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A truncated cone, made of material of uniform resistivity, is given in many introductory physics 
texts as a nontrivial problem in the computation of resistance. The intended method and answer are 
incorrect and the problem cannot be solved by elementary means. In this paper, we (i) discuss the 
physics of current flow in a nonconstant cross-section conductor, (ii) examine the flaws in the 
"standard" solution for the truncated cone, (iii) present a computed resistance found from a 
numerically generated solution for the electrical potential in the truncated cone, and (iv) consider 
whether any problem exists to which the standard solution applies. © 1996 American Association 
of Physics Teachers. 

In introductory courses students are taught that a solid of 
electrical resistivity p, length L , and constant cross-sectional 
area A, has a resistance 

R=pL/A. (1) 

slab at location x would have differential thickness dx, and 
would have a resistance dR = p dx!( 7Tr

2
), where r is the 

radius of the cone's cross section at x. Since dx/dr=L!(b 
-a) we have dR=p[Ll(b-a)](dr/7Tr2

). The cone is then 

Many (most?) texts1 for calculus-based courses try to intro
duce an application of calculus by including a problem in 
which a resistor has a nonconstant cross section. In these 
books (usually in Chap. 26±2) the student is asked to find 
the resistance of a truncated cone, as in Fig. 1. The reader is 
meant to assume that the resistor is connected via "wires" 
that end with perfectly conducting disks attached to the end 
faces of the truncated cone. 

The method that is intended can be inferred from the an
swer. (In the text by Wolfson and Pasachoff1 the student is 
explicitly instructed to use this method.) The student is 
meant to break the cone into isolated differential slabs of 
resistance (each could be called a piece de resistance). The 
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Fig. 1. The standard truncated cone problem. 
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Fig. 2. Planar equipotentials and the implied electric field. 

treated as if it is nothing more than a stack of these slabs, and 
the total resistance is found by summing the resistance of all 
the slabs: 

R=f dR=p _!___ Jb ~= pL . 
b-a a 1Tr 1Tab 

(2) 

This seems plausible at first-the role of A in (1) is played 
in (2) by the geometric mean of the area of the disks bound
ing the cone-but the plausibility does not stand up to a 
close second look. When the slabs are added "in series," it 
is required that their planar faces be equipotentials. The stack 
of slabs is electrically equivalent to the cone only if the equi
potentials in the current-carrying cone consist of planes per
pendicular to the axis, as is shown in Fig. 2. This is impos
sible. If these were the equipotentials then the electrical field 
(orthogonal to the equipotentials) would be parallel to the 
axis, as shown in the figure. The current (parallel to the elec
tric field in an Ohmic conductor) would then also be parallel 
to the cone axis, and therefore not parallel to the sides of the 
resistor. This would imply that current is flowing in through 
the sides! The actual equipotentials, therefore, must be 
curved in order to be perpendicular to the sides of the resis
tor. A few of the texts suggest that some sort of approxima
tion is being made (about which more below); only Wolfson 
and Pasachoff1 point out that the assumption of the planar 
equipotentials is being made, and that the assumption is 
wrong. 

To discuss what is right, let us first note that there is no 
charge density in the resistor. If there were charge density, 
V · E would be nonzero and, through Ohm's law, this would 
imply that the divergence of the current flow V ·J is nonzero, 
and that charge is building up. The mathematical problem of 
finding the field inside the resistor therefore amounts to find
ing the solution of Laplace's equation V2<1>=0 for the elec
trostatic potential <I>. This equation is to be solved with the 
following boundary conditions: (1) <I> must be constant, say 
at values <I> a and <l>b , on the disks at the end of the resistor; 
(2) the gradient V<I> must be parallel to the resistor sides. 
Once the solution is found, the current flow is known to be 
J = -V<I>/ p, and integrating the normal component of J over 
the area of either of the bounding disks gives the total current 
/.The resistance is then l(<l>a-<l>b)/II. 

Casting this as a numerical problem is reasonably straight
forward, and the solution of that problem, while not trivial, is 
not daunting with modem computational tools. Our approach 
has been to formulate the problem in a coordinate system 
convenient for the boundary conditions, and in which nu
merical errors are expected to be minimized. The equations 
based on this coordinate system were solved using the 
public-domain package Sparse.2 For those who are interested 
in this sort of thing, details are provided in the Appendix. 
Here, we want to emphasize the results. 
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Fig. 3. Equipotentials and flow lines for computed resistance. 

We present results first for a resistor with a/L=l/2, b/L 
= 1. A picture of the current flow lines and the equipotentials 
are shown in Fig. 3. (Half the lateral cross section is shown 
for each.) All expected features are evident in these figures. 
In particular, current does not flow through the resistor's 
sides and the equipotentials are perpendicular to the sides. At 
the comers the E field is required to be perpendicular to the 
end faces and to be parallel to the sides. To satisfy these 
incompatible constraints, E vanishes. 

How wrong is the "stack of slabs" solution? Intuition 
suggests (correctly) that the correct solution will correspond 
to higher resistance since the correct flows are more con
strained than those of the slab solution. (The comer regions, 
for example, must have reduced current flow.) From the nu
merical results we find, for our reference case (a IL = 1/2, 
b IL = 1) in Fig. 3, that the resistance is R = 0.692p/ L, larger 
by 9% than the textbook answer given in (2). 

Several of the textbooks3 in the list in Ref. 1 tell the stu
dent to assume that the current is uniformly spread over the 
cross section. We can see no strong case for this assumption 
being ineluctably linked with the intended method. The cur
rent could, for example, be a uniform flow on straight lines 
that can be traced back to the apex of the cone, as in Fig. 4. 
This would give a flow pattern that satisfied the correct 
boundary conditions on the sides of the resistor, but not on 
the disks that truncate it. This flow pattern would be pre
cisely correct if the resistor were formed by the intersection 
of a cone with a spherical shell. The resistor would then be 
truncated not by disks, but by the spherical caps shown 
dashed in the figure. This replacement might in principle 
(though not plausibly) be taken by the student to be the natu
ral interpretation of the instructions to assume uniform flow. 
This same implausibly perverse student would compute a 
resistance of 

p (b-a) 2 

R = -- --;:::::;;:====--
21Tab ~L 2 +(b-a) 2 -L · 

(3) 

This calculation is a straightforward application of geometry 
and does not involve calculus. It gives, furthermore, an an
swer R = 0.674p/L for our reference problem (that of Fig. 3) 

----
----------------............. 

Fig. 4. Another type of "uniform" flow. 
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Fig. 5. Resistor segmented by conducting planes. 

which is less than 3% off from the correct (numerical) an
swer, while the expected textbook method is off by almost 
9%. 

One can make other approximations using a portion of a 
spherical shell. In particular one could use a spherical shell 
which is just barely completely enclosed within the truncated 
cone, or one could use a shell which just barely encloses the 
truncated cone. The former approximation, which provides a 
lower bound on the resistance, gives R = 0.595p/ L for our 
reference case, while the latter approximation, which pro
vides an upper bound, gives R=0.833p/L. 

The textbook by Keller, Gettys, and Skove1 suggests, in its 
presentation of the problem, that the answer expected from 
the student will apply only if the resistor does not taper very 
much, i.e., for ( b - a) ~L. Intuition suggests (and numerical 
models confirm) that the textbook formula becomes a good 
approximation in this limit. This does provide some justifi
cation for the stack of slabs approach as an easy way of 
deriving an approximation, but it should not be taken seri
ously as unique or efficient. An example of an alternative 
approach which is equally justified is that of (3). In the limit 
( b - a) ~L this becomes pl I rra b and, as we have seen, 
gives a better approximation, at least for some range of pa
rameters. 

We have asked ourselves what might be the problem for 
which the textbook solution is the correct answer. The result 
of this inverse problem solving is to imagine thin conducting 
planes used to break the resistor into N segments, as in Fig. 
5. (These segments are different from the slabs of the text
book method. For one thing, the segments are tapered; the 
slabs are not.) We can compute the resistance of a segmented 
cone by using our numerical program to compute the resis
tance of each segment. Table I shows the results of segmen
tation for a resistor with the geometry (a/L = 1/2, b/L = 1) of 
that in Fig. 3. As the number of segments increases from 
N=l (the unsegmented resistor) to N=8, the excess of the 
computed resistance over the textbook answer decreases. In 
the limit of an infinite number of segments, the textbook 
answer would be reached. 

The transverse conducting planes do not give us a very 
satisfying physical problem, but they do point us in the di
rection of an interesting physical problem: a truncated coni
cal resistor made of material with anisotropic resistivity. The 

Table I. Resistance of a cone with N segments. 

N Computed R(fextbook R 

1.087 
2 1.064 
4 1.040 
8 1.022 
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resistivity parallel to the cone axis should be p, while the 
resistivity in the transverse directions vanishes. For such a 
resistor the method and the answer of the textbooks is cor
rect. This, of course, is a very inappropriate problem for an 
introductory course, but the same, or worse, must be said for 
the problem as it presently appears in textbooks. 
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APPENDIX 

We choose to have the apex defining the conical resistor to 
be at the origin of a system of cylindrical oordinates r, cp,z, 
in terms of which we define new coordinates TJ, ' by 

7J=} ~ '=ln(E} (4) 

The surfaces of constant 1J are conical surfaces with the same 
apex (like the flow lines shown in Fig. 4). The s~uared form 
of r I z in ( 4) was chosen to eliminate the usual r - factor that 
enters the axi-symmetric (¢>-independent) Laplace equation. 
The logarithmic form of z in (4) was chosen to eliminate the 
z-dependent factors that arise from the definition of 1/· 

The boundaries of the resistor are constant coordinate sur
faces. The equipotential disks truncating the resistor are at 
,=,a=ln[a/(b-a)] and ,=,b=ln[b/(b-a)]. The sides of 
the resistor are at a 1/== 1Jo= !( ( b - a) IL ]2. In terms of these 
coordinates the axisymmetric Laplace equation takes the 
form 

a2 <I> a<I> a2 <I> a<I> 
ae-~+2TJ(1+2TJ) a1/z+(2+61J) a1/ 

az<I> 
-41/ a' aTJ =O. (5) 

The boundary conditions on the disks are straightforward: 
At 'a and 'b the potentials are taken to be <I>= 0 and <I>= 1. At 
the resistor sides, 1/= 7Jo, the condition is that V<I> is parallel 
to the surface 7J= 1/o· Since the TJ, 'coordinates are not or
thogonal, some care must be used in computing the gradient 
of <I> and in evaluating the condition of parallelism at the 
side. The result is that at 7J= 7Jo we must have 

a<1> a<1> 
(1+2TJ) a1J -ay=O. (6) 

Although the axis is not a physical boundary, 1J=O is a 
boundary of our coordinate region. The appropriate condi
tion at the axis is simply the Laplace equation (5) with 17=0. 

The range of 1/ and ' was discretized into an n X n square 
grid, and the Laplace equation, and boundary conditions at 
'='a ,,b and 1/=0, 1Jo, were written as difference equations 
on this grid. These difference equations form an n X ( n - 2) 
set of linear equations in which the unknowns are the values 
of <I> at the grid points. This set of equations was solved 
numerically with the Sparse package2 which solves explicitly 
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(rather than iteratively). From the computed solution for <I> 
near the bounding disks, the current was computed as de
scribed in the text, and a value for the resistance was found. 

To estimate and improve the accuracy of the result for the 
computed resistance we used a version of Richardson ex
trapolation. The resistance computed for different grid size 
n, with n ranging from 20 to 100, was found to follow the 
pattern R ( n) =A +BI n. The resistor value R ( oo) was taken to 
be A . The uncertainty in A depended on the scatter in the 
values of B found for different values of n (due to round-off 
error, 1/n2 truncation terms, etc.). From this we can say with 
some confidence that the computed resistances were accurate 
to around 0.1 %. This uncertainty is much smaller than the 
differences (several percent) between our numerically com
puted resistances and the textbook values given by (2). 

1We do not claim to have made an exhaustive search of the texts. Of 13 
calculus-based introductory texts we looked into, the truncated cone prob
lem was found in the following nine: W. P. Crummett and A. B. Western, 

University Physics (Brown, Dubuque, 1994), Chap. 26, Prob. 49; P. M. 

Fishbane, S. Gasiorowicz, and S. T. Thornton, Physics for Scientists and 

Engineers (Prentice-Hall, Englewood Cliffs, NJ, 1993), Chap. 27, Prob. 
55; D. Halliday and R. Resnick, Fundamentals of Physics (Wiley, New 
York, 1981), Chap. 28, Prob. 25; A. Hudson and R. Nelson, University 

Physics (Harcourt Brace Jovanovich, New York, 1982), Chap. 24, Prob. 
24C-1; F. J. Keller, W. E. Gettys, and M. J. Skove, Physics (McGraw-Hill, 
New York, 1993), Chap. 24, Prob. 5; H. C. Ohanian, Physics (Norton, 
New York, 1985), Chap. 28, Prob. 25; R. A. Serway, Physics for Scientists 
and Engineers (Saunders, Philadelphia, 1992), 3rd ed., Chap. 27, Prob. 68; 
P. A. Tipler, Physics for Scientists and Engineers (Worth, New York, 
1991), Chap. 22, Prob. 69; R. Wolfson and J. A. Pasachoff, Physics 

(Harper Collins, New York, 1995), Chap. 27, Prob. 69. 
2K. S. Kundert and A. Sangiovanni-Vincentelli, Sparse (University of Cali

fornia, Berkeley, 1988). 
30f those listed in Ref. 1, texts which instruct the student to assume uni
form current flow are those by: Crummett and Western; Halliday and 
Resnick; Hudson and Nelson; Serway. In the Keller, Gettys and Skove 
text, the student is told that uniform current flow follows from the assump

tion of a small taper angle for the cone. 
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We discuss the implications of Poincare invariance within the context of Lagrangian field theories. 
It is shown that the correct implementation of this invariance leads in a straightforward manner to 
a conserved energy-momentum tensor which is both symmetric and gauge invariant. © 1996 
American Association of Physics Teachers. 

I. INTRODUCTION 

Few things are more frustrating to students than to be led 
through a long, formal argument only to be told at the end 
that the result obtained is incorrect and must somehow be 
fixed by an auxiliary procedure. This is particularly harmful 
if the formal argument involved turns out to be one of the 
mathematical cornerstones of modem physics. Unless the 
discussion includes a re-examination of the analysis to find 
out exactly what went wrong, the students will be left with 
the paradoxical feeling that a supposedly very general theo
rem produces unacceptable answers when applied to certain 
specific situations. Quite understandably, later on they will 
be reluctant to think about any physical problem in terms of 
the tools provided by such a theorem. 

The case we have in mind is the typical derivation of the 
energy-momentum tensor for relativistic field theories. Most 
textbooks begin the discussion by writing down a Lagrang
ian $, and arguing that this Lagrangian must be invariant 
under a spacetime translation. The details of the derivation 
vary from text to text, but the end result invariably yields the 
energy-momentum tensor (our conventions are the same as 
Jackson's;1 see the Appendix): 
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a2l 
T~= a(aµA>-) a.A>- - 8~2l 

1 1 
= - 47T pµ>-a.A>. + 167T 8~pP>-p p>.' (1) 

when applied to the free electromagnetic field, 
$= -(l!l67T)FP>-p p>. .1-

4 It is then pointed out that this so
called canonical energy-momentum (or stress) tensor is un
acceptable for a number of reasons. First, it is clearly not a 
gauge-invariant quantity. Second, it is not symmetric, 
thereby ruining conservation of angular momentum. Third, 
its components do not reproduce the standard definitions of 
energy density and momentum density. Fourth, it is not 
traceless, which contradicts the fact that our starting La
grangian is conformally invariant (i.e., photons are mass
less). Some technical details of the derivations add to the 
confusion: In some instances, it is apparently crucial to as
sume a Lagrangian with an explicit dependence on the space
time position2-a dependence which is clearly absent in 
2l=-(1/167T)FP>-pp>.-while in other cases a local transla
tion xµ~x' µ=xµ+ aµ(x) seems necessary,3 even though in 
special relativity we deal exclusively with global transla
tions. 
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