that the DFT results compare very favorably with the “ex-
act” simulation data, lending a high degree of confidence
in the predictions of the computationally much less de-
manding DFT.
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The mean number of particles of species a per unit
volume inside the channel is

r̄a �

2

R2

Z R

0

ra�r�r dr , (3)

and we define the absorbance of species a to be the di-
mensionless ratio za � r̄a�na , where na is the bulk con-
centration of the species in the reservoir which, for the
ions, is chosen to be close to the physiological concentra-
tions, 0.05M, in the following discussion. The absorbances
of Na1 and K1 ions and of water molecules, as calcu-
lated from the HS mixture model, are plotted as functions
of the channel radius R in Fig. 3. As expected, za ! 1

in the limit of large channels �R ¿ sa� and vanish for
R , sa�2. The absorbances of the two ionic species ex-
hibit a considerable amount of structure up to R � 0.4 nm.
The competition of the two ionic species is illustrated in
Fig. 4 which shows the relative absorbance z � zNa1�zK1

as a function of channel radius R. For equal concentra-
tions of the two species outside the channel (i.e., in the
reservoir), the relative absorbance varies considerably with
R, from a minimum value of about 0.2 for R � 0.16 nm
to a maximum value of almost 3 for R � 0.28 nm. This
rapid variation points to a very strong ion selectivity of
cylindrical channels, due solely to steric effects. The un-
expected result is that very narrow channels, of radius
barely sufficient to let water molecules go through (i.e.,
R � 0.16 nm), absorb the larger K1 ion, while pores al-
most twice as large �R � 0.28 nm� strongly favor the ab-
sorptions of the smaller Na1 ion; increasing R further, to
about 0.32 nm (corresponding to twice the radius of a wa-
ter molecule), again favors K1 absorption. The absorption
of the minority ion species is relatively unaffected by their
bulk concentrations inasmuch as the overall packing frac-
tion is hardly changed by their presence.
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FIG. 3. Absorbances za of Na ions (dashed curve), K ions
(dotted curve), and H2O molecules (solid curve), as functions of
the radius R of the cylindrical channel. The results are for the
hard sphere mixture model. The K absorbance peaks at a value
of about 30. The bulk concentrations for the K1 and Na1 are
0.05M.

The relative absorbance z of Na1 and K1 can be re-
produced by a simple free volume argument in the range
R , sH2O, i.e., for channels so narrow that the largest
spheres cannot penetrate. In that limit the micropore con-
tains only a small number of Na1 and K1 spheres, which
behave essentially as a confined mixture of noninteracting
particles, in chemical equilibrium with the highly corre-
lated three-component mixture in the reservoir. The corre-
sponding density profiles inside the cylinder are constant,
subject to the constraints (2), and equal to

ra�r� � naebmex
a , r , R 2 sa�2 , (4)

where b � 1�KBT and mex
a is the excess (nonideal) part

of the chemical potential of species a, set by the reservoir,
where the bulk concentration is na . Substitution of (4) into
(3) immediately leads to the following absorbance ratio for
bulk equimolar solutes:

z �

�R 2 sNa1 �2�2

�R 2 sK1�2�2
exp�b�mNa1

a 2 mK1

a �� , (5)

valid in the interval sK1�2 , R , sH2O. This result per-
fectly reproduces the rapid initial drop of z with R in
Fig. 4.

The simple result (5) confirms, in particular, that the
adsorbance of the smaller Na1 ion is about 5 times less
that of the bigger K1 ion at R � 0.16 nm, i.e., just be-
fore the larger water spheres can enter the cylinder. The
subsequent peak in the relative absorbance is confirmed
by GCMC simulations carried out at the higher concentra-
tion of 1M for both species. The statistical uncertainties
in these simulations increase greatly as the cylinder radius
is reduced.
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FIG. 4. Relative absorbance z � zNa1 �zK1 of Na1 and K1

ions in a cylindrical channel, as a function of cylindrical radius
R. The solid curve is for the hard sphere mixture (corresponding
to an infinite dielectric constant e), while the dashed-dotted and
dashed curves are for charged hard sphere Na1 and K1 ions,
with e � 80 and 30. The lines are for bulk concentrations of
K1 and Na1 of 0.05M, while the squares are MC results with
the associated error bars, and triangles are the corresponding
DFT results for bulk concentrations of K1 and Na1 of 1M.
The dotted line is the fit to the model for very narrow channels
described by Eq. (5).
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The simple HS model thus predicts unexpectedly large
variations of the relative size selectivity of cylindrical pores
with their radius, due to entropic excluded volume effects
alone. Clearly, the model is far too simplistic to do justice
to the complexity of realistic micropores or ion channels.
We have made preliminary investigations of two extensions
of the present model.

In a first step towards a more complete description
of ions in cylindrical pores we have endowed the ionic
spheres with a central point charge, 1e. The confining
surface of the cylindrical channel is assumed to carry a
uniform negative surface charge s, such that the total sys-
tem remains electrically neutral; s was chosen such that
the channel can accommodate, on average, one Na1 or
K1 ion per 3 nm length. The water molecules are still as-
sumed to be hard spheres, but the electrostatic interactions
between charges are reduced by a factor 1�e, where e is
the continuum dielectric constant of water. In other words,
the excluded volume effects of water are treated on the
molecular level, while the dielectric effects, linked to
molecular multipoles and hydrogen bonding, are treated
on a macroscopic continuum level. In bulk water at
room temperature, e � 80, but this value is known to be
strongly reduced in highly confined geometries, due to the
gradual breakup of the hydrogen-bond network and of the
orientation of molecular dipoles near charged surfaces.
The present calculations were carried out for e � 80 and
30. The free energy functional must now include a term
to account for the Coulombic interactions, in the form

FCoul �

1

2

Z

V

C�r�rc�r� dr , (6)

where rc�r� is the ionic charge density inside the channel
and C�r� is the local electrostatic potential, related to
rc�r� by Poisson’s equation and satisfying appropriate
boundary conditions on the surface of the channel. Even
with this additional term, the variational problem (1)
retains its one-dimensional (purely radial) character, so
that numerical solutions of the resulting Euler-Lagrange
equations are readily obtained. The electrostatic effects
are illustrated in Fig. 4, where the relative absorbances z
are plotted versus channel radius R for e � ` (equivalent
to zero charge), e � 80 and 30. The general shape of the
z �R� curves is independent of e and quantitative differ-
ences are largely insignificant. However this “semiprimi-
tive” model of the solvent cannot account for ion
hydration and the gradual dehydration, for increasing con-
finement. In particular the model is intrinsically incapable
of reproducing the dramatic change of ion density profiles
observed in the simulations of Ref. [4] upon charging the
ions in the presence of a realistic model for water.

The present DFT approach can, however, be refined
to include a fully microscopic model of water, involving
molecular values of the electric dipole and higher order
multipole moments [14]. This will allow a self-consistent

assessment of the relative importance of steric and electro-
static effects in determining the selectivity of cylindrical
channels.

The model and DFT used here may also be general-
ized to more complicated pore topologies than the simple
cylindrical shape considered so far. For instance, a some-
what more realistic representation of the KcsA channel [9]
includes a spherical cavity, of radius R0 � 0.5 nm, with
two coaxial cylindrical segments on both sides (see Fig. 1).
This topology still preserves cylindrical symmetry, but the
translational invariance is lost, so that the density profiles
ra�r� now depend on two variables, r and z. We have
solved the corresponding Euler-Lagrange equations on an
�r , z� grid. Preliminary results for the model of a ternary
mixture of neutral hard spheres point to a strong tendency
of the smaller spheres (representing the Na1 and K1 ions)
to be localized at the center of the spherical cavity while
the larger (water) spheres tend to concentrate in the cylin-
drical end segments of the channel. Details of these results
will be published elsewhere.
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