Chemist's View

Ion Channels Proteins with a Hole

Figure by Raimund Dutzler

All Atoms View

~30 Å

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative = acid <u>Blue</u> is positive = base

Ion Channels are Biological Devices, the Valves* of Cells

Main Controllers of Biological Function

Chemical Bonds are lines Surface is Electrical Potential <u>Red</u> is negative (acid) <u>Blue</u> is positive (basic)

Ions in Water are the Liquid of Life

Life Occurs in ~130 mM salt solutions

Ionic Solutions are NOT ideal.

Chemically Specific Properties of Ionic solution are their DEVIATION from IDEAL

Ion Channels are Biological Devices

Natural nano-valves* for atomic control of biological function

lon channels coordinate contraction in the heart, allowing the heart to function as a pump

lon channels coordinate contraction in skeletal muscle

lon channels control all electrical activity in cells

lon channels produce signals of the nervous system

lon channels are involved in secretion and absorption in all cells: kidney, intestine, liver, adrenal glands, etc.

lon channels are involved in thousands of diseases and many drugs act on channels

lon channels are proteins whose genes (blueprints) can be manipulated by molecular genetics

lon channels have structures shown by x-ray crystallography in favorable cases.

Channels are parts of Machines, e.g., Excitation-Contraction Coupling L type Ca Channel RyR ryanodine receptor

Selectivity Differs in Different Types of Channels

Wolfgang Nonner, Dirk Gillespie, Douglas Henderson, Dezső Boda

Selectivity of Different Channel Types Studied in Many Solutions

RyR	Calcium	Sodium	Synthetic
Channel	Channel	Channel	Ca Channel
Selectivity	Selectivity	Selectivity	Selectivity
filter	filter	filter	filter
DDDD	EEEE	DEKA	Various
4-charges	4- charges	2-, 1+ charge	many – charges
PNP/DFT	PNP/DFT Monte Carlo	Monte Carlo	PNP/DFT

<u>RyR model</u> of Gillespie is best worked out for ~ 120 solutions

Selectivity of K Channel is studied in ~1 solution at infinite dilution K channel of Roux has atomic detail but is studied at infinite dilution Quantum /K of Rempe has atomic detail but is studied at infinite dilution "There is only one word that matters in biology and that is **Specificity**"

Aaron Klug quoted in the first sentence of H. Pearson, Nature (2008) 455:160-164

Goal:

Understand Selectivity well enough to Fit Large Amounts of Data and to **Make a Calcium Channel**

As density of permanent charge increases, channel becomes calcium selective

 $E_{rev} \rightarrow E_{Ca}$

built by Henk Miedema, Wim Meijberg of BioMade Corp.,Groningen, Netherlands Miedema et al, Biophys J 87: 3137–3147 (2004) **Channels are only Holes** Why can't we understand and build them?

Must have high quality measurements Must know physical basis of function

Where do we start?

Not with gas phase models of traditional channology

Liquids are not Gases

<u>Not</u> with guesses about trajectories of structural biologists Counting and Statistics are essential

Active Sites of Proteins are Very Charged 7 charges $\sim 20 \text{ M}$ net charge = $1.2 \times 10^{22} \text{ cm}^{-3}$

Pure water is 55 M

Selectivity Filters and Gates of Ion Channels

are Active Sites

Figure adapted from Tilman Schirmer lons in Water are the Liquid of Life

Life Occurs in ~130 mM salt solutions

Finite Size Effects

Working Hypothesis

Chemically Specific Properties

of ions (e.g. activity = free energy per mole) come from their Diameter and Charge

and dielectric 'constant' of ionic solution

Learned from Doug Henderson, J.-P. Hansen, Stuart Rice, among others...Thanks!

Wolfgang Nonner

Ion 'Binding' in Crowded Channel

Classical Donnan Equilibrium of Ion Exchanger

Side chains move within channel to their equilibrium position of minimal free energy. We compute the Tertiary Structure as the structure of minimal free energy.

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

'Side Chains' are Spheres

Free to move inside channel

Crowded lons

Ion Diameters 'Pauling' Diameters			
Ca++	1.98 Å		
Na+	2.00 Å		
K+	2.66 Å		
'Side Chain' Diameter			
Lysine K	3.00 Å		
D or E	2.80 Å		
Channel Diameter 6 Å			

Parameters are Fixed in <u>all</u> calculations in <u>all</u> solutions for <u>all</u> mutants

Experiments and Calculations done at pH 8 18

Boda, Nonner, Valisko, Henderson, Eisenberg & Gillespie

Selectivity Filter is a **Self-Organized Structure** with Side Chains at position of Minimum Free Energy The Protein Fits the Substrate "Induced Fit Model of Selectivity"

Calcium Channel

has been examined in ~32 papers, e.g.,

- Nonner, W., D. P. Chen, and B. Eisenberg. 1998. Anomalous Mole Fraction Effect, Electrostatics, and Binding in Ionic Channels. Biophysical Journal 74:2327-2334.
- Nonner, W., L. Catacuzzeno, and B. Eisenberg. 2000. Binding and Selectivity in L-type Ca Channels: a Mean Spherical Approximation. Biophysical Journal 79:1976-1992.
- Nonner, W., D. Gillespie, D. Henderson, and B. Eisenberg. 2001. Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Physical Chemistry B 105:6427-6436.
- Boda, D., W. Nonner, D. Henderson, B. Eisenberg, and D. Gillespie. 2008. Volume exclusion in calcium selective channels. Biophys. J.:biophysj.107.122796.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2006. Effect of Protein Dielectric Coefficient on the Ionic Selectivity of a Calcium Channel. Journal of Chemical Physics 125:034901.
- Boda, D., T. Varga, D. Henderson, D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. 2004. Monte Carlo simulation study of a system with a dielectric boundary: application to calcium channel selectivity. Molecular Simulation 30:89-96.
- Boda, D., M. Valisko, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. 2007. The combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel. Physical Review Letters 98:168102.

Most of the papers are available at http://www2.phys.rush.edu/RSEisenberg/physioeis.html

Now, the Sodium Channel

DEKA Sodium Channel

has very different properties from Ca channel,

e.g., 'binding' curve, Na⁺ vs Ca⁺⁺ selectivity <u>Na⁺ vs K⁺ selectivity</u>

DEKA Na Channel Selects Na⁺ vs. K⁺

Nothing was changed

from the EEEA Ca channel except the amino acids

Calculations and experiments done at pH 8

Boda, et al

Control Variables are obvious in simulations of the Na channel, but not the Ca channel

in DEKA Na channel

 Selectivity Na⁺ vs K⁺ depends <u>only</u> on <u>pore diameter</u>

Diameter controls Selectivity

Na⁺ vs K⁺ (size) Selectivity (ratio) Depends on Channel Size, not Protein Dielectric Coefficient*

^{*}in **DEKA** Na Channel

in DEKA Na channel

- Selectivity Na⁺ vs K⁺ depends only on pore diameter
- Conductance* depends on protein polarization

Protein <u>Dielectric Coefficient</u> controls <u>Conductance</u>

* Gillespie & Boda (2008) Biophysical Journal 95:2658

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

Best Evidence is from the **RyR Receptor**

Gillespie, Meissner, Le Xu, et al, not Bob Eisenberg

- More than 120 combinations of solutions & mutants
- 7 mutants with significant effects fit successfully

The Geometry

Selectivity Filter

- is 10 Å long and 8 Å in diameter
- confines four **D4899** negative amino acids.

Four **E4900** positive amino acids are on lumenal side, overlapping D4899.

Cytosolic distributed charge

D. Gillespie et al., J. Phys. Chem. 109, 15598 (2005).

DFT/PNP vs Monte Carlo Simulations

Nonner, Gillespie, Eisenberg

36

Divalents

Gillespie, Meissner, Le Xu, et al

Gillespie, Meissner, Le Xu, et al

The model <u>predicted</u> an AMFE for Na⁺/Cs⁺ mixtures <u>before</u> it had been measured

Location and Strength of Binding Sites Depend on Ionic Concentration and Temperature, etc

Rate Constants are Variables

What does the protein do?

Certain MEASURES of structure are Powerful DETERMINANTS of Function e.g., Volume, Dielectric Coefficient, etc. Induced Fit Model of Selectivity Atomic Structure is <u>not</u> pre-formed Atomic Structure is an important <u>output</u> of the simulation

What does the protein do?

Protein maintains <u>Mechanical Forces</u>* Volume of Pore Dielectric Coefficient/Boundary Permanent Charge

Induced Fit Model of Selectivity

* Driving force for conformation changes ??

43 Nonner and Eisenberg Binding Sites* are **outputs** of our Calculations

Our model has <u>no</u> preformed structural binding sites but

Selectivity is very Specific

*Selectivity is in the Depletion Zone, NOT IN THE BINDING SITE of the DEKA Na Channel

 <u>Selectivity</u> depends on <u>Induced Fit</u> of Side Chains and Ions

 Induced Fit is the Self-Organized Structure with
Minimal Free Energy

Energy and Entropy

Induced Fit Model

• <u>Monte Carlo</u> computes the Structure of Minimal Free Energy

Energy and Entropy

 Monte Carlo computes the Induced Structure 'perfectly'*

*but the model itself is far from perfect

Selectivity

Depends Sensitively on Self-organized Structure and their Flexibility

Induced Structure is Different in Different Solutions

SO

Structure must be Computed!

Rate constants are variables that change dramatically with conditions

Computation Starts From Crystal Structure when available but

Crystal Structures cannot determine Selectivity because

- 1) Crystal Structures are measured in only one unphysiological solution
- 2) Crystal Structures are not accurate enough
- 3) Crystal Structures do not give entropy

We can actually compute the Structures that determine Selectivity

"There is only one word that matters in biology and that is specificity.

The truth is in the details, not the broad sweeps."*

(10) 400.100 104

Conclusion Selectivity can be understood by Reduced Models

K channels

Best Evidence

Na & Ca channels

Benoît Roux Susan Rempe Nonner, et al,

RyR channels Gillespie & Meissner

Comparison with Traditional Approach

Traditional Biochemistry (more or less) Ignores the Electric Field Ignores Crowding Effects

But Rate Constants depend steeply on Electrical Properties and Concentration*

because of shielding and crowding, fundamental properties of matter.

*nearly always

Conclusion about Ca channels

Remember We can build them (reasonably well)