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ABSTRACT

The pair correlation function is a measure of the
microscopic structure of matter. Thermodynamic quantities
that depend on the pair potential can be directly extracted
from the pair correlation function, thus it provides suitable
benchmark calculation for validating molecular scale
simulations. Here we simulate simple homogeneous
equilibrium electrolytes at concentrations of physiological
interest using three quite different simulation
methodologies � Equilibrium Monte Carlo (EMC),
Molecular Dynamics (MD), and Boltzmann Transport
Monte Carlo (BTMC). Ion-ion pair correlation functions
computed for both monovalent and divalent electrolytes
compare very well between the three different
methodologies.

Keywords: pair correlation function, electrolyte, Lennard-
Jones, Monte-Carlo, Molecular Dynamics.

1 INTRODUCTION

The recent availability of large-scale computational
resources and methodologies has made possible the direct
simulation of biological ion channel systems at the
atomistic level of detail provided by Molecular Dynamics
(MD) simulations. Nonetheless, the CPU time required to
simulate ion permeation and observe measurable current is
still prohibitive, even on massively parallel machines [1].
Here we propose an alternative, computationally less
intensive approach � Boltzmann Transport Monte Carlo
(BTMC).

The BTMC method is a numerically efficient way to
solve the Boltzmann Equation for semi-classical transport.
It has been used routinely in the semiconductor community
over the past two decades to simulate charge transport in
electron devices [2]. However, its application to ionic
solutions is very recent and therefore requires validation.
For this purpose we calculate the ion pair correlation
function g(r) for several homogeneous electrolytes, for
comparison with benchmark calculations obtained by MD

and Equilibrium Monte Carlo (EMC) simulations [3]. The
function g(r) plays a central role in describing the
microscopic structure and thermodynamic state of a system.
For homogeneous isotropic systems it is proportional to the
probability of finding two atoms separated by a distance r.
Thus, for any molecular scale simulation to be
thermodynamically correct it must reproduce the correct
pair correlation function.

In section 2 we describe briefly the three methods used
in this comparative study. In section 3 we compare the ion
pair correlation function calculated via these three
approaches for several electrolytes. Section 4 concludes
with a discussion of this work.

2 METHODS

We consider a generic bulk electrolyte at equilibrium
consisting of two ionic species interacting via the Coulomb
potential and a modified form of the Lennard-Jones
pairwise potential that retains only the repulsive component
viz.
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where LJε is the Lennard-Jones energy parameter and

( ) / 2jij iσ σ σ= +  is the average of the individual Lennard-
Jones distance parameters for particles i and j. For this work
we set LJ kTε = and 298.15T K= . The pair correlation
function g(r) is defined as
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where V L L L= × × is the system volume, N is the number
of particles, rij is the distance between particles i and j, and
the angular brackets denote a time or ensemble average.
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Since all three simulation methods provide particle
coordinates in real space, g(r) is readily computed by a
simple counting  procedure [3].

2.1 Equilibrium Monte Carlo

EMC simulations involve sampling the phase space of a
system in thermodynamic equilibrium. For this work the
canonical (NVT) ensemble is used. Particles are distributed
randomly in the phase space of a fixed volume and periodic
boundary conditions are imposed to mimic bulk conditions.
g(r) is computed by attempting to alter the system
configuration. Each EMC step involves displacing a single
ion randomly in the simulation volume. The change is
accepted with probability exp( / )U kT−∆ where U∆ is the
energy cost of the change, determined from the Coulomb
and Lennard-Jones interaction potentials. The long-range
component of the Coulomb interaction is determined in
Fourier Space using an Ewald sum and the Lennard-Jones
interaction is determined directly in real space. The process
is repeated until g(r) is sufficiently sampled.

2.2 Molecular Dynamics

MD simulations usually follow the motion of all
particles in the system as it evolves according to Newtonian
Mechanics [4]. Particle trajectories in real space are
integrated in time using a fourth-order predictor-corrector
scheme [5]. The total force acting on the particles includes
the Lennard-Jones interaction and an electrostatic
interaction. Electrostatic fields are evaluated using the
Particle-Particle-Particle Mesh (P3M) scheme [6]. The
particle-mesh component was computed in Fourier space
using Ewald Sum techniques while the short-range particle-
particle component was computed directly from Coulomb�s
Law in real space [6]. The system is brought to steady state
then sampled at a fixed rate to acquire the pair correlation
function. More details on the EMC and MD methods can be
found in [3].

2.3 Boltzmann Transport Monte Carlo

BTMC simulates ion transport as a sequence of
trajectories interrupted by random scattering events, which
thermalize the ions [7]. Water is treated as a continuum
dielectric background and ion-water interactions are
accounted for by a scattering rate. Trajectory flight times
between collisions Tf are generated statistically according to

( )( )
0

ln p
fT

r t dtλ− = ∫
 

        (3)

where ( )( )p tλ
 , the total scattering rate for all collision

mechanisms, is a function of particle momentum p . For
this work we use a constant scattering rate based on the

mass and diffusion coefficient of Na+ and Cl- in water:
13 18.1 10 sλ −

+ = ×  and 13 15.3 10 sλ −
− = × [8].

Ion trajectories are integrated in time and space
according to the local electric field, obtained from
Poisson�s equation, discretized using finite differences on a
rectilinear grid. The resulting linear system is solved using
a conjugate gradient approach [9], subject to Dirichlet
boundary conditions applied at two points on opposite sides
of the domain. In general applications injecting/absorbing
boundary regions may be included to simulate an open
system. In this particular application the BTMC system is
closed � ions are reflected off hard-wall domain boundaries.

Discretization of Poisson�s Equation leads to an
unavoidable truncation of the short-range component of the
electrostatic force, which can be corrected using the P3M
scheme to evaluate short-range interactions explicitly [10].
The total force acting on each ion is obtained by adding the
contribution from the Lennard-Jones interaction.

3 RESULTS

In all three simulations, water is treated as a dielectric
continuum with a permittivity 78.46ε = . The EMC and
MD simulations use a box of length Å69.251L = . A larger
( Å96L = ) box was used for the BTMC simulations to
reduce edge effects associated with the closed system. For a
1M monovalent solution these dimensions give ensembles
of 400 (MD and EMC) and 1066 (BTMC) ions.

Each EMC simulation was run long enough to yield a
relatively smooth function g(r), sampled at every iteration
in discrete bins of width h=0.3Å. CPU requirements on a
single processor SGI Origin2000 are of the order of a
couple of hours.

The MD simulations were run for 1ns using a trajectory
integration time step of ∆t=2.5fs. The system is sampled
every 10ps, after 100ps of equilibrium, yielding a total of
100 samples. Particle-particle short-range Coulomb forces
were updated every 100∆t and particle-mesh forces were
updated every 5∆t on a 64×64×64 grid (grid spacing

1.1Å∆ = ) with g(r) sampling bin width of h=0.37Å. Run-
times on a single processor SGI Origin2000 are ~ 60 hours.

Unless otherwise specified, the BTMC simulations were
run for 0.5ns, with ∆t=10fs, particle-mesh forces were
updated every 10∆t. g(r) is sampled every 0.1ps in bins of
width h=0.3Å. Grid dimensions are specified individually
for each result. All BTMC simulations were performed on a
single processor 600MHz Dec Alpha. As we show in
Section 3.3, run-times are strongly dependent on the choice
of grid spacing, varying between about 1 to 10 hours for a
500ps simulation.

3.1 Monovalent Electrolyte

We consider first a simple monovalent electrolyte of
two ion species having 3Åσ σ+ −= = , at a concentration of
1M. Cation-cation g++(r), anion-anion g--(r) and cation-
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anion g+-(r) pair correlation functions computed using the
three different simulation techniques are shown in Figure 1.
The comparison between all three simulations is excellent.
For this result the BTMC simulation was run for 100ps and
electrostatic fields were obtained using only the particle-
mesh scheme [10] (i.e., no correction term for the
truncation of short-range forces) on a 48×48×48 ( 2Å∆ = )
grid. The repulsive interaction described by (1) ensures that
the minimum ion separation is greater than the distance
over which truncation of short-range Coulomb interactions
become important. The slight discrepancy between the
BTMC simulation and the other two simulations is
attributed to the fact that the BTMC system does not use
periodic boundary conditions to mimic bulk electrolyte and
is therefore sensitive to edge effects.

3.2 Divalent Electrolyte

We next consider a 0.75M solution of a divalent
electrolyte consisting of ions of dissimilar sizes,

1.9Å σ + = ,  3.62Åσ − = , 2z+ = + , 1z− = − . In this case
the BTMC simulation was performed on a relatively coarse
grid 4Å∆ = (24×24×24 grid points) using the P3M scheme
to include the short-range Coulomb forces. The agreement
between all three simulations is again very good.

3.3 Computational Issues

At present the computational bottleneck in the BTMC
simulations is the solution of Poisson�s Equation in real
space. For the 48×48×48 grid used in Figure 1, roughly
75% of the total CPU (~2 hours for 100ps simulation) was
spent solving Poisson�s Equation. Since the CPU cost of the
Poisson solution scales linearly with the total number of
grid points there is clear motivation to use the coarsest
possible mesh. In this section we return to the 1M
monovalent electrolyte ( 3Åσ σ+ −= = ) described in

section 3.1, and examine the effect of mesh truncation of
short-range forces.

Figure 3 shows pair correlation functions computed
from the BTMC simulations using progressively coarser
grids: 2Å∆ = , 4Å∆ = and 8Å∆ = . Electrostatic forces were
evaluated using the particle-mesh scheme. The truncation
of short-range Coulomb forces by the mesh becomes
critical at inter-particle distances r ~1.5∆ [10]. Therefore,
as we saw in Figure 1, if the grid is sufficiently fine
( LJσ∆ < ) the repulsive interaction in (1) the event of two
ions occupying the same or neighboring mesh cell at the
same time is extremely unlikely and thus the force
truncation by the mesh does not affect the results. When ∆
is increased to 4Å the pair correlation functions are slightly
distorted. Since we now have LJσ∆ >  it is possible to find

Figure 1. Anion-anion, cation-cation and cation-anion pair
correlation functions computed from EMC, MD and
BTMC simulations for a 1M solution of a simple
monovalent elecytrolyte.
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Figure 2. Anion-anion, cation-cation and cation-anion
pair correlation functions computed from EMC, MD and
BTMC simulations for a 0.75M solution of a divalent
electrolyte ions of dissimilar size.
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Figure 3. Anion-anion, cation-cation and cation-anion pair
correlation functions computed from BTMC simulations
using the particle-mesh scheme on progressively coarser
grids. Distortions to g(r) at larger values of / LJσ∆  can be
recovered by using the P3M scheme to evaluate the short-
range coulomb forces
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two or more ions in the same or neighboring mesh cells,
hence the truncation of the electrostatic force by the mesh
starts to be important. At 8Å∆ =  the force truncation is
clearly very important as evidenced by the severe distortion
of the pair correlation function. The increase in g++(r) and
g--(r), and decrease in g+-(r) at short interaction distances
( 3 6År = – ) indicates that the electrostatic interaction is
grossly underestimated by the particle-mesh scheme.
However, by using the P3M scheme to evaluate the short-
range component of the Coulomb interaction explicitly the
original pair correlation functions are recovered even on a
very coarse 8Å∆ = grid, as is also shown in Figure 3.

The CPU required per 500ps of BTMC simulation
using the particle-mesh scheme on a single processor
600Mhz Dec Alpha is approximately 605, 77 and 50
minutes for the 2, 4 and 8Å grids, respectively. The
dramatic speed-up observed when the grid spacing is
increased from ∆=2 Å and ∆=4 Å saturates at larger grid
spacing, because the computational burden is now
dominated by the sampling of the pair correlation function
(every 10ps in this case) and the particle transport.
Evaluation of the short-range Coulomb force on a sub-
domain surrounding each ion using the P3M scheme on the
∆=8 Å grid increases the run-time to 72 minutes.

In addition to reducing the number of grid points,
substantial reduction in the computational load can be
achieved by relaxing the time interval between successive
solutions for the electrostatic field. Ion transport in
electrolyte is highly collisional and under bulk equilibrium
conditions ion transport is largely diffusive [1]. The ion
root-mean-square displacement scales with time as

6
rms

x Dt= , where D is the diffusion coefficient [11].

Over a time scale of 1ps the ion diffusion length in a typical
bulk electrolyte is about 1Å. Therefore, in a realistic
transport that is damped by water the charge configuration
changes relatively slowly over time and the frequency of
field updates can be relaxed without appreciably perturbing
the results.

Careful benchmarking is necessary to determine the
optimal frequency of field updates. Figure 4 (top) shows the
anion-anion and cation-anion pair correlation functions for
a 1M monovalent solution, computed via the BTMC
method on a 2Å grid, using the particle-mesh scheme, with
progressively longer time intervals between solutions of
Poisson�s Equation. The time between field updates can be
relaxed out to more than 5ps before any significant
distortion in the pair correlation function is evident. Also
shown in Figure 4 (bottom) are cation-cation and cation-
anion pair correlation functions computed using ion-water
scattering rates reduced by a factor of 100, with the EMC
result plotted for comparison. As expected, the lower
scattering rate allows the ions to diffuse much further over
the same time scale, necessitating a much more frequent
field update.

4 DISCUSSION

We have described three very different computational
methods to simulate the equilibrium structure of both
monovalent and divalent electrolytes. The agreement
between all three models is very good. Each methodology
has its own advantages and drawbacks depending on the
particular application. The EMC method is computationally
very efficient but, through its assumption of equilibrium
conditions, is limited to providing information on the
system configuration. The MD simulation follows the
detailed ion transport in the electrostatic and Lennard-Jones
potentials. For applications in which the periodicity of the
system can be exploited the Ewald sum technique has been
shown to be numerically quite efficient but cannot be
extended practically to a general device structure in which
periodic boundary conditions are not applicable. The
BTMC method is well suited for simulating ion transport in
non-periodic structures with very modest computational
requirements.

We have also demonstrated that the computational
performance of the BTMC method can be dramatically
improved if the P3M scheme is implemented carefully. This
has extremely important implications for realistic
simulations of computationally large systems such as those
encountered in ion channel systems with salt baths in situ.
A good compromise must be achieved in the choice of
mesh size so that the overhead of evaluating the Coulomb
forces explicitly on a short-range domain for each particle
does not outweigh the speedup achieved from using a
coarser mesh for the particle-mesh scheme. The P3M
scheme is currently implemented in such a way that while
the distance over which the Lennard-Jones ion-ion
interaction is included is greater than the range over which
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Figure 4. Effect of increasing the time between successive
field updates on the pair correlation function for a highly
collisional (top) and less collisional (bottom) system.
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the particle-particle Coulomb interaction is calculated
explicitly, the overhead associated with searching for ions
in the latter domain is negligible.

Finally, we have shown that by including a high ion-
water scattering rate, estimated from ion diffusion
coefficients in solvent, the charge configuration changes
sufficiently slowly to relax the time interval between
successive solutions of Poisson�s Equation to several
picoseconds without any noticeable change to the pair
correlation function.
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