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A finite element discretization using a method of lines approached is proposed for 
approximately solving the Poisson–Nernst–Planck (PNP) equations. This discretization 
scheme enforces positivity of the computed solutions, corresponding to particle density 
functions, and a discrete energy estimate is established that takes the same form as the 
energy law for the continuous PNP system. This energy estimate is extended to finite 
element solutions to an electrokinetic model, which couples the PNP system with the 
incompressible Navier–Stokes equations. Numerical experiments are conducted to validate 
convergence of the computed solution and verify the discrete energy estimate.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and background

Charge transport refers to a physical process where charge carriers interact with an electric field, so that their transport 
not only affects the configuration of other charge carriers, but also has a global influence on the electric field. As a result, 
these systems require strong coupling between the charge carriers and the electric field. To be clear, a charge carrier in this 
setting is a general concept of some entity that has a density and an electrical charge, which includes physical particles, 
such as an ion or electron, as well as massless quasi-particles, like the conduction band “electrons” and valence band holes 
studied in semiconductor literature.

Charge transport systems have been observed throughout the history of science; they are, naturally, the foundation of 
electrical engineering and electrokinetics [9,20,24,27,28,31]; and, they are commonplace in physical systems and biological 
systems [9,10,14,26,42,45]. From a mathematical perspective, charge transport fits into a setting of generalized diffusion, 
where the charge carriers have nonlocal influence upon each other through Coulomb interactions, provided by the elec-
tric potential. This nonlocal diffusion fits into an energetic variational framework, which is a useful tool for establishing 
self-consistent model equations and various qualitative properties of the system, such as an energy law [10,15,18].

Our model for charge transport is described by the Poisson–Nernst–Planck (PNP) system of differential equations, which 
models an electrostatic system (where the effects of magnetic forces are ignored), and is derived from three key concepts. 
The first is Gauss’ law, from the Maxwell equations [29], which states that the electrostatic potential is distributed according 
to the total charge density in the system via Poisson’s equation. The second ingredient is that the fluxes of the charge 
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carriers are driven exclusively by processes of diffusion and electric drift. This definition for the flux traces back to Nernst 
[32] and Planck [33] is accurate for describing systems where charge carriers can be modeled as point charges. Finally, the 
conservation of mass is used to relate the evolution of the charge carrier densities to the Nernst–Planck flux.

An important remark about the PNP system is that it has many variants by simply altering the definition of the charge 
carrier flux. For example, some practical modifications take into account size effects of the ionic particles [14,17] or relative 
drag when there is ion crowding [10,15]. Another important extension to the Nernst–Planck flux is to include an advection 
term that is coupled to the incompressible Navier–Stokes (NS) equations with an electric-body force, which models charge 
carriers that are suspended in a charged fluid. The PNP–NS system is a basic model in the study of electrokinetics [24] and 
is important to engineering lab-on-chip devices, for example, where a fluid carries charged particles or the charged particles 
are used to control fluid flow. For the purposes of this paper, only the Nernst–Planck flux or the Nernst–Planck flux coupled 
to the NS equations are considered.

The PNP equations serve as the basis for modeling many devices, such as batteries [30,43], semiconductor devices [3,6,
9,19,20,27,28,31,41], fluidic micro/nano-channels and mixers [11,21,24,40], and biological ion channels [10,13,26,42,45]. As 
a system of coupled nonlinear partial differential equations, the PNP equations lead to a rich source of problems for pde 
analysis, where the system and its modifications are studied to improve understanding of the existence, uniqueness, and 
stability of a solution [4,5,19,36].

Due to the wide variety of devices modeled by the PNP equations, computer simulation for this system of differential 
equations is of remarkable interest. This has led to a great deal of literature focusing on numerical solvers for the PNP 
systems [3,6,16,20,26,30,34,35,37,42,43,45]. Providing a comprehensive numerical analysis would require an energy estimate 
to establish the stability of the discretization, some notion of convergence of the computed solution to the true solution, 
and well-posedness of the discrete problem.

It is worth noting that there are many ways in which one can approach the simulation of the PNP system. To start, the 
weak form of this system is not unique; Prohl and Schmuck carried out an analysis for the PNP system [34] and the PNP 
system coupled with the incompressible Navier–Stokes equation [35] that uses the L2 inner-product to define the weak 
from. Their work is significant as they define a numerical scheme for which they establish convergence and an energy 
estimate; however, due to their definition of the weak form using the L2 inner-product, the energy estimate is an imitation 
of the physically relevant energy norm, which is defined using the L1 logL1-norm. As a result, the self-consistent energy 
norm cannot be evaluated exactly in using an L2-discretization, and interpolation must be used to approximate the energy 
law that governs the system.

In this work, a novel finite element discretization is used that employs a logarithmic transformation of the charge carrier 
densities that naturally yields several favorable properties, such as automatic positivity of the solution densities and the en-
ergetic stability of the numerical solution for both the drift–diffusion model and the electrokinetic model. It is important to 
note that this stability is always true for the nonlinear finite element solution, regardless of the mesh size. In Section 2, we 
define the PNP equations, introduce the energy law corresponding to the PNP system, propose a finite element discretiza-
tion, and prove an energy estimate for the fully discrete solution to the PNP system. In Section 3, we provide a similar 
analysis for the PNP system coupled with an incompressible fluid, where the divergence-free property of the fluid plays 
an essential role in establishing stability; consequently, this section also contains a discussion of a discontinuous Galerkin 
discretization for the incompressible Navier–Stokes system, which is known to preserve this divergence-free property. In 
Section 4, some numerical experiments are carried out to validate the convergence properties of the numerical solver and 
the discrete energy estimate. Some closing remarks are given in Section 5.

2. The Poisson–Nernst–Planck equations and their discretization

The PNP system models the interaction of N ≥ 2 charge carriers through an electrostatic field. Denote the charge carrier 
density of the ith species by ρi > 0 and the electrostatic potential by φ. Let � ⊂ R

d for d = 1, 2, or 3 be a simply connected 
polyhedral domain, and T be a positive and finite real number. Then, the PNP system is described by the initial-boundary 
value problem:

−∇ · (ε∇φ) = ec

N∑
i=1

qiρi, (1)

∂ρi

∂t
= −∇ · �J i, i = 1, . . . , N, (2)

�J i = −Di∇ρi − qiμiρi∇φ, i = 1, . . . , N, (3)

in � × (0, T ], where

ρi(x,0) = ρi,0(x), for x ∈ �, i = 1, . . . , N,

and

−∇ · (ε∇φ(x,0)
)= ec

N∑
qiρi,0(x), for x ∈ �.
i=1
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The electric permittivity, ε = εrε0 > 0, is the product of the vacuum permittivity constant, ε0, and the material dependent 
relative permittivity, εr , which may be discontinuous in general. The electric permittivity measures the strength of the 
long-range (nonlocal) interactions of the charge carriers. The elementary charge constant is approximately given by ec =
1.6 × 10−19 coulombs. The charge carrier flux for the ith species is denoted by �J i and is defined in (3) by a model proposed 
by Nernst and Planck [32,33], where Di > 0 is the diffusivity, qi the valency, and μi the mobility of the ith charge carrier. 
This model is reasonable when the charge carriers are sufficiently small (with respect to the length scale of the domain) to 
be accurately modeled as point charges.

The Einstein relation is assumed to hold so that

μi = ec Di/κB T ◦,
which implies that equilibrium distribution of the charge carriers should follow a Boltzmann distribution. Here, κB is the 
Boltzmann constant and T ◦ is the temperature, which is considered to be fixed for the purposes of this paper. For simplicity, 
the equations are non-dimensionalized to give ec = 1 and κB T ◦ = 1, so that μi = Di .

2.1. Boundary conditions

The boundary conditions are a critical component of the PNP model and determine important qualitative behavior of the 
solution. A detailed account of stability and existence for steady-state continuous and finite element solutions has reported 
in [19,20]. For the time-dependent problem, existence and stability for the continuous case has been established [4,5]. This 
work is concerned with establishing the stability of finite element solutions for the time dependent PNP equations, as in 
the work of Prohl and Schmuck [34,35]; though, the discretization proposed in this work is markedly different from their 
presentation. Homogeneous no-flux conditions are considered for each charged species,

Di(∇ρi + qiρi∇φ) · �n = �J i · �n = 0, on ∂�. (4)

For the Poisson equation, write a disjoint partition of the boundary: ∂� = �D ∪ �N ∪ �R with

φ = δV on �D ,

ε∇φ · �n = S on �N ,

ε∇φ · �n + κφ = C on �R , (5)

where δV , S and C are given functions that do not depend on time. Dirichlet boundary conditions model an applied 
voltage; Neumann conditions model surface charges; and, Robin conditions model capacitors at the boundary. Without 
loss of generality, it is assumed that 

∫
�D

δV ds = 0, so that δV ≡ 0 if the Dirichlet boundary condition is constant. The 
capacitance is required to be positive on �R , κ ≥ κ̄ > 0, though one may take �R = ∅ if no capacitor boundary is to be 
modeled. Any combination of Dirichlet, Neumann, and Robin boundary conditions can be applied to φ for the purposes of 
this paper, though the case of pure Neumann boundary conditions requires an additional constraint, which is taken to be ∫
�

φ(x, t) dx = 0 for 0 ≤ t ≤ T , so that φ is uniquely defined.

2.2. Computational difficulties of the PNP system

The PNP equations present several difficulties when computing approximate solutions. Firstly, it is a strongly coupled 
system of N + 1 nonlinear equations, so that computational efficiency plays a critical role in applications of a numerical 
solver. Furthermore, to resolve the nonlinearities of the system, an iterative linearization technique must be used, such as 
a Newton–Raphson method or fixed point iteration. While fixed point iteration serves as a helpful tool in the analysis of 
the PNP system, it is difficult to establish the rate of convergence to the nonlinear solution. Secondly, the Nernst–Planck 
fluxes given in (3) are often convection-dominated, which leads to several analytical and numerical difficulties, such as 
the positivity of the ion concentrations, ρi > 0, or numerically induced oscillations in the computed solution, if not properly 
addressed. There are several ways to overcome these issues: one reasonable approach is to introduce some sort of upwinding 
scheme, such as the Scharfetter–Gummel scheme or box method [2,3,38], or the edge-averaged finite element method 
[23,44]. Another option is to introduce a nonlinear change of variables, such as the Slotboom variables [30,41,42] or the 
quasi-Fermi variables [2,3,19,20], which symmetrize the Nernst–Planck flux. While the Slotboom change of variables has 
been used for several numerical solvers, it is known that this change of variables suffers from stability issues [26,37].

In this work, a novel change of variables converts the convection-dominated Nernst–Planck flux into a nonlinearly dif-
fusive flux, similar to the quasi-Fermi variables. As a matter of fact, this change of variables is directly related to the 
quasi-Fermi variables, though the quasi-Fermi variables introduce an additional nonlinear coupling between the charge 
carriers and the electrostatic potential in the time derivative term of (2), which is avoided here. The motivation for the 
proposed change of variables is inspired by energy law of the PNP system, which is discussed below.

2.3. Energy of the PNP system

Since the PNP system is assumed to satisfy the no-flux boundary condition for the charge carrier concentrations (4), it is 
known that the charge carrier concentrations satisfy the conservation of mass,
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∫
�

ρi(x, t)dx =
∫
�

ρi,0(x)dx, for 0 ≤ t ≤ T . (6)

Furthermore, assume the Dirichlet boundary condition is homogeneous, then the stability of the solution to the PNP system 
is known [4,5] to be given by the familiar energy law

d

dt

⎧⎪⎨⎪⎩
∫
�

N∑
i=1

ρi(logρi − 1) + ε

2
|∇φ|2 dx +

∫
�R

κ

2
|φ|2 ds

⎫⎪⎬⎪⎭= −
∫
�

N∑
i=1

Diρi |∇ (logρi + qiφ)|2 dx,

where the functional,∫
�

N∑
i=1

ρi(logρi − 1) + ε

2
|∇φ|2 dx +

∫
�R

κ

2
|φ|2 ds,

is the energy and∫
�

N∑
i=1

Diρi |∇ (logρi + qiφ)|2 dx ≥ 0,

is the rate of dissipation. The physical relevance of the no-flux boundary conditions on the charge carrier concentration and 
the no-voltage boundary conditions on φ stem from the notion that the PNP system is energetically closed; that is, there is 
no direct input or output of energy at the boundary.

In many applications of the PNP system, however, the case of inhomogeneous Dirichlet boundary conditions is critically 
important. For example, simulations of semiconductor devices, protein nano-channels, and electrokinetic devices are de-
signed to observe qualitative behavior of the solution when a nonzero voltage is applied across the device. Therefore, it is 
important that the stability of such systems is established. Assume that the Dirichlet boundary condition does not depend 
on time and define φD to be the function that satisfies

−∇ · (ε∇φD) = 0 in �, φD = δV on �D

ε∇φD · �n + κφD = 0 on �R , ∇φD · �n = 0 on �N .

Then, the corresponding energy law is given by

d

dt

⎧⎪⎨⎪⎩
∫
�

N∑
i=1

ρi(logρi − 1) + ε

2
|∇φ|2 +

N∑
i=1

qiρiφD dx +
∫
�R

κ

2
|φ|2 ds

⎫⎪⎬⎪⎭= −
∫
�

N∑
i=1

Diρi |∇ (logρi + qiφ)|2 dx, (7)

where the energy is bounded below by the conservation of mass (6) and a maximum principle for φD :∫
�

N∑
i=1

qiρi(t)φD dx ≥ − max
x∈�D

|δV (x)|
N∑

i=1

|qi|
∫
�

ρi,0(x)dx.

Aside from the additional term arising from inhomogeneous boundary conditions, the energy associated with this system 
takes an unusual form compared to those typically encountered in finite element analysis due to the presence of the 
logarithm. Even so, these identities establish the stability of the system and prescribe the rate of energy dissipation. To 
define the solution space of the PNP system, some standard spaces must be defined. For 1 ≤ p < ∞, let Lp(�) = { f : � →
R | [∫

�
| f (x)|p dx]1/p < ∞}, and H1(�) = { f ∈ L2(�) | ∂ f /∂xi ∈ L2(�) for i = 1, . . . , d}. These spaces are equipped with the 

usual norms: for 1 ≤ p < ∞,

‖ f ‖p
Lp(�) =

∫
�

| f (x)|p dx and ‖ f ‖2
1,� =

∫
�

|∇ f (x)|2 + | f (x)|2 dx,

as well as the standard ‖ f ‖L∞(�) = ess supx∈�| f (x)|. Due to the frequency in which the L2(�) and H1(�) norms occur, 
they are denoted in shorthand by ‖ f ‖0 = ‖ f ‖L2(�) and ‖ f ‖1 = ‖ f ‖1,� .

The proposed change of variables is motivated by the energy law (7), which specifies the regularity of the solution: take

φ ∈ H1
�D

≡
{

v ∈ H1(�)

∣∣∣ v|�D = δV
}

,

and for the charge carrier concentrations,
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ρi ∈ W̃ ≡
{
ρ : � �→R

∣∣∣ ∫
�

ρ(logρ − 1)dx < ∞ and
∫
�

|∇ logρ|2 dx < ∞
}
,

leading to an implicit positivity condition. A log-transformation of the charge carrier concentrations yields a more familiar 
space,

η = logρ ∈ W ≡ H1(�) ∩L∞(�),

and, furthermore, guarantees positivity, since ρ = eη > 0. As a matter of fact, in [5], it is shown for the PNP equation of two 
charge carriers that sufficiently regular initial data, ηi(0) ∈ L(d+1)/2(�), implies that the solution ηi(t), φ(t) are in W for 
some finite time, 0 < t ≤ T , that depends on the initial data, where it is also assumed that ∂� ∈ C1+δ for some finite δ > 0.

2.4. The log-density formulation and its energy

The standard L2(�) inner-product is used

(u, v) =
∫
�

uv dx,

and inner-products on the boundary are given by

〈u, v〉R =
∫
�R

uv ds,

and 〈u, v〉N is similarly defined on �N ⊆ ∂�.
Using the log-density variables, the PNP equations are written in their weak form: find ηi(t) ∈ W with ηi,t(t) ∈ L2(�)

and φ ∈H1
�D

such that

(ε∇φ,∇ψ) + 〈κφ,ψ〉�R −
N∑

i=1

qi(eηi ,ψ) = 〈C,ψ〉�R + 〈S,ψ〉�N ,

( ∂

∂t
eηi , w

)
+ (

Die
ηi ∇(ηi + qiφ

)
,∇w

)= 0,

for i = 1, . . . , N , all ψ ∈ W0 = {ψ ∈ W | ψ |�D = 0}, w ∈ W , and all times 0 < t ≤ T , where(
eηi(·,0), w

) = (
eηi,0 , w

)
, for all w ∈ W ,

(ε∇φ(·,0),∇ψ) + 〈κφ(·,0),ψ〉�R =
N∑

i=1

qi(eηi,0 ,ψ) + 〈C,ψ〉�R + 〈S,ψ〉�N , for all ψ ∈ W0.

The energy law written in these new variables takes the form

d

dt

⎧⎪⎨⎪⎩
∫
�

N∑
i=1

eηi (ηi − 1) + ε

2
|∇φ|2 +

N∑
i=1

qie
ηi φD dx +

∫
�R

κ

2
|φ|2 ds

⎫⎪⎬⎪⎭= −
∫
�

N∑
i=1

Die
ηi |∇ (ηi + qiφ)|2 dx. (8)

2.5. The discrete formulation

Let Th be a triangulation (d = 2) or tetrahedralization (d = 3) of the domain. For the usual space of continuous piecewise 
linear polynomials,

Wh ≡
{

wh ∈ H1(�)

∣∣∣ wh|τ ∈ P
1 for all τ ∈ Th

}
⊂ H1(�),

and denote the nodal interpolation operator, Ih : H1(�) → Wh . When Dirichlet boundary conditions are imposed on the 
electrostatic potential, define the spaces of continuous piecewise linear finite element functions

Wh,�D ≡
{
ψh ∈ Wh

∣∣∣ψh|�D = Ih(δV )
}

,

Wh,0 ≡
{
ψh ∈ Wh

∣∣∣ψh|�D = 0
}

.

When Robin boundary conditions are imposed, the lumped boundary inner-product,
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〈u, v〉R,h =
∫
�R

Ih(uv)ds,

is needed to preserve monotonicity of the discrete Poisson equation. For the time discretization, define a partition of the 
time domain,

0 = t0 < t1 < · · · < tm = T ,

where 
t j ≡ t j − t j−1.
The finite element solution to the PNP equations is defined using the above finite element spaces and an implicit time 

discretization defined on the time partition: find η( j)
i,h ∈ Wh and φ( j)

h ∈ Wh,�D satisfying

(
ε∇φ

( j)
h ,∇ψh

)
+ 〈

κφ
( j)
h ,ψh

〉
R,h −

N∑
i=1

qi

(
eη

( j)
i,h ,ψh

)
= 〈C,ψh〉R,h + 〈S,ψh〉�N , (9)

1


t j

(
eη

( j)
i,h , wh

)+
(

Die
η

( j)
i,h ∇(η( j)

i,h + qiφ
( j)
h

)
,∇wh

)
= 1


t j

(
eη

( j−1)

i,h , wh
)
, (10)

for i = 1, . . . , N and all ψh ∈ Wh,0, wh ∈ Wh , and j = 1, . . . , m. The initial condition is given by(
eη

(0)

i,h , wh
)= (

eηi,0 , wh
)
, for all wh ∈ Wh, (11)

for i = 1, . . . , N and

(
ε∇φ

(0)

h ,∇ψh
)+ 〈

κφ
(0)

h ,ψh
〉
R,h =

N∑
i=1

qi
(
eηi,0 ,ψh

)
,+〈C,ψh〉R,h + 〈S,ψh〉�N for all ψh ∈ Wh,0. (12)

2.6. A discrete maximum principle

The presence of an inhomogeneous Dirichlet boundary condition imposes additional constraints on the finite element 
mesh in order to maintain a discrete maximum principle for φh . Since the boundary condition is assumed to be independent 
of time, the electrostatic potential can be decomposed into two terms, φh = φh,0 +φh,D , with φh,0 ∈ Wh,0 and φh,D ∈ Wh,�D , 
where φh,D satisfies (9) with the charge densities and the terms on the right set to zero. To ensure that the energy is 
bounded from below, the function φh,D must satisfy some L∞(�) estimate.

To verify the L∞-stability, it is sufficient to show that the finite element mesh yields a monotone operator for the 
Poisson equation (9). Consider an element, τ ∈ Th . The term facet is used below to denote an element edge when d = 2, 
and an element face when d = 3. Let E be an edge (one-dimensional sub-simplex) of τ . The d − 2 dimensional simplex in 
τ that is opposite to the edge, E , is denoted by kτ

E . (In two-dimensions, |kτ
E | = 1.) The angle, θτ

E , is the angle between the 
facets containing edge E . The average value of ε on element τ is denoted by 〈ε〉τ = ∫

τ ε dx/|τ |. In [44], it was shown that 
the off-diagonal entries of the stiffness matrix corresponding to the vertices on edge E are given by,

ωE ≡ 1

d(d − 1)

∑
τ⊃E

〈ε〉τ |kτ
E | cot θτ

E ≥ 0, (13)

where the summation 
∑

τ⊃E is taken over all elements τ ∈ Th containing edge E . In the case where ε is constant, this 
condition simply requires Th to be a Delaunay mesh. Using this identity, a necessary and sufficient condition is given for 
the Poisson matrix to be monotone, implying that it has a nonnegative inverse and, consequently, a discrete maximum 
principle holds.

Lemma 1. On each edge, E ∈ Th, suppose the inequality (13) holds. Then, the finite element approximation, φh,D ∈ Wh,�D defined by

(ε∇φh,D ,∇ψh) + 〈φh,D ,ψh〉R,h = 0 for all ψh ∈ Wh,0,

satisfies a discrete maximum principle

‖φh,D‖L∞(�) ≤ sup
x∈�D

|δV (x)|.

This result comes from [22,44] directly. It is important to mention that any bound

‖φh,D‖L∞(�) ≤ C∞ sup
x∈�D

|δV (x)|,

is sufficient for the energy estimate, such as the bound from [39], which only requires quasi-uniformity of the finite element 
mesh under some additional constraints on the coefficients of the pde. However, the energy estimate below makes explicit 
use of Lemma 1 to shorten the presentation of the result.
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2.7. A discrete energy estimate

For autonomous boundary conditions, δV , S , and C , the stability properties of the finite element solution analogous to 
(6) and (7) are verified. Furthermore, if a maximum principle holds for the finite element solution to the Poisson equation, 
the following result holds.

Theorem 2. Suppose η( j)
i,h ∈ Wh and φ( j)

h ∈ Wh,�D satisfy equations (9)–(12) for j = 1, . . . , m and that (13) is satisfied. Then, the mass 
is conserved for each charge carrier,∫

�

eη
( j)
i,h (x,t) dx =

∫
�

eηi,0(x) dx, for i = 1, . . . , N, j = 1, . . . ,m, (14)

and the energy estimate is satisfied,∫
�

N∑
i=1

eη
(m)

i,h (η
(m)

i,h − 1) + ε

2

∣∣∣∇φ
(m)

h

∣∣∣2 dx + 1

2

∫
�R

Ih
(
κ
(
φ

(m)

h

)2)
ds

+
m∑

j=1


t j

∫
�

N∑
i=1

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx

≤
∫
�

N∑
i=1

eη
(0)

i,h (η
(0)

i,h − 1) + ε

2

∣∣∣∇φ
(0)

h

∣∣∣2 dx + 1

2

∫
�R

Ih
(
κ
(
φ

(0)

h

)2)
ds + C1, (15)

where C1 depends on the number of charge carrying species, their initial masses, the electric permittivity and capacitance coefficients, 
but not on T . In the cases of no Dirichlet boundary conditions or homogeneous Dirichlet boundary conditions on φh, the constant C1
vanishes.

Proof. To prove the conservation of mass for the charged species, choose wh ≡ 1 ∈ Wh in equation (10) to show

1


t j

∫
�

eη
( j)
i,h − eη

( j−1)

i,h dx =
(

eη
( j)
i,h − eη

( j−1)

i,h


t j
,1

)
+
(

Die
η

( j)
i,h ∇(η( j)

i,h + qiφ
( j)
h

)
,∇1

)
= 0,

which yields (14). This argument expectedly fails when Dirichlet boundary conditions are imposed on ηi,h , since 1 /∈ Wh . 
This is not an artifact of the discretization, however, and is similar for the continuous system.

To prove the energy estimate, set wh = η
( j)
i,h + qiφ

( j)
h ∈ Wh , which is a valid choice for the test function since φ( j)

h ∈
Wh,�D ⊆ Wh . This gives(

eη
( j)
i,h − eη

( j−1)

i,h


t j
, η

( j)
i,h

)
+ qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φ

( j)
h

)
= −

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx,

which is summed over i = 1, . . . , N , to get

N∑
i=1

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, η

( j)
i,h

)
+

N∑
i=1

qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φ

( j)
h

)
= −

N∑
i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx. (16)

The first terms on the left are bounded by using the convexity of the function f (ρ) = ρ(logρ − 1) for ρ > 0, which can be 
used to show

(ρ j − ρ j−1) logρ j ≥ ρ j(logρ j − 1) − ρ j−1(logρ j−1 − 1).

This follows from f ′(ρ) = logρ , f ′′(ρ) = 1/ρ > 0, and Taylor expansion. Applying this bound with ρ j = eη
( j)
i,h and ρ j−1 =

eη
( j−1)

i,h , one obtains for each i(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, η

( j)
i,h

)
≥
(
eη

( j)
i,h , η

( j)
i,h − 1

)− (
eη

( j−1)

i,h , η
( j−1)

i,h − 1
)


t j
. (17)

To bound the remaining term on the left side of (16), decompose φ( j)
h = φ

( j)
h,0 +φh,D , where φ( j)

h,0 ∈ Wh,0 and φh,D ∈ Wh,�D

satisfies the steady differential equation subject to the interpolated Dirichlet boundary condition:
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(ε∇φh,D ,∇ψh) + 〈κφh,D ,ψh〉R,h = 0, φh,D |�D = Ih(δV ),

for all ψh ∈ Wh,0. Write

N∑
i=1

qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φ

( j)
h

)
=

N∑
i=1

qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φ

( j)
h,0

)
+

N∑
i=1

qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φh,D

)
(18)

and bound the first term on the right by subtracting consecutive time-steps of (9) and taking ψh = φ
( j)
h,0 ∈ Wh,0,

N∑
i=1

qi

(
eη

( j)
i,h − eη

( j−1)

i,h


t j
, φ

( j)
h,0

)
=
⎛⎝ε

∇φ
( j)
h,0 − ∇φ

( j−1)

h,0


t j
,∇φ

( j)
h,0

⎞⎠+
〈
κ

φ
( j)
h,0 − φ

( j−1)

h,0


t j
, φ

( j)
h,0

〉
R,h

=
(
ε

∇φ
( j)
h − ∇φ

( j−1)

h


t j
,∇φ

( j)
h

)
+
〈
κ

φ
( j)
h − φ

( j−1)

h


t j
, φ

( j)
h

〉
R,h

≥
(
ε∇φ

( j)
h ,∇φ

( j)
h

)− (
ε∇φ

( j−1)

h ,∇φ
( j−1)

h

)
2
t j

+
〈
κφ

( j)
h , φ

( j)
h

〉
R,h − 〈

κφ
( j−1)

h , φ
( j−1)

h

〉
R,h

2
t j
, (19)

where the second equality follows from adding and subtracting the term


t−1
i

[
(ε∇φh,D ,∇φ

( j)
h,0) + 〈κφh,D , φ

( j)
h,0〉R,h

]= 0.

Combining (16)–(19) gives the bound[
E( j)

h +∑N
i=1 qi

(
eη

( j)
i,h , φh,D

)]−
[
E( j−1)

h +∑N
i=1 qi

(
eη

( j−1)

i,h , φh,D
)]


t j
≤ −

N∑
i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx, (20)

where E (k)

h denotes the discrete energy functional,

E(k)

h ≡
∫
�

N∑
i=1

eη
(k)

i,h (η
(k)

i,h − 1) + ε

2

∣∣∇φ
(k)

h

∣∣2 dx + 1

2

∫
�R

Ih
(
κ
(
φ

(k)

h

)2)
ds.

The left side of (20) yields a telescoping sum; a summation over j leads to[
E(m)

h +
N∑

i=1

qi
(
eη

(m)

i,h , φh,D
)]+

m∑
j=1


t j

N∑
i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx ≤ E(0)

h +
N∑

i=1

qi
(
eη

(0)

i,h , φh,D
)
.

To complete the proof, the conservation of mass bounds

N∑
i=1

qi
(
eη

(0)

i,h − eη
(m)

i,h , φh,D
)≤ 2

N∑
i=1

∥∥qie
η

(0)

i,h
∥∥
L1(�)

‖φh,D‖L∞(�) ≤ 2N
(

max
1≤i≤N

∥∥qie
η

(0)

i,h
∥∥
L1(�)

)
‖φh,D‖L∞(�), (21)

where 
∥∥qie

η
(0)
i,h
∥∥
L1(�)

is directly proportional to the charge carrier’s mass, determined by the initial condition. The estimate,

‖φh,D‖L∞(�) ≤ max
x∈�D

|Ih(δV )|,
follows from Lemma 1. In the case where δV ≡ 0 or �D = ∅, it is clear that φh,D ≡ 0 so that this term vanishes altogether. 
As a final note, since the Dirichlet boundary term fits in with the telescoping terms in (20), it is not proportional to the 
length of the time domain. �

To conclude this section, one important remark is in order. The inequality in this energy estimate is a consequence of 
only two aspects of the discretization; first, the time discretization satisfies (17) and (19) only with an inequality, whereas 
the semi-discrete solution (continuous in time) satisfies these bounds with equality. The only other inequality in the proof 
of Theorem 2 is used to bound inhomogeneous Dirichlet boundary conditions. As a matter of fact, in the semi-discrete case 
with homogeneous Dirichlet boundary conditions (or no Dirichlet boundary conditions), the finite element solution satisfies 
the energy estimate with equality.
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3. Electrokinetics

Electrokinetic systems combine effects of electrostatic systems coupled with incompressible fluid flow. The model equa-
tions studied here couple the PNP equations with the incompressible Navier–Stokes (NS) equations. This system of equations 
models electrokinetic phenomena such as electroosmosis, electrophoresis, streaming potentials, electrowetting, and many 
other phenomena where charged particles and a charged fluid interact [11,21,24,40]. Some analysis for this system in the 
continuous case is carried out in [36]. The equations governing the electrokinetic system seek a solution comprised of the 
charge carrier log-densities, η1, . . . , ηN , the electrostatic potential, φ, the fluidic velocity, �u, and the fluidic pressure, p, that 
satisfy the equations

−∇ · (ε∇φ) =
N∑

i=1

qie
ηi , (22)

∂

∂t
eηi = ∇ · (Die

ηi ∇(ηi + qiφ) − eηi �u), i = 1, . . . , N, (23)

ρ f
(�ut + (�u · ∇)�u)+ ∇p = ∇ · (2με(�u)

)−
N∑

i=1

qie
ηi ∇φ, (24)

∇ · �u = 0, (25)

on � × (0, T ], where ε(·) denotes the symmetrized vector gradient,

ε(�u) = 1

2

(∇�u + (∇�u)T ).
The initial conditions for this system are given for x ∈ �,

ηi(x,0) = ηi,0(x), −∇ · (ε∇φ(x,0)) =
N∑

i=1

qie
ηi,0(x), �u(x,0) = �u0(x),

where ∇ · �u0 = 0 in � and p(·, 0) is the pressure corresponding to the initial fluid velocity field. Equations (22) and (23)
come directly from the PNP model, where an additional coupling term in (23) models a kinetic force from the fluid flow 
described by the NS equations.

Equations (24) and (25) are the usual NS equations for an incompressible fluid. In (24), the coefficient ρ f denotes 
the fluid density, assumed to be constant, and μ denotes the fluid viscosity. The term, 

∑N
i=1 qieηi ∇φ, in (24) models the 

electrostatic body force acting on the fluid.

3.1. Boundary conditions

The boundary conditions considered for the PNP variables remain the same as the previous section (4)–(5). The NS 
boundary conditions are assumed to be some combination of no-flux and no-slip boundary conditions. Again, this corre-
sponds to an energetically closed system. Take �no-flux ⊆ ∂� and �no-slip = ∂� \�no-flux. Then, for �n the outward unit normal 
vector and �t any unit tangent vector to ∂�, the fluid velocity must satisfy

�u · �n = 0, on �no-flux,(
με(�u)�n) · �t = 0, on �no-flux,

�u = �0, on �no-slip.

Due to the incompressibility condition on the fluid velocity (25), the solution satisfies ε(�u) = ∇�u, which is commonly 
used to represent the viscosity term in the continuity equation (24). This identity does not hold, however, for general 
�v ∈ [H1(�)]d , so one must take care when writing the PNP–NS system in weak form; namely, for �v · �n = 0 on ∂�, the 
divergence theorem gives

−(∇ · (2με(�u)
)
, �v)= (

2με(�u), ε(�v)
)
.

In the special case when �u, �v ≡ �0 on ∂�, the right side reduces to 
(
μ∇�u, ∇�v).

3.2. Energy of the electrokinetic system

The corresponding energy law for this system is given by
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d

dt

⎧⎪⎨⎪⎩
∫
�

ρ f

2
|�u|2 +

N∑
i=1

ρi(logρi − 1) + ε

2
|∇φ|2 +

N∑
i=1

qiρiφD dx +
∫
�R

κ

2
|φ|2 ds

⎫⎪⎬⎪⎭
= −

∫
�

μ

2
|ε(�u)|2 +

N∑
i=1

Diρi |∇ (logρi + qiφ)|2 dx. (26)

The terms in the energy law relating to the NS variables are critically hinged on specific mathematical structures of the 
NS system. In particular, the divergence-free property of the fluidic velocity plays a significant role in the cancellation
of the cross-terms between the PNP and NS systems. As a result, the discrete solution should satisfy the divergence-free 
property on every subdomain of �. This can be accomplished in several ways, using higher order elements or discontinuous 
Galerkin (DG) approximations [1,8], for example. In many practical applications, solutions using higher order elements may 
be prohibitively expensive to compute; the discussion below primarily considers DG approximations for the NS variables.

3.3. Weak formulation for the NS system

To define the weak solution to the NS equations, define

Q ≡ L2(�),

V ≡ {�v ∈ [H1(�)]d | �v · �n = 0 on �no-flux, �u = �0 on �no-slip},
HD,0(div;�) ≡ {�v ∈ [L2(�)]d |∇ · �v ∈ L2(�), �v · �n = 0 on �no-flux,

�u = �0 on �no-slip}.
The discussion of the weak formulation of the NS equations requires no special treatment for the PNP variables; it is 
convenient to replace the electrostatic body force by some generic function, �f ∈ [L2(�)]d . The weak solution of the NS 
equations is (�u, p) ∈ V × Q satisfying

Dt(�u; �u, �v) + A(�u, �v) + B(�v, p) = (�f , �v), for all �v ∈ V , (27)

B(�u,q) = 0, for all q ∈ Q , (28)

where

Dt( �w; �u, �v) ≡ ρ f (�ut, �v) + ρ f
(
( �w · ∇)�u, �v),

A(�u, �v) ≡ (
2με(�u), ε(�v)

)
,

B(�u,q) ≡ −(∇ · �u,q).

The well-posedness of the weak formulation can be demonstrated following [12], where a Korn inequality must be 
established. The following estimate is a statement of the Korn inequality and is exactly Lemma 2.1 in [1].

Lemma 3. Let � ⊂ R
d, d = 2, 3 be a polygonal or polyhedral domain. Then, there exists a positive constant C K (depending on the 

domain through its diameter and shape) such that

|�v|1 ≤ C K ‖ε(�v)‖0, for all �v ∈ V . (29)

3.4. Some div-conforming, discontinuous finite element pairs

Recall that Th denotes the finite element mesh on � and let Fh denote the set of interior element facets. The broken L2
and H1 inner-products and norms are defined in the usual way

(p,q)Th ≡
∑
τ∈Th

(p,q)τ , ‖q‖0,Th ≡ (q,q)
1/2
Th

, and |s|1,Th ≡ (∇s,∇s)1/2
Th

,

for p, q ∈L2(�) and s ∈H1(Th) ≡ {s ∈L2(�) | s|τ ∈H1(τ ) for all τ ∈ Th}.
Let w ∈ H1(Th), �v ∈ [H1(Th)]d , σ ∈ [H1(Th)]d×d denote a scalar, vector, and rank-two tensor field, respectively. These 

fields are H1-regular within each element, though inter-element continuity is not assumed. Fix e ∈ Fh , where e = τ+ ∩ τ− . 
Denote the outward unit normal vectors of τ+ and τ− by �n+ and �n− , respectively; the averages across e on internal facets 
are defined by

{w} ≡ 1

2
(w+ + w−), {�v} ≡ 1

2
(�v+ + �v−), and {σ } ≡ 1

2
(σ+ + σ−),

and given by their traces on the boundary facets; the jumps across internal facets are given by
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� w � ≡ w+�n+ + w−�n−, [�v] ≡ �v+ · �n+ + �v− · �n−,

��v � ≡ �v+ ⊗ �n+ + �v− ⊗ �n−, [σ ] ≡ σ+�n+ + σ−�n−,

and � w � = w�n, [�v] = �v · �n, ��v � = �v ⊗ �n, and [σ ] = σ �n on boundary facets. The subscripts on the functions are equipped 
with their natural meanings of restriction to the element τ+ or τ− . An inner-product on the inter-element facets is defined,

〈w, v〉Fh ≡
∑

e∈Fh

∫
e

w(s)v(s)ds.

To motivate the bilinear form of the DG approach, assume �u, �v ∈H2(Th) ∩ V . Then,

−
∫
�

∇ · (2μ∇ε(�u)
) · �v dx =

∑
τ∈Th

∫
τ

2με(�u) : ε(�v)dx −
∑
τ∈Th

∫
∂τ

2μ
(
ε(�u)�nτ

) · �v ds

= (
2με(�u), ε(�v)

)
Th

− 〈
2μ��u�, {ε(�v)}〉Fh

− 〈
2μ{ε(�u)}, ��v �〉Fh

.

It is straightforward to check that the solution of (27)–(28) also solves the variational problem with A(·, ·) replaced by the 
above expression.

To preserve the local divergence-free property of the fluid velocity, nonconforming finite elements are useful for assigning 
degrees of freedom aimed at preserving this property instead of conforming to the continuous spaces. The finite element 
spaces are defined for the pressure, Q h ⊂ Q , and for the fluid velocity, Vh ⊂ [H1(Th)]d ∩ HD,0(div), where Vh �⊂ V , in 
general. While it is not necessary that Vh conforms to V , several constraints are imposed on the finite element pair Vh × Q h
to ensure the well-posedness of the discrete problem and the divergence-free property of the discrete fluid velocity. First, it 
is required that the finite element pair is div-conforming, meaning

∇ · Vh ⊆ Q h, (30)

and, second, that there exists for each qh ∈ Q h a corresponding �vh ∈ Vh such that

∇ · �vh = qh and ‖�vh‖0 ≤ cP ‖qh‖0, (31)

where cP > 0 is a Poincaré constant that depends on � in general, but not on qh . Requirements (30) and (31) together 
imply that ∇ · Vh = Q h . The final requirement for well-posedness is the existence of an interpolation operator, �h : V → Vh , 
that satisfies the following estimates on each element, τ ∈ Th:

|�h �v|1,τ ≤ C�|�v|1,τ and ‖(I − �h)�v‖0,τ ≤ C ′
�hs

τ |�v|1,τ , (32)

with hτ = diam(τ ) and 1 ≤ s ≤ k + 1, where k is the polynomial degree of the div-conforming element.
Some well-studied finite element pairs satisfying (30)–(32) are the Raviart–Thomas elements, Brezzi–Douglas–Marini el-

ements, and the Brezzi–Douglas–Fortin–Marini elements, all of degree k ≥ 1. Furthermore, as all of these elements are 
div-conforming, they have continuous normal components across inter-element facets, which, loosely speaking, “reduces” 
the discontinuity of the finite element space, requiring simpler penalty functions in the discontinuous formulation. This 
additional continuity also plays a role in the energy estimate of the PNP–NS system and is commented upon in the proof of 
Theorem 4.

3.5. A discrete formulation

The discrete formulation of the NS equations is given by: find (�u( j)
h , p( j)

h ) ∈ Vh × Q h such that

Dh,t
(�u( j)

h ; �u( j)
h , �vh

)+ Ah
(�u( j)

h , �vh
)+ Bh

(�vh, p( j)
h

)= ρ f


t j

(�u( j−1)

h , �vh
)+ (�f (t j), �vh

)
, (33)

Bh
(�u( j)

h ,qh
)= 0, (34)

for all �vh ∈ Vh , qh ∈ Q h , and j = 1, . . . , m, where the initial condition for the fluid velocity is computed by projection, 
�u(0)

h = �h �u0.
The forms used to define the discrete solution are given by

Dh,t
( �wh; �uh, �vh

)≡ ρ f


t j
(�uh, �vh) − ρ f

(
( �wh · ∇)�vh, �uh

)+ ρ f

∑
τ∈Th

∫
∂τ

( �wh · �nτ )(�uw
h · �vh)ds,

Ah(�uh, �vh) ≡ (
2με(�uh), ε(�vh)

)
Th

− 〈2μ{ε(�uh)}, ��vh �〉Fh − 〈2μ��uh �, {ε(�vh)}〉Fh

+ α
∑

e∈Fh

h−1
e

∫
e

μ��uh � : ��vh � ds,

Bh(�uh,qh) ≡ −(∇ · �uh,qh)T .
h
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These forms are quite standard in the DG literature, though some terms and important properties remain to be specified in 
the following.

The discrete kinematic derivative term, Dh,t : Vh × Vh × Vh →R, is defined using the upwind flux, �uw
h , given by

�uw
h = lim

δ→0+
�uh
(
x − δ �wh(x)

)
.

This definition yields coercivity, summarized by the standard identity [8]: for uh, wh ∈ Vh with ∇ · �wh = 0 in �,

Dh,t(wh; �uh, �uh) = ρ f

2

∑
e∈Fh

∫
e

| �wh · �n|∣∣��uh �∣∣2 ds, (35)

where �n denotes either unit normal vector to the facet, e.
The bilinear forms, Ah and Bh , are a standard description for a DG discretization of Stokes’ equations and are motivated 

by the definition of the weak derivative followed by applying the divergence theorem element-wise. The parameter, α > 0, 
penalizes discontinuities of the solution across element interfaces and must be chosen to be sufficiently large to ensure the 
existence and uniqueness of the finite element solution.

Since the finite element space, Vh , is div-conforming (30), equation (34) implies that ∇ · �uh = 0 on each element, τ ∈ Th . 
Another useful property inherited from (30) is that all �vh ∈ Vh have continuous normal components across element facets; 
namely, letting �n and �t denote the normal and tangent unit vectors, respectively, on each facet, e ∈ Fh , gives

�vh(x) = (�vh · �n)�n + (�vh · �t )�t = �v n
h (x) + �v t

h(x),

and ��v n
h � = 0. As a result, it holds that∫
e

��vh � : σ ds =
∫
e

��v t
h � : σ ds for any σ ∈ [H1(�)]d×d.

Using this result, the coercivity of the kinematic derivative term, Dh,t , reduces to

Dh,t
( �wh; �uh, �uh

)= ρ f

2

∑
e∈Fh

∫
e

| �wh · �n|∣∣��u t
h �∣∣2 ds

and, for Ah ,

Ah(�uh, �vh) ≡ (
2με(�uh), ε(�vh)

)
Th

− 〈2μ{ε(�uh)}, ��v t
h �〉Fh − 〈2μ��u t

h �, {ε(�vh)}〉Fh + α
∑

e∈Fh

h−1
e

∫
e

μ��u t
h � : ��v t

h � ds,

where only the tangent components along the element facets are penalized, and Bh becomes

Bh(�vh,qh) = −(∇ · �vh,qh) for all �vh ∈ Vh and qh ∈ Q h.

The energy norm for the discontinuous fluid velocity is defined by

‖�v‖2
DG = |�v|21,Th

+ |�v|2∗, where |�v|2∗ ≡
∑

e∈Fh

h−1
e ‖��v t �‖2

0,e.

For any of the three finite element examples mentioned above, one can establish the ‖ · ‖DG -stability of the bilinear form, 
Ah , meaning that there exists a positive constant, γ , such that

Ah(�vh, �vh) ≥ γ ‖�vh‖2
DG , for all �vh ∈ Vh (see [1]). (36)

The stability constant, γ , depends on μ, �, the penalty parameter, α, and the choice of div-conforming finite element 
(through the interpolation bounds in (32)). This stability, together with an argument using fixed point iteration [8], is used 
to verify the existence of a discrete solution for the NS equations using this DG scheme.

3.6. The discrete electrokinetic system

Employing the discretization of the PNP system given in the previous section and the discretization of the NS system 
above, the discrete solution to the electrokinetic system is defined by the finite element functions η( j)

1,h, . . . , η( j)
N,h ∈ Wh , 

φ
( j)
h ∈ Wh,�D , and (�u( j)

h , p( j)
h ) ∈ Vh × Q h satisfying

(ε∇φ
( j)
h ,∇ψh) + 〈κφ

( j)
h ,ψh〉R,h =

N∑
qi
(
eη

( j)
i,h ,ψh

)+ 〈C ( j),ψh〉R,h + 〈S( j),ψh〉�N , (37)

i=1
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1


t j

(
eη

( j)
i,h , wh

)+
(

Die
η

( j)
i,h ∇(η( j)

i,h + qiφ
( j)
h

)
,∇wh

)
= 1


t j

(
eη

( j−1)

i,h , wh
)+

(
eη

( j)
i,h �u( j)

h ,∇wh

)
, (38)

Dh,t
(�u( j)

h ; �u( j)
h , �vh

)+ Ah
(�u( j)

h , �vh
)+ Bh

(�vh, p( j)
h

)= ρ f


t j

(�u( j−1)

h , �vh
)−

N∑
i=1

qi
(
eη

( j)
i,h ∇φ

( j)
h , �vh

)
, (39)

Bh
(�u( j)

h ,qh
)= 0, (40)

for all wh ∈ Wh, ψh ∈ Wh,0, �vh ∈ Vh, qh ∈ Q h , and j = 1, . . . , m. Initial conditions are prescribed by(
eη

(0)

i,h , wh
)= (

eηi,0 , wh
)
, for all wh ∈ Wh, (41)(

ε∇φ
(0)

h ,∇ψh
)+ 〈

κφ
(0)

h ,ψh
〉
R,h =

N∑
i=1

qi
(
eηi,0 ,ψh

)
,+〈C,ψh〉R,h + 〈S,ψh〉�N for all ψh ∈ Wh,0, (42)

�u(0)

h = �h �u0. (43)

The stability of the discrete solution of the electrokinetic system is established in the following theorem.

Theorem 4. Suppose η( j)
i,h ∈ Wh, φ( j)

h ∈ Wh,�D , �u( j)
h ∈ Vh, p( j)

h satisfy equations (37)–(43), where Vh × Q h satisfies (30)–(32). Fur-
thermore, suppose the mesh satisfies the hypothesis of Lemma 1. Then, the mass is conserved for each charge carrier,∫

�

eη
( j)
i,h (x,t) dx =

∫
�

eηi,0(x) dx, for i = 1, . . . , N, j = 1, . . . ,m,

and the energy estimate is satisfied,∫
�

ρ f

2

∣∣�u(m)

h

∣∣2 +
N∑

i=1

eη
(m)

i,h (η
(m)

i,h − 1) + ε

2

∣∣∣∇φ
(m)

h

∣∣∣2 dx + 1

2

∫
�R

Ih
(
κ
(
φ

(m)

h

)2)
ds

+
m∑

j=1


t j

⎡⎣γ
∥∥�u( j)

h

∥∥2
DG +

∫
�

N∑
i=1

Die
η

( j)
i,h
∣∣∇(η( j)

i,h + qiφ
( j)
h

)∣∣2 dx

⎤⎦
≤
∫
�

ρ f

2

∣∣�u(0)

h

∣∣2 +
N∑

i=1

eη
(0)

i,h (η
(0)

i,h − 1) + ε

2

∣∣∇φ
(0)

h

∣∣2 dx + 1

2

∫
�R

Ih
(
κ
(
φ

(0)

h

)2)
ds + C1, (44)

where C1 depends on the number of charge carrying species, their initial masses, the electric permittivity and capacitance coefficients, 
but not on T . In the cases of no Dirichlet boundary conditions or homogeneous Dirichlet boundary conditions on φh, the constant C1
vanishes.

Proof. The proof of Theorem 4 closely follows that of Theorem 2, in addition to (36) for the NS variables. The only remaining 
terms are the cross terms between the PNP and NS systems, which cancel due to the strong divergence-free property of �u( j)

h
and the continuity of the normal components across inter-element facets.

The conservation of mass follows from choosing wh ≡ 1 ∈ Wh in equation (38), as in Theorem 2. For an analogue of (20), 
follow the argument in the proof of Theorem 2 exactly to see[

E( j)
h +∑N

i=1 qi
(
eη

( j)
i,h , φh,D

)]−
[
E( j−1)

h +∑N
i=1 qi

(
eη

( j−1)

i,h , φh,D
)]


t j

≤ −
N∑

i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx +
N∑

i=1

(
eη

( j)
i,h �u( j)

h ,∇(η( j)
i,h + qiφ

( j)
h

))

= −
N∑

i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx +
N∑

i=1

[(
�u( j)

h ,∇eη
( j)
i,h

)
+ qi

(
eη

( j)
i,h ∇φ

( j)
h , �u( j)

h

)]
, (45)

where the discrete energy is recalled as

E(k)

h =
∫ N∑

i=1

eη
(k)

i,h (η
(k)

i,h − 1) + ε

2

∣∣∇φ
(k)

h

∣∣2 dx + 1

2

∫
Ih
(
κ
(
φ

(k)

h

)2)
ds.
� �R
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Since �u( j)
h is strongly divergence free, has a continuous normal component across inter-element facets, and each η( j)

i,h is 
continuous,

N∑
i=1

(
�u( j)

h ,∇eη
( j)
i,h

)
= −

(
∇ · �u( j)

h ,

N∑
i=1

eη
( j)
i,h

)
Th

+
∑
τ∈Th

∫
∂τ

(�u( j)
h · �nτ )

N∑
i=1

eη
( j)
i,h ds = 0, (46)

where the boundary conditions on �u( j)
h nullify all boundary terms.

Let ζ ( j)
h =∑N

i=1 qie
η

( j)
i,h ∈H1(�) denote the total charge density. Combining (45) and (46) provides the bound[

E( j)
h + (

ζ
( j)
h , φh,D

)]−
[
E( j−1)

h + (
ζ

( j−1)

h , φh,D
)]


t j

≤ −
N∑

i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx +
(
ζ

( j)
h ∇φ

( j)
h , �u( j)

h

)
. (47)

For the NS terms, it follows from (35) that

Dt,h
(�u( j)

h ; �u( j)
h , �u( j)

h ) − ρ f


t j

(�u( j−1)

h , �u( j)
h

)= ρ f


t j

(�u( j)
h − �u( j−1)

h , �u( j)
h

)
+ ρ f

2

∑
e∈Fh

∫
e

|�u( j)
h · �n|∣∣�(�u( j)

h

)�∣∣2 ds

≥ ρ f

2
t j

(∥∥�u( j)
h

∥∥2
0 − ∥∥�u( j−1)

h

∥∥2
0

)
, (48)

and, choosing qh = p( j)
h in (40),

Bh
(�u( j)

h , p( j)
h

)= 0. (49)

Setting �vh = �u( j)
h in (39) and employing the bounds (36), (48)–(49) gives

ρ f

2
t j

(∥∥�u( j)
h

∥∥2
0 − ∥∥�u( j−1)

h

∥∥2
0

)
+ γ

∥∥�u( j)
h

∥∥2
DG ≤ −

(
ζ

( j)
h ∇φ

( j)
h , �u( j)

h

)
. (50)

Adding (47) and (50) gives[
ρ f
2 ‖�u( j)

h ‖2
0 + E( j)

h + (
ζ

( j)
h , φh,D

)]−
[

ρ f
2 ‖�u( j−1)

h ‖2
0 + E( j−1)

h + (
ζ

( j−1)

h , φh,D
)]


t j

≤ −γ
∥∥�u( j)

h

∥∥2
DG −

N∑
i=1

∫
�

Die
η

( j)
i,h

∣∣∣∇ (
η

( j)
i,h + qiφ

( j)
h

)∣∣∣2 dx. (51)

Summing over j, the bound (21), and Lemma 1 gives the desired energy estimate. �
4. Numerical experiments

This section presents some numerical experiments that verify the viability, efficiency, and accuracy of computed solutions 
defined by the proposed discretization in the sections above. According to the discretizations in Sections 2–3, a system of 
nonlinear elliptic equations must be solved at each time step. Recall that two commonly used techniques for resolving 
the nonlinear behavior are fixed point iteration (often referred to as Gummel iteration in the semiconductor literature) 
and Newton methods. Fixed point iteration is a very important tool in analysis, as convergence can be verified for more 
general problems; however, as a practical matter, it is often difficult to establish the rate of convergence to the nonlinear 
solution for this approach, motivating a quasi-Newton method for the experiments presented below. In these experiments, 
the computed Newton iterates approach the nonlinear finite element solution at a super-linear (nearly quadratic) rate. Due 
to the numerous computational difficulties present in solving the PNP equations, a significant amount of detail should be 
given to describe the nonlinear solver, the linearization procedure, upwinding schemes to preserve numerical stability of 
the linearized equations, and describing the linear solver for the arising linear algebraic systems. This lengthy discussion of 
the numerical solver is deferred to an upcoming publication [16], so that only the necessary and most basic aspects of the 
numerical solver are described here. The emphasis of these numerical results is that numerical schemes, when appropriately 
defined, compute approximate solutions to the PNP system that satisfy the energy estimates described above.
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Table 1
The count of Newton iterates to decrease the initial residual by a factor of 10−10 and the H1 semi-norm of the error of the computed solution once 
convergence is established.

ε 20 × 10 × 10 40 × 20 × 20 60 × 30 × 30 80 × 40 × 40

1 7 2.65 × 10−3 6 6.67 × 10−4 6 2.97 × 10−4 6 1.67 × 10−4

10−2 6 3.81 × 10−3 6 9.80 × 10−4 5 4.38 × 10−4 5 2.47 × 10−4

10−4 5 7.03 × 10−3 5 2.37 × 10−3 5 1.20 × 10−3 5 7.18 × 10−4

10−8 5 7.25 × 10−3 9 2.61 × 10−3 9 1.43 × 10−3 9 9.34 × 10−4

It is important to mention that the linearized equations resulting from a Newton-type approach lead to systems of 
linearized pdes that are potentially convection-dominated. This leads to potential algorithmic difficulties in preserving sta-
bility for the computed solution; so, some form of upwinding must be implemented to ensure accuracy. The well-studied 
edge-averaged finite element (EAFE) method is proven to provide stable numerical solutions that do not display spurious 
oscillatory behavior [23,44]. A point of emphasis here is that the nonlinear solution is stable, as verified by the energy 
estimates above, though the sequence of Newton iterates, defined by solving a sequence of linearized equations, is not 
necessarily stable.

A solver was implemented in C++ that leverages some existing functionality of the FEniCS 1.3.0 [25] software package for 
generating systems of linear algebraic equations corresponding to an elliptic pde. Here, the elliptic pdes are the linearized 
pdes coming from Newton’s method, with an EAFE approximation to improve numerical stability. Once the systems of al-
gebraic equations are constructed, the Fast Auxilary Space Preconditioners (FASP) software package [7] is used to efficiently 
solve the resulting systems. The linear solvers in this software package use iterative techniques to efficiently provide approx-
imate solutions, where convergence is defined by reducing the relative residual by a factor of 10−4 in all experiments. This 
tolerance is somewhat relaxed since each iterate solves an approximation of the Jacobian matrix, as this is a quasi-Newton 
scheme.

The first experiment presented here is designed to establish the convergence for the PNP solver at steady state; this 
solver is then used in a second numerical experiment to verify the discrete energy law (20) for the finite element for-
mulation of the PNP system. Since the discrete solution is defined using a method-of-lines approach, this experiment also 
establishes the convergence rate of the computed solution to the true solution of the nonlinear elliptic equation at each 
time step. Several PNP systems are solved, where the permittivity coefficient, ε , is tested for decreasing values. Testing the 
solver for small values of ε is important for many practical problems concerning semiconductors and biological applica-
tions, where this coefficient may be on the order of 10−4 to 10−8 after the system has been non-dimensionalized. For this 
experiment, the equation

−∇ · (ε∇φ) = eη1 − eη2 + f0,

∂

∂t
eη1 = ∇ · (eη1∇(η1 + ∇φ)

)+ f1,

∂

∂t
eη2 = ∇ · (eη2∇(η2 − ∇φ)

)+ f2,

is solved on the domain � = [−1, 1] × [− 1
2 , 12 ] × [− 1

2 , 12 ], where f0, f1, f2 are chosen so that the solution, for x =
(x1, x2, x3) ∈ �, is

η1(x) = log 10

2
(x1 − 1), η2(x) = − log 10

2
(x1 + 1), and φ(x) = −2 sinh(x1)

e − e−1
.

As this experiment is designed to test the numerical convergence to the nonlinear solution at steady state, Dirichlet 
boundary conditions are imposed at the ends of the domain to be consistent with the analytic expressions above, where 
(η1, η2, φ) = (− log 10, 0, 1) when x1 = −1 and (η1, η2, φ) = (0, − log 10, −1) when x1 = 1. The iteration count for conver-
gence to the nonlinear solutions (determined by reducing the relative residual by a factor of 10−10) are reported in Table 1, 
along with the H1 semi-norm of the error, given by

H1 semi-norm =
(
|eη1 − eη1,h |21 + |eη2 − eη2,h |21 + |φ − φh|21

)1/2
.

It is clear that the Newton iterates converge in a reasonable number of iterations (fewer than 10 in all cases), which is 
encouraging for small values of ε . Additionally, the convergence rate of the Newton iterates to the finite element solution is 
observed to be nearly quadratic, and the convergence of the finite element solution to the analytic solution is observed to 
be linear for all values of ε in Fig. 1 with respect to the mesh size.

Note that the analytic solution in this experiment is independent of the permittivity, ε , so that no boundary layers 
develop as ε decreases. This is due to the fact that the source terms, f0, f1, f2, depend on ε to ensure the solution does 
not change. It is noted, however, that the stability results presented above are independent of the mesh resolution (but 
not shape regularity), so that the energy norm is bounded, which guarantees a bound on |φh |1 as long as the differential 
equation is solved to sufficient accuracy. This bound implies that φ is only permitted to oscillate up to some bounding 
quantity determined by the initial data and coefficients of the differential equation.
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Fig. 1. The logarithm of the error measured in the H1 semi-norm, plotted against the logarithm of the element diameter. The lines depict the log of the 
error for various values of ε , where the thick line is a reference for linear convergence.

A second experiment validates that the energy estimate is satisfied. While this property is certainly true for the theo-
retical finite element solution satisfying (9)–(10), it is important to verify that the numerical solution, computed by inexact 
iterative methods, preserves this property. For this experiment, the spatial domain is � = [−1, 1] × [− 1

10 , 1
10 ] × [− 1

10 , 1
10 ]

and discretized by a 300 ×10 ×10 mesh, and uniform time steps are taken with 
t = 1
3000 . The length of the time domain is 

determined by how well the solution from the previous time step solves the problem at the current time step. In particular, 
once the computed solution from the previous time step satisfies the residual of the current time step within a tolerance of 
10−8, the system is considered to be in equilibrium; this occurs at T = 0.138.

For this problem, the system defined by (1)–(3) is solved, with N = 2, μ1 = μ2 = D1 = D2 = 1, q1 = 1, q2 = −1, and 
ε = 1

100 . No-flux boundary conditions imposed on the Nernst–Planck equations and mixed homogeneous Dirichlet and in-
homogeneous Neumann boundary conditions on the electrostatic potential:

φ = 0, for x1 = ±1,

ε∇φ · �n = 1, for x1 ≤ 0 and x3 = 1

10
, or x1 ≥ 0 and x3 = − 1

10
,

ε∇φ · �n = −1, for x1 ≤ 0 and x3 = − 1

10
, or x1 ≥ 0 and x3 = 1

10
,

ε∇φ · �n = 0, for x2 = ± 1

10
.

These boundary conditions verify that the constant C1 = 0 in Theorem 2 and model surface charges, of alternating charge, 
lining opposite sides of a channel along the x1 direction and electrode contacts at the ends of the channel. The experiment 
demonstrates for each time step that the discrete energy estimate,

δE( j) = E( j)
h − E( j−1)

h


t
≤ −

∫
eη1,h

∣∣∇(η1,h + φh)
∣∣2 + eη2,h

∣∣∇(η2,h − φh)
∣∣2 dx ≡ −
( j),

is satisfied until convergence. To clearly illustrate that the energy estimate is satisfied, Fig. 2 plots the quantity log(−δE( j)) −
log(
( j)) over the time domain, where it is easy to see that this quantity is positive when the energy estimate is satisfied.

Numerical experiments for the electrokinetic system are still in development due to many considerations regarding the 
solver and DG discretization of the Navier–Stokes subsystem. Consequently, they are not included here and will be presented 
in an upcoming publication [16].

5. Summary and concluding remarks

In this paper, the energetic stability is established for the finite element solution to the PNP equations using a logarithmic 
transformation of the charge carrier densities. This energy estimate resembles the physical energy law that governs the PNP 
system in the continuous case, where the logarithmic transformation is an essential component for exactly evaluating the 
functionals describing the energy and rate of energy dissipation. This stability of the nonlinear finite element solution is 
shown to be independent of the time step size and the spatial resolution of the mesh. Furthermore, by imposing some 
additional constraints on the finite element mesh, a weak discrete maximum principle holds for the Poisson equation. This 
leads to an important extension of the energy estimate that covers the case of inhomogeneous boundary conditions imposed 
upon the electrostatic potential, which is highly relevant to many applications of the PNP system.

A second energy estimate is established for the finite element solution to the electrokinetic model that couples the PNP 
system with the incompressible NS equations. In addition to the logarithmic transformation, a key ingredient to establishing 
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Fig. 2. The difference, log(−δE) − log(
), plotted over the time domain until convergence.

the stability for the electrostatic terms is the divergence-free property of the discrete solution to the NS equations, where 
this property can be achieved by using a div-conforming DG discretization of the NS equations. As seen in the proof of 
Theorem 4, the divergence-free property of the discrete fluid velocity naturally leads to the exact cancellation of the coupling 
terms between the PNP and NS equations.

In the previous section, some numerical experiments were carried out to demonstrate two properties of a computed 
solution. The first experiment numerically verified that the quasi-Newton scheme, using EAFE upwinding for the linearized 
equations, yields convergence to the finite element solution of the nonlinear pde in a reasonable number of iterations. 
Secondly, the computed solution using a quasi-Newton scheme is also shown to satisfy the energy law for the PNP system. 
The numerical solver for the PNP equations (with and without coupling to the NS equations) will be described in an 
upcoming publication [16].

While finite element solutions to the PNP and PNP–NS systems are shown to satisfy energy estimates, it is a matter of 
future work to prove an error estimate for these finite element solutions. This is not a matter of standard error analysis 
due to the nonlinearities of these problems, as well as the non-standard definition of the weak form, where the time 
derivative is not expressed in the L2 inner-product. In addition to the error estimate for the finite element solutions, one 
must provide some justification for the well-posedness and convergence of the computed sequence of Newton iterates to 
the finite element solution of the nonlinear pde. These two results, together with the energy estimates proved above, will 
verify that the proposed finite element discretization is indeed convergent.
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