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In order to describe the dynamics of crowded ions (charged particles), we use an 
energetic variational approach to derive a modified Poisson–Nernst–Planck (PNP) 
system which includes an extra dissipation due to the effective velocity differences 
between ion species. Such a system has more complicated nonlinearities than the 
original PNP system but with the same equilibrium states. Using Galerkin’s method 
and Schauder’s fixed-point theorem, we develop a local existence theorem of classical 
solutions for the modified PNP system. Different dynamics (but same equilibrium 
states) between the original and modified PNP systems can be represented by 
numerical simulations using finite element method techniques.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of ion transport is important for the study of biophysics as it is involved in almost all 
biological activities. The transport of charged particles (ions), by nature, is a multiscale problem. The 
competition of thermal fluctuation, in terms of entropy, and molecular (Coulomb) interactions mainly give 
intriguing and significant behaviors of the systems. Choices of the variables, in terms of energetic functionals 
and entropy production (dissipation) functionals, demonstrate specific physical situations or applications in 
consideration. By employing an energetic variational approach (see Section 2.1), we can derive the original 
Poisson–Nernst–Planck (PNP) system (see Section 2.2) which describe dilute ionic liquids [20–22].
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The transport of ions in biological environments are usually in non-ideal situations. Ion channels often 
have characteristic property of very high density distributions of ions that are crowded into tiny spaces 
with huge electric and chemical fields and forces of excluded volume (cf. [6–8]). To describe the dynamics 
of crowded ions, the energy functional and the dissipation functional should be modified. For the energy 
functional, we combined the energy functional of the original PNP system with Lennard-Jones type (LJ) 
potential (similar to those used for molecular dynamic simulations) and derive new PNP-type systems which 
captured certain properties of selectivity of ion channels (cf. [9,12,14,17]).

The dynamical systems for transport of ions involve various types of entropy production. The classical 
PNP equation involves the entropy production, the dissipation, in terms of sum of damping due to individual 
ion species. In this study, we take into consideration of the extra dissipation due to a drag force between 
different species. This extra dissipative effect, due to the drag between ion species, is incorporated into the 
derivation of a modified PNP system. The entropy production of modified PNP mainly contributes to the 
dynamics of the system, while the equilibrium states, which are determined by the free energy, remain the 
same. In other applications of physics, such consideration had been taken into account in the study of ion 
heating in a plasma flow (cf. [5]).

The modified PNP system has more complicated nonlinearities than the original PNP system but with 
the same equilibrium states. Using Galerkin’s method and Schauder’s fixed-point theorem, we develop a local 
existence theorem of classical solutions for the modified PNP system. Furthermore, different dynamics (but 
same equilibrium states) between the original and modified PNP systems can be represented by numerical 
simulations using finite element method techniques.

The rest of this paper is organized as follows: In Section 2, we derive the modified PNP system. The local 
existence of the modified PNP system is proved in Section 3. In Section 4, we provide numerical results of 
the modified PNP system and comparisons to those of the original PNP system.

2. General diffusion for transport of charged particles

In this section, we firstly introduce the energetic variation framework for diffusions and then apply it to 
derive the original PNP system. Such a framework can be employed to the problem of transport of ions in 
non-ideal, non-diluted situations. We derive a modified PNP system that takes into account of additional 
dissipation due to the effect of velocity differences between ion species.

2.1. Energetic variational approaches for diffusion

For an isothermal closed system, the combination of the First Law and the Second Law of Thermody-
namics yields the following energy dissipation law:

d

dt
Etotal = −�, (2.1)

where Etotal is the sum of kinetic energy and total Helmholtz free energy, and � is the entropy production 
(energy dissipation rate in this case). The choice of total energy functional and dissipation functional, 
together with the kinematic (transport) relation of the variables employed in the system, determines all the 
physics and the assumptions for problem.

The energetic variational approach is the precise framework to obtain the force balance equations from the 
general dissipation law (2.1). In particular, the Least Action Principle (LAP) will determine the Hamiltonian 
part of the system and the Maximum Dissipation Principle (MDP) for the dissipative part. Formally, LAP 
states the fact that force multiplies distance is equal to the work, i.e.,

δE = force × δx, (2.2)
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where x is the position, δ is the variation (derivative) in general senses. This procedure will give the 
Hamiltonian part of the system and the conservative forces [1,2]. On the other hand, MDP, by Onsager and 
Rayleigh [18,19,24], yields dissipative forces of the system:

δ
1
2� = force × δẋ. (2.3)

The factor 1/2 in (2.3) is consistent with the choice of quadratic form of the “rates”, which in turn describes 
the linear response theory for long-time near equilibrium dynamics [13,15]. For instance, we consider the 
following inhomogeneous diffusion equation

ft = ∇ ·
(
b(x)∇

(
a(x)f

))
, (2.4)

where a(x) and b(x) are given positive functions depending only on space with certain regularity properties 
(for the sake of demonstration in this paper, we assume them to be smooth functions).

In fact, we can start with the following energy dissipation law with prescribed (Helmholtz) free energy 
and entropy production functionals:

d

dt

∫
f log

(
a(x)f

)
dx = −

∫ 1
a(x)b(x)f |u|

2 dx, (2.5)

where f is a probability distribution function. u is the (effective) velocity of the dynamics, that is, for the 
flow map x(X, t), we have u(x(X, t), t) = xt(X, t) where X is the reference coordinate. Both a(x) and b(x)
are given functions. It is clear that a(x) contributes to the final equilibrium of the system, while b(x), after 
renormalization, states for the dissipation rate.

The transport kinematics of the distribution function f is just the conservation of mass law:

ft + ∇ · (uf) = 0. (2.6)

From the energetic variational approach point of view [9,26], this energy dissipation law includes all the 
physics of the system. Employing the LAP, one takes the variation of the free energy functional (the integral 
on the left hand side) with respect to the flow map x(X, t). At the same time, by MDP, one takes variation 
of the dissipation functional (the integral on the right hand side) with respect to the velocity. The total 
force balance, the summation of the two variations gives,

1
a(x)∇

(
a(x)f

)
= − 1

a(x)b(x)fu. (2.7)

Combining these with the kinematic conservation of law equation of f , we obtain the general inhomogeneous 
diffusion equation (2.4). From the above derivation, we can see that there are two independent ingredients 
in inhomogeneous diffusion. While a(x) enters through free energy, b(x), is more associated with dissipation.

2.2. Poisson–Nernst–Planck (PNP) system

Here we recall PNP system that has been widely used to describe the transport of ionic solutions [20–22]. 
Consider positive and negative ions with charge concentrations, cp, cn, respectively. The dissipative energy 
law of ion dynamics including Brownian motion of charged ions is given as

d

dt

∫ {
kBT (cp ln cp + cn ln cn) + ε

2 |∇φ|2
}
dx

= −
∫

kBT

(
Dpcp

∣∣∣∣∇cp + zpq ∇φ

∣∣∣∣
2

+ Dncn

∣∣∣∣∇cn + znq ∇φ

∣∣∣∣
2)

dx (2.8)

cp kBT cn kBT
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where kB is the Boltzmann constant, T is the absolute temperature, ε is the dielectric constant of the 
medium, φ is the electrostatic potential, Dp, Dn are the diffusion constants and zp, zn are the valences, 
for positive, negative ions, respectively. Then the Nernst–Planck equations for ion dynamics from the dis-
sipative energy law (2.8) can be derived by the energetic variational approach with the following evolution 
equations [25]:

∂cp
∂t

= ∇ ·
(

Dp

kBT
cp∇μp

)
,

∂cn
∂t

= ∇ ·
(

Dn

kBT
cn∇μn

)
(2.9)

where μp, μn are the chemical potentials obtained by the variational derivatives of the total energy, which 
is the left hand side in (2.8) with respect to the charge densities. Explicit forms of the chemical potentials 
are given as μp = kBT (ln cp + 1) + zpqφ and μn = kBT (ln cn + 1) + znqφ.

The full system of equations for the dynamic of ion transport is then given by

∂cp
∂t

= ∇ ·
{
Dp

(
∇cp + zpq

kBT
cp∇φ

)}
, (2.10)

∂cn
∂t

= ∇ ·
{
Dn

(
∇cn + znq

kBT
cn∇φ

)}
, (2.11)

∇ · (ε∇φ) = −zpqcp − znqcn, (2.12)

which is called the original Poisson–Nernst–Planck (PNP) system. Existence and uniqueness theorems for 
such a system [4,10,23] and a generalized PNP system coupled with Navier–Stokes equation [20–22] were 
developed in order to study the dynamics of ion transport, respectively.

The original PNP system can also be viewed as a special form of general diffusion, which takes into 
account of particle–particle interaction through Coulomb forces [26]. To demonstrate this, we start with the 
following system of equations with some vector fields �un, �up.

∂cn
∂t

+ ∇ · (cn�un) = 0, ∂cp
∂t

+ ∇ · (cp�up) = 0 (2.13)

satisfying the following free energy:

A =
∫ {

kBT (cn ln cn + cp ln cp) + 1
2

∫
Gε(x− y)(cn − cp)(x)(cn − cp)(y)dy

}
dx, (2.14)

which corresponds to the total energy in (2.8) in a special case, and has the entropy production �, i.e., 
dissipation,

� =
∫ (

kBT

Dn
cn|�un|2 + kBT

Dp
cp|�up|2

)
dx. (2.15)

The entropy production explains that the system is in a linear response region originated by the free 
energy (2.14).

Then the force balance law between conservative and dissipative forces implies that

cp∇
δA
δcp

= −kBT

Dp
cp�up = −1

2cp
δ�
δ�up

, (2.16)

cn∇
δA = −kBT

cn�un = −1
cn

δ� (2.17)

δcn Dn 2 δ�un
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that is,

Dn

kBT
cn∇

δA
δcn

= −cn�un,
Dp

kBT
cp∇

δA
δcp

= −cp�up. (2.18)

From these derivations and manipulations, it is clear that while the original PNP system resembles to those 
diffusion-drift equations, in fact, the only ingredient is diffusion, although being of nonlocal features. Such 
an observation can be important in designing numerical algorithms as well as analysis.

2.3. Modified PNP system: entropy production

From the above discussions on original PNP systems, one easily see that the PNP system possesses a linear 
response of entropy production, which describe the physical nature of near equilibrium of the whole system. 
While the free energy includes all the information and properties of equilibrium states, the dissipation 
functional, i.e., the entropy production governs the dynamics of the system. Understanding statistical physics 
and nonlinear thermodynamics properties of systems describing interactions between different ion species 
are extremely important in order to obtain a realistic dynamic of ion transport, especially for those with 
crowded ion populations, which is very common in situations like biological ion channels (cf. [6–8]). The 
earlier studies of such nonlinear interactions had mostly focused on the total energy (cf. [9,12,14,17]).

In what follows, we will consider modifying the entropy production rather than the total free energy. It 
is clear such modification would only change the dynamics of the system when approaching the equilibrium 
states, which are the same as those for classical PNP systems.

To take into account of dissipations due to interaction between different species, we will add a drag term 
as kBT

Dn,p
cncp|�un−�up|2 that is due to the relative velocity differences to (2.15). The resulting modified entropy 

production becomes

�∗ =
∫ (

kBT

Dn
cn
∣∣�u∗

n

∣∣2 + kBT

Dp
cp
∣∣�u∗

p

∣∣2 + kBT

Dn,p
cncp

∣∣�u∗
n − �u∗

p

∣∣2)dx. (2.19)

The third term in the right hand side of (2.19) is a higher order correction in terms of both densities 
and mobility constants. Note that we can also choose the mobility coefficients Dn,p for the higher order 
correction as one of (a) Dn+Dp

2 : arithmetic average (b) 2DnDp

Dn+Dp
: harmonic average (c) 

√
DnDp: geometric 

average.
The same derivation as those of (2.16), (2.17) will yield the force balance relations as:

cn∇
δA
δcn

= −1
2cn

δ�∗

δ�u∗
n

= −
{
kBT

Dn
cn�u

∗
n + kBT

Dn,p
cncp

(
�u∗
n − �u∗

p

)}
, (2.20)

cp∇
δA
δcp

= −1
2cp

δ�∗

δ�u∗
p

= −
{
kBT

Dp
cp�u

∗
p + kBT

Dn,p
cncp

(
�u∗
p − �u∗

n

)}
. (2.21)

Noticing the coefficient in front of �u∗
p in the first equation are exactly equal the coefficient in front of �u∗

n in 
the second equation. This is the exact manifestation of Onsager’s reciprocal relations [18,19] in transport 
of different charged species.

Solving for ion fluxes in these equations, then we have that

cn�u
∗
n = − (Dn,p + Dpcn)cn�un + Dncncp�up

Dn,p + Dncp + Dpcn
, (2.22)

cp�u
∗
p = − (Dn,p + Dncp)cp�up + Dpcpcn�un

. (2.23)

Dn,p + Dncp + Dpcn
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Again as for (2.13), we utilize the conservation of mass equations for both cp and cn:

∂cn
∂t

+ ∇ ·
(
cn�u

∗
n

)
= 0, ∂cp

∂t
+ ∇ ·

(
cp�u

∗
p

)
= 0,

to get the resulting modified Nernst–Planck equations as follows:

∂cp
∂t

= −∇ ·
(
cp�u

∗
p

)
= −∇ ·

[
(Dn,p + Dncp)cp�up + Dpcpcn�un

Dn,p + Dncp + Dpcn

]

= ∇ ·
[ (Dn,p + Dncp)Dp(∇cp + zpq

kBT cp∇φ) + (Dpcp)Dn(∇cn + znq
kBT cn∇φ)

Dn,p + Dncp + Dpcn

]
(2.24)

∂cn
∂t

= −∇ ·
(
cn�u

∗
n

)
= −∇ ·

[
(Dn,p + Dpcn)cn�un + Dncncp�up

Dn,p + Dncp + Dpcn

]

= ∇ ·
[ (Dn,p + Dpcn)Dn(∇cn + znq

kBT cn∇φ) + (Dncn)Dp(∇cp + zpq
kBT cp∇φ)

Dn,p + Dncp + Dpcn

]
. (2.25)

Without lost of generalities, we choose D = Dn = Dp. Then Dn,p = D and have the modified PNP 
system as:

∂cn
∂t

= ∇ ·
{

D(1 + cn)
1 + cn + cp

(
∇cn + znq

kBT
cn∇φ

)
+ Dcn

1 + cn + cp

(
∇cp + zpq

kBT
cp∇φ

)}
(2.26)

∂cp
∂t

= ∇ ·
{

D(1 + cp)
1 + cn + cp

(
∇cp + zpq

kBT
cp∇φ

)
+ Dcp

1 + cn + cp

(
∇cn + znq

kBT
cn∇φ

)}
(2.27)

∇ · (ε∇φ) = −znqcn − zpqcp. (2.28)

The entropy production of the modified PNP system (2.26)–(2.28) is

�∗ =
∫ (

kBT

Dn
cn
∣∣�u∗

n

∣∣2 + kBT

Dp
cp
∣∣�u∗

p

∣∣2 + kBT

Dn,p
cncp

∣∣�u∗
n − �u∗

p

∣∣2)dx
= DkBT

∫ {
cn

∣∣∣∣ 1 + cn
1 + cn + cp

(
∇cn
cn

+ znq

kBT
∇φ

)
+ cp

1 + cn + cp

(
∇cp
cp

+ zpq

kBT
∇φ

)∣∣∣∣
2

+ cp

∣∣∣∣ 1 + cp
1 + cn + cp

(
∇cp
cp

+ zpq

kBT
∇φ

)
+ cn

1 + cn + cp

(
∇cn
cn

+ znq

kBT
∇φ

)∣∣∣∣
2

+ cncp

∣∣∣∣ 1
1 + cn + cp

(
∇cn
cn

+ znq

kBT
∇φ

)
− 1

1 + cn + cp

(
∇cp
cp

+ zpq

kBT
∇φ

)∣∣∣∣
2}

dx, (2.29)

while the original entropy production of the classical PNP system takes the form as:

� =
∫ (

kBT

Dn
cn|�un|2 + kBT

Dp
cp|�up|2

)
dx

= DkBT

∫ (
cn

∣∣∣∣∇cn + znq ∇φ

∣∣∣∣
2

+ cp

∣∣∣∣∇cp + zpq ∇φ

∣∣∣∣
2)

dx. (2.30)

cn kBT cp kBT
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The resulting modified PNP system (2.26)–(2.28) involves much more complicated nonlinear coupling 
between unknown variables. Comparing with the original PNP system of Eqs. (2.10)–(2.12), it brings extra 
difficulties in analysis. In the next section, as a first step in our systematical studies, we present the proof 
of the local existence theorem of classical solutions for the modified PNP system (2.26)–(2.28).

3. Local existence of solutions for the modified PNP

The modified PNP system (2.26)–(2.28) posses rather complicated saturable nonlinear terms in the forms 
as:

1 + cn
1 + cn + cp

,
cn

1 + cn + cp
,

1 + cp
1 + cn + cp

,
cp

1 + cn + cp

as coefficients, which are found in coupling ∇cn + znq
kBT cn∇φ and ∇cp + zpq

kBT cp∇φ. The coefficients are 
different from the original PNP system of Eqs. (2.10)–(2.12). Formally, if 1 � cn � cp, then 0 < 1+cn

1+cn+cp
,

cn
1+cn+cp

� 1 and Eq. (2.26) becomes degenerate parabolic. Similarly, if 1 � cp � cn, then 0 < 1+cp
1+cn+cp

,
cp

1+cn+cp
� 1 and Eq. (2.27) becomes degenerate parabolic. Both 1 � cn � cp and 1 � cp � cn can 

be excluded if cn and cp are nonnegative and bounded for x ∈ Ω and t ∈ (0, T ). However, the maximum 
principle of (2.26)–(2.28) has not yet been proved. Thus it is nontrivial to assure that cn, cp ≥ 0 for x ∈ Ω, 
t ∈ (0, T ) if the initial data cn,0, cp,0 ≥ 0 for x ∈ Ω. The fact motivates us to find nonnegative and bounded 
solution of (2.26)–(2.28) in a finite time interval.

We now develop a local existence theorem for the modified PNP system of Eqs. (2.26)–(2.28) using 
Galerkin’s method and Schauder’s fixed-point theorem. Because Schauder’s fixed-point theorem cannot give 
the uniqueness of fixed point, it seems impossible to prove the uniqueness by our argument. For simplicity 
of derivation, we may set D = kB = T = ε = q = 1, zn = −1, and zp = 1 for Eqs. (2.26)–(2.28). Let Ω be a 
smooth and bounded domain in Rd, d ≤ 3. Then the modified PNP system can be written as

∂cn
∂t

= ∇ ·
[

1
1 + cn + cp

(
(1 + cn)(∇cn − cn∇φ) + cn(∇cp + cp∇φ)

)]
, (3.1)

∂cp
∂t

= ∇ ·
[

1
1 + cn + cp

(
(1 + cp)(∇cp + cp∇φ) + cp(∇cn − cn∇φ)

)]
, (3.2)

Δφ = cn − cp, for x ∈ Ω, t > 0, (3.3)

with no-flux boundary conditions of cn and cp, and Robin boundary condition of φ as follows:

(∇cn − cn∇φ) · ν = 0, (3.4)

(∇cp + cp∇φ) · ν = 0, (3.5)

φ + α
∂φ

∂ν
= φ0, for x ∈ ∂Ω, t > 0, (3.6)

where α is a nonnegative constant, ν is the unit outer normal vector to ∂Ω, and φ0 = φ1 +α∂φ1
∂ν on ∂Ω for 

some φ1 ∈ H2(Ω). For the initial data, we assume that

0 ≤ cn(·, 0) = cn,0 ∈ L∞(Ω), (3.7)

0 ≤ cp(·, 0) = cp,0 ∈ L∞(Ω), (3.8)

and φ(·, 0) is uniquely determined by (3.3) at t = 0 with (3.6).
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In order to find a local solution of (3.1)–(3.8) in a finite time interval (0, t1), we consider the fixed point 
problem of the following map:

F
(
(c̄n, c̄p)

)
= (cn, cp) for (c̄n, c̄p) ∈ X, (3.9)

where

X =
{
(f, g) : f, g ∈ L4((0, t1);L2(Ω)

)}
, t1 > 0

with the following specific norm

∥∥(f, g)
∥∥
X

= ‖f‖L4((0,t1);L2(Ω)) + ‖g‖L4((0,t1);L2(Ω)),

and (cn, cp) is the solution of

∂cn
∂t

= ∇ ·
{

1
1 + c̄∗n + c̄∗p

((
1 + c̄∗n

)
(∇cn − cn∇φ̄) + c̄∗n(∇cp + cp∇φ̄)

)}
, (3.10)

∂cp
∂t

= ∇ ·
{

1
1 + c̄∗n + c̄∗p

((
1 + c̄∗p

)
(∇cp + cp∇φ̄) + c̄∗p(∇cn − cn∇φ̄)

)}
, (3.11)

with the initial data (3.7)–(3.8) and boundary conditions

(∇cn − cn∇φ̄) · ν = 0, (3.12)

(∇cp + cp∇φ̄) · ν = 0. (3.13)

The system of Eqs. (3.10) and (3.11) is a linear system of parabolic equations of cn and cp.
Let here

c̄∗n = min
{
max{c̄n, 0}, 5M0

}
, (3.14)

c̄∗p = min
{
max{c̄p, 0}, 5M0

}
, (3.15)

M0 = max
{
‖cn,0‖L∞(Ω), ‖cp,0‖L∞(Ω), 1

}
, (3.16)

and let φ̄ be the solution of Δφ̄ = c̄n − c̄p in Ω with the boundary condition (3.6).
Let

u = cn + cp, v = cn − cp,

ū = c̄n + c̄p, v̄ = c̄n − c̄p,

ū∗ = c̄∗n + c̄∗p, v̄∗ = c̄∗n − c̄∗p.

Then by adding and subtracting Eqs. (3.10) and (3.11), the system of equations for u, v is given by

ut = ∇ · (∇u− v∇φ̄), (3.17)

vt = ∇ ·
(

1
∗ (∇v − u∇φ̄) + v̄∗

∗ (∇u− v∇φ̄)
)

(3.18)
1 + ū 1 + ū
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with the boundary and initial conditions

(∇u− v∇φ̄) · ν = 0, (3.19)

(∇v − u∇φ̄) · ν = 0, (3.20)

u(x, 0) = u0 = cn,0 + cp,0, (3.21)

v(x, 0) = v0 = cn,0 − cp,0. (3.22)

Since u and v are linear combinations of cn and cp, one can easily recover the solution (cn, cp) of (3.10)–(3.13)
with the initial data (3.7)–(3.8) from (u, v) of (3.17)–(3.22). By (3.14)–(3.16), we also obtain

0 <
1

1 + 10M0
≤ 1

1 + ū∗ ≤ 1,
∣∣∣∣ v̄∗

1 + ū∗

∣∣∣∣ ≤ 1, (3.23)

which are crucial for the study of Eq. (3.18). Note that 0 ≤ ū∗ ≤ 10M0 and |v̄∗| ≤ ū∗ because of 0 ≤ c̄∗n, 
c̄∗p ≤ 5M0.

The apriori estimate of the solution of (3.17)–(3.22) is given as follows:

Lemma 1. Let (u, v) be the solution of (3.17)–(3.22). Then there exist positive constants K1, K2 and γ
depending only on α, M0, d, and Ω such that

d

dt

∫
Ω

(
K1u

2 + v2)dx + γ

∫
Ω

(
|∇u|2 + |∇v|2

)
dx

≤ K2

(∫
Ω

(
K1u

2 + v2)dx)(1 +
(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
. (3.24)

Note that φ1 ∈ H2(Ω) satisfies φ1 + α∂φ1
∂ν = φ0 on ∂Ω, where φ0 and α come from the Robin boundary 

condition (3.6). Moreover, v̄ = c̄n − c̄p = Δφ̄ in Ω.

Proof. Multiply (3.17) by u and integrate it over Ω. Then using integration by parts and (3.19), we get

1
2
d

dt

∫
Ω

u2dx = −
∫
Ω

(
|∇u|2 − v∇φ̄ · ∇u

)
dx. (3.25)

In order to estimate the last term on the right hand side of (3.25), we need the interpolation inequality

‖v‖L3(Ω) ≤ C‖v‖1/2
L2(Ω)‖v‖

1/2
H1(Ω) (3.26)

and Sobolev embedding theorem with the estimate for Poisson’s equation [11]

‖∇φ̄‖2
L6(Ω) ≤ C‖φ̄‖2

H2(Ω) ≤ C
(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)
. (3.27)

For convenience, we use the same notation C for a constant, which only depends on Ω. Then using (3.26), 
(3.27), Hölder’s and Young’s inequalities, we have

∣∣∣∣
∫
Ω

(v∇φ̄ · ∇u)dx
∣∣∣∣ ≤ ‖∇u‖L2(Ω)‖v‖L3(Ω)‖∇φ̄‖L6(Ω)

≤ C‖∇u‖L2(Ω)‖v‖1/2
2 ‖v‖1/2

1 ‖∇φ̄‖L6(Ω)
L (Ω) H (Ω)
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≤ β1‖∇u‖2
L2(Ω) + C(β1)‖v‖L2(Ω)‖v‖H1(Ω)‖∇φ̄‖2

L6(Ω)

≤ β1‖∇u‖2
L2(Ω) + β1‖v‖2

H1(Ω) + C(β1)‖v‖2
L2(Ω)‖∇φ̄‖4

L6(Ω)

= β1‖∇u‖2
L2(Ω) + β1‖∇v‖2

L2(Ω) + ‖v‖2
L2(Ω)

(
β1 + C(β1)‖∇φ̄‖4

L6(Ω)
)

≤ β1‖∇u‖2
L2(Ω) + β1‖∇v‖2

L2(Ω)

+ ‖v‖2
L2(Ω)

(
β1 + C(β1)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2) (3.28)

for β1 > 0, where C(β1) > 0 is a constant depending on β1 and Ω. Consequently,

1
2
d

dt

∫
Ω

u2dx ≤ −(1 − β1)‖∇u‖2
L2(Ω) + β1‖∇v‖2

L2(Ω)

+ ‖v‖2
L2(Ω)

(
β1 + C(β1)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
. (3.29)

As for (3.25), we multiply (3.18) by v and integrate it over Ω. Then we may use integration by parts and 
(3.19)–(3.20) to get

1
2
d

dt

∫
Ω

v2dx = −
∫
Ω

{
1

1 + ū∗
(
|∇v|2 − u∇φ̄ · ∇v

)
+ v̄∗

1 + ū∗ (∇u · ∇v − v∇φ̄ · ∇v)
}
dx. (3.30)

Notice that from (3.23),

0 <
1

1 + 10M0
≤ 1

1 + ū∗ ≤ 1,
∣∣∣∣ v̄∗

1 + ū∗

∣∣∣∣ ≤ 1,

which implies ∫
Ω

1
1 + ū∗ |∇v|2dx ≥

∫
Ω

1
1 + 10M0

|∇v|2dx.

Besides, we may use Young’s inequality to get∣∣∣∣
∫
Ω

v̄∗

1 + ū∗∇u · ∇vdx

∣∣∣∣ ≤
∫
Ω

|∇u · ∇v|dx

≤ β2‖∇v‖2
L2(Ω) + C(β2)‖∇u‖2

L2(Ω)

for β2 > 0, where C(β2) > 0 is a constant depending on β2 and Ω. On the other hand, as for (3.28), we 
have ∣∣∣∣

∫
Ω

1
1 + ū∗u∇φ̄ · ∇vdx

∣∣∣∣ ≤
∫
Ω

|u∇φ̄ · ∇v|dx

≤ β3‖∇v‖2
L2(Ω) + β3‖∇u‖2

L2(Ω)

+ ‖u‖2
L2(Ω)

(
β3 + C(β3)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
,

and ∣∣∣∣
∫
Ω

v̄∗

1 + ū∗ v∇φ̄ · ∇vdx

∣∣∣∣ ≤
∫
Ω

|v∇φ̄ · ∇v|dx

≤ 2β4‖∇v‖2
L2(Ω) + ‖v‖2

L2(Ω)
(
β4 + C(β4)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
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for βj > 0, j = 3, 4, where C(βj) > 0 is a constant depending on βj and Ω. Hence

1
2
d

dt

∫
Ω

v2dx ≤ −
(

1
1 + 10M0

− β2 − β3 − 2β4

)
‖∇v‖2

L2(Ω) +
(
C(β2) + β3

)
‖∇u‖2

L2(Ω)

+ ‖u‖2
L2(Ω)

(
β3 + C(β3)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
+ ‖v‖2

L2(Ω)
(
β4 + C(β4)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
, (3.31)

for βj > 0, j = 2, 3, 4.
Combine (3.29) and (3.31) and then we get

K1

(
1
2 − β1

)
−

(
C(β2) + β3

)
≥ 0

for sufficiently large K1 and sufficiently small βi’s, furthermore, by letting β1 = K−2
1 , β2 = 1

4(1+10M0) and 
choosing β3, β4 small enough and K1 large enough, we have that

1
2(1 + 10M0)

− β2 − β3 − 2β4 ≥ K1β1.

Then we obtain that

1
2
d

dt

∫
Ω

(
K1u

2 + v2)dx + 1
2

∫
Ω

(
K1|∇u|2 + 1

1 + 10M0
|∇v|2

)
dx

≤ ‖u‖2
L2(Ω)

(
β3 + C(β3)

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
+ ‖v‖2

L2(Ω)
(
(K1β1 + β4) +

(
K1C(β1) + C(β4)

)(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
. (3.32)

Note that choices of K1 and βi’s depend on M0 and Ω.
Therefore, by (3.32), we may get (3.24) and complete the proof of Lemma 1 by setting

γ = min
{
K1,

1
1 + 10M0

}
,

K2 = 2 max
{

β3

K1
,
C(β3)
K1

,K1β1 + β4,K1C(β1) + C(β4)
}
. �

Now, we consider the weak solution of (3.17)–(3.22), which satisfies

∫
Ω

utwdx +
∫
Ω

(∇u− v∇φ̄) · ∇wdx = 0, (3.33)

∫
Ω

vtwdx +
∫
Ω

(
1

1 + ū∗
(∇v − u∇φ̄) + v̄∗

1 + ū∗
(∇u− v∇φ̄)

)
· ∇wdx = 0, (3.34)

for w ∈ H1(Ω). There is no boundary integral terms in the weak forms (3.33) and (3.34) because of the 
natural boundary conditions (3.19) and (3.20) for (3.17)–(3.22). We now apply Galerkin’s method (cf. 
Section 4–5 of Chapter III of [16]) to find the approximate solution of (3.33)–(3.34) in the form of
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um(x, t) =
m∑

k=1

amk (t)wk(x)

vm(x, t) =
m∑

k=1

bmk (t)wk(x),

satisfying
∫
Ω

um
t wkdx +

∫
Ω

(
∇um − vm∇φ̄

)
· ∇wkdx = 0, (3.35)

∫
Ω

vmt wkdx +
∫
Ω

(
1

1 + ū∗

(
∇vm − um∇φ̄

)
+ v̄∗

1 + ū∗

(
∇um − vm∇φ̄

))
· ∇wkdx = 0 (3.36)

for k = 1, 2, ..., m and m ∈ N, where {wk}∞k=1 is an orthogonal basis of H1(Ω) and an orthonormal basis of 
L2(Ω). Hence the coefficients amk (t) =

∫
Ω
umwkdx and bmk (t) =

∫
Ω
vmwkdx can be determined by

d

dt
amk (t) +

∫
Ω

(
∇um − vm∇φ̄

)
· ∇wkdx = 0, (3.37)

d

dt
bmk (t) +

∫
Ω

(
1

1 + ū∗

(
∇vm − um∇φ̄

)
+ v̄∗

1 + ū∗

(
∇um − vm∇φ̄

))
· ∇wkdx = 0 (3.38)

for t > 0 and

amk (0) =
∫
Ω

u0wkdx,

bmk (0) =
∫
Ω

v0wkdx,

for k = 1, 2, . . . , m. (3.37) and (3.38) may form a system of ordinary differential equations so we may get 
the existence and uniqueness of amk and bmk by the standard theorems of ordinary differential equations.

Multiply (3.35), (3.36) by amk , bmk , respectively, and add them together for k = 1, 2, ..., m. Then we get

1
2
d

dt

∫
Ω

(
um

)2
dx = −

∫
Ω

(∣∣∇um
∣∣2 − vm∇φ̄ · ∇um

)
dx

and

1
2
d

dt

∫
Ω

(
vm

)2
dx = −

∫
Ω

{
1

1 + ū∗
(∣∣∇vm

∣∣2 − um∇φ̄ · ∇vm
)

+ v̄∗

1 + ū∗
(
∇um · ∇vm − vm∇φ̄ · ∇vm

)}
dx,

which have the same forms as (3.25) and (3.30), respectively. Then by the same argument of Lemma 1, we 
have

d

dt

∫
Ω

(
K1

(
um

)2 +
(
vm

)2)
dx + γ

∫
Ω

(∣∣∇um
∣∣2 +

∣∣∇vm
∣∣2)dx

≤ K2

{∫ (
K1

(
um

)2 +
(
vm

)2)
dx

}{
1 +

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2}
,

Ω
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where K1, K2 and γ are positive constants independent of m. This implies that by Gronwall’s inequality, 
{um}∞m=1 and {vm}∞m=1 are uniformly bounded in L∞((0, t1); L2(Ω)) ∩ L2((0, t1); H1(Ω)). Therefore, we 
may find the solution of (3.33)–(3.34) by setting m → ∞ (up to a subsequence).

For the uniqueness of (3.17)–(3.22), we may assume that (u1, v1) and (u2, v2) are solutions of (3.17)–(3.22). 
Then (u1 − u2, v1 − v2) is a solution of (3.17)–(3.20) with zero initial data. By Lemma 1 and Gronwall’s 
inequality, we have

∫
Ω

(
K1(u1 − u2)2 + (v1 − v2)2

)
dx ≤ 0,

which implies u1 ≡ u2, v1 ≡ v2. Hence (3.17)–(3.22) have a unique solution. Equivalently, (3.10)–(3.13) with 
initial data (3.7)–(3.8) is uniquely solvable.

Therefore, F is well-defined.
Now we claim the continuity of F as follows:

Lemma 2. The map F : X → X defined at (3.9) is continuous.

Proof. Let {(c̄n,k, ̄cp,k)}∞k=1 ⊂ X and (c̄n, ̄cp) ∈ X such that (c̄n,k, ̄cp,k) → (c̄n, ̄cp) in X as k → ∞. Let 
(cn,k, cp,k) = F ((c̄n,k, ̄cp,k)) for k ∈ N and (cn, cp) = F ((c̄n, ̄cp)).

Claim that (cn,k, cp,k) → (cn, cp) as k → ∞. As for (3.17) and (3.18), we may set

uk = cn,k + cp,k, vk = cn,k − cp,k,

ūk = c̄n,k + c̄p,k, v̄k = c̄n,k − c̄p,k,

ū∗
k = c̄∗n,k + c̄∗p,k, v̄∗k = c̄∗n,k − c̄∗p,k,

and

u = cn + cp, v = cn − cp,

ū = c̄n + c̄p, v̄ = c̄n − c̄p,

ū∗ = c̄∗n + c̄∗p, v̄∗ = c̄∗n − c̄∗p.

Then as for (3.17)–(3.22), (uk, vk) satisfies

∂uk

∂t
= ∇ · (∇uk − vk∇φ̄k), (3.39)

∂vk
∂t

= ∇ ·
(

1
1 + ū∗

k

(∇vk − uk∇φ̄k) + v̄∗k
1 + ū∗

k

(∇uk − vk∇φ̄k)
)

(3.40)

with boundary conditions

(∇uk − vk∇φ̄k) · ν = 0, (3.41)

(∇vk − uk∇φ̄k) · ν = 0, (3.42)

and (u, v) do

∂u

∂t
= ∇ · (∇u− v∇φ̄), (3.43)

∂v = ∇ ·
(

1
∗ (∇v − u∇φ̄) + v̄∗

∗ (∇u− v∇φ̄)
)

(3.44)

∂t 1 + ū 1 + ū
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with boundary conditions

(∇u− v∇φ̄) · ν = 0, (3.45)

(∇v − u∇φ̄) · ν = 0, (3.46)

and the initial data (3.21)–(3.22), where φ̄k and φ̄ satisfy Δφ̄k = c̄n,k − c̄p,k = v̄k and Δφ̄ = c̄n − c̄p = v̄

in Ω, respectively, with the Robin boundary condition (3.6).
Let ũk = uk − u and ṽk = vk − v. Then by (3.39)–(3.44), we get the system of equations for ũk and ṽk

as follows:
∂ũk

∂t
= ∇ ·

(
∇ũk + ṽk∇φ̄k + v∇(φ̄k − φ̄)

)
, (3.47)

and
∂ṽk
∂t

= ∇ ·
[

1
1 + ū∗

k

∇ṽk +
(

1
1 + ū∗

k

− 1
1 + ū∗

)
∇v

+ v̄∗k
1 + ū∗

k

∇ũk +
(

v̄∗k
1 + ū∗

k

− v̄∗

1 + ū∗

)
∇u

− 1
1 + ū∗

k

(uk∇φ̄k − u∇φ̄) −
(

1
1 + ū∗

k

− 1
1 + ū∗

)
u∇φ̄

− v̄∗k
1 + ū∗

k

(vk∇φ̄k − v∇φ̄) −
(

v̄∗k
1 + ū∗

k

− v̄∗

1 + ū∗

)
v∇φ̄

]
(3.48)

Since (3.47) and (3.48) are similar to Eqs. (3.17) and (3.18), we can apply Lemma 1, and then as for (3.29)
in Lemma 1, we have that

1
2
d

dt

∫
Ω

ũ2
kdx ≤ −(1 − 2β̃1)‖∇ũk‖2

L2(Ω) + β̃1‖ṽk‖2
H1(Ω)

+ C(β̃1)‖ṽk‖2
L2(Ω)

(
‖v̄k‖L2(Ω) + ‖φ1‖H2(Ω)

)4
+ C(β̃1)‖v‖L2(Ω)‖v‖H1(Ω)‖v̄k − v̄‖2

L2(Ω) (3.49)

for β̃1 > 0, where C(β̃1) > 0 is a constant depending on β̃1 and Ω. Moreover, (3.48) gives

1
2
d

dt

∫
Ω

ṽ2
kdx = I1 + I2 (3.50)

where

I1 = −
∫
Ω

[
1

1 + ū∗
k

|∇ṽk|2 + v̄∗k
1 + ū∗

k

∇ũk · ∇ṽk

]

+
∫
Ω

[
1

1 + ū∗
k

(uk∇φ̄k − u∇φ̄) · ∇ṽk + v̄∗k
1 + ū∗

k

(vk∇φ̄k − v∇φ̄) · ∇ṽk

]
,

and

I2 = −
∫
Ω

[(
1

1 + ū∗
k

− 1
1 + ū∗

)
∇v · ∇ṽk +

(
v̄∗k

1 + ū∗
k

− v̄∗

1 + ū∗

)
∇u · ∇ṽk

]

+
∫ [(

1
1 + ū∗

k

− 1
1 + ū∗

)
u∇φ̄ · ∇ṽk +

(
v̄∗k

1 + ū∗
k

− v̄∗

1 + ū∗

)
v∇φ̄ · ∇ṽk

]
.

Ω
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Since we may use the same method in Lemma 1 to estimate I1 like (3.49), one can easily estimate for I1. 
We omit the detail here. For I2, we may decompose the domain Ω into two parts as follows:

Ω ∩
{∣∣∣∣ 1

1 + ū∗
k

− 1
1 + ū∗

∣∣∣∣ ≤ σ

}
and Ω ∩

{∣∣∣∣ 1
1 + ū∗

k

− 1
1 + ū∗

∣∣∣∣ > σ

}
for σ > 0.

Fix σ > 0 arbitrarily. Then by Young’s inequality, we have that
∣∣∣∣
∫
Ω

(
1

1 + ū∗
k

− 1
1 + ū∗

)
∇v · ∇ṽkdx

∣∣∣∣
≤ β̃5

∫
Ω

|∇ṽk|2dx + C(β̃5)
∫
Ω

(
1

1 + ū∗
k

− 1
1 + ū∗

)2

|∇v|2dx

≤ β̃5

∫
Ω

|∇ṽk|2dx + C(β̃5)
(
σ2

∫
Ω

|∇v|2dx +
∫

Ω∩{| 1
1+ū∗

k
− 1

1+ū∗ |>σ}

|∇v|2dx
)
.

Similarly, we have that
∣∣∣∣
∫
Ω

(
v̄∗k

1 + ū∗
k

− v̄∗

1 + ū∗

)
∇u · ∇ṽkdx

∣∣∣∣
≤ β̃6

∫
Ω

|∇ṽk|2dx + C(β̃6)
(
σ2

∫
Ω

|∇u|2dx +
∫

Ω∩{| v̄∗
k

1+ū∗
k
− v̄∗

1+ū∗ |>σ}

|∇u|2dx
)
,

∣∣∣∣
∫
Ω

(
1

1 + ū∗
k

− 1
1 + ū∗

)
u∇φ̄ · ∇ṽkdx

∣∣∣∣
≤ β̃7

∫
Ω

|∇ṽk|2dx + C(β̃7)
(
σ2

∫
Ω

u2|∇φ̄|2dx +
∫

Ω∩{| 1
1+ū∗

k
− 1

1+ū∗ |>σ}

u2|∇φ̄|2dx
)
,

and ∣∣∣∣
∫
Ω

(
v̄∗k

1 + ū∗
k

− v̄∗

1 + ū∗

)
v∇φ̄ · ∇ṽkdx

∣∣∣∣
≤ β̃8

∫
Ω

|∇ṽk|2dx + C(β̃8)
(
σ2

∫
Ω

v2|∇φ̄|2dx +
∫

Ω∩{| v̄∗
k

1+ū∗
k
− v̄∗

1+ū∗ |>σ}

v2|∇φ̄|2dx
)

for β̃i > 0, where C(β̃i) > 0 is a constant depending on β̃i and Ω, i = 5, 6, 7, 8. Hence (3.50) becomes

1
2
d

dt

∫
Ω

ṽ2
kdx ≤ −

(
1

1 + 10M0
− β̃2 − 2β̃3 − 3β̃4 − β̃5 − β̃6 − β̃7 − β̃8

)
‖∇ṽk‖2

L2(Ω)

+
(
C(β̃2) + β̃3

)
‖∇ũk‖2

L2(Ω) + β̃4‖ṽk‖2
L2(Ω)

+
(
C(β̃3)‖ũk‖2

L2(Ω) + C(β̃4)‖ṽk‖2
L2(Ω)

)(
‖v̄k‖L2(Ω) + ‖φ0‖L2(∂Ω)

)4
+
(
C(β̃3)‖u‖L2(Ω)‖u‖H1(Ω) + C(β̃4)‖v‖L2(Ω)‖v‖H1(Ω)

)
‖v̄k − v̄‖2

L2(Ω)
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+ σ2
∫
Ω

(
C(β̃6)|∇u|2 + C(β̃5)|∇v|2 + C(β̃7)u2|∇φ̄|2 + C(β̃8)v2|∇φ̄|2

)
dx

+
∫

Ω∩{| 1
1+ū∗

k
− 1

1+ū∗ |>σ}

(
C(β̃5)|∇v|2 + C(β̃7)u2|∇φ̄|2

)
dx

+
∫

Ω∩{| v̄∗
k

1+ū∗
k
− v̄∗

1+ū∗ |>σ}

(
C(β̃6)|∇u|2 + C(β̃8)v2|∇φ̄|2

)
dx. (3.51)

Combine (3.49)–(3.51) and choose suitable K̃ large enough and β̃i’s small enough such that K̃(1 − 2β̃1) −
(C(β̃2) + β̃3) ≥ 0 and

1
1 + 10M0

− β̃2 − 2β̃3 − 3β̃4 − β̃5 − β̃6 − β̃7 − β̃8 − K̃β̃1 ≥ 0.

Set here β̃1 = K̃−2 and choose sufficiently large K̃ and sufficiently small β̃i’s for i = 2, 3, ..., 8 to get such 
K̃ and β̃i’s. Then we have

d

dt

∫
Ω

(
K̃ũ2

k + ṽ2
k

)
dx ≤ C

[(
1 +

(
‖v̄k‖L2(Ω) + ‖φ0‖L2(∂Ω)

)4) ∫
Ω

(
K̃ũ2

k + ṽ2
k

)
dx

+
(
‖u‖L2(Ω)‖u‖H1(Ω) + ‖v‖L2(Ω)‖v‖H1(Ω)

)
‖v̄k − v̄‖2

L2(Ω)

+ σ2
∫
Ω

(
|∇u|2 + |∇v|2 + u2|∇φ̄|2 + v2|∇φ̄|2

)
dx

+
∫

Ω∩{| 1
1+ū∗

k
− 1

1+ū∗ |>σ}

(
|∇v|2 + u2|∇φ̄|2

)
dx

+
∫

Ω∩{| v̄∗
k

1+ū∗
k
− v̄∗

1+ū∗ |>σ}

(
|∇u|2 + v2|∇φ̄|2

)
dx

]
(3.52)

for some positive constant C depending only on M0 and Ω. By Gronwall’s inequality, (3.52) implies

∫
Ω

(
K̃ũ2

k + ṽ2
k

)
dx ≤ C exp

{
C

t∫
0

(
1 +

(
‖v̄k‖L2(Ω) + ‖φ0‖L2(∂Ω)

)4)
dx

}

·
[ t∫

0

(
‖u‖L2(Ω)‖u‖H1(Ω) + ‖v‖L2(Ω)‖v‖H1(Ω)

)
‖v̄k − v̄‖2

L2(Ω)ds

+ σ2
∫
Qt

(
|∇u|2 + |∇v|2 + u2|∇φ̄|2 + v2|∇φ̄|2

)
dxds

+
∫

Qt∩{| 1
1+ū∗

k
− 1

1+ū∗ |>σ}

(
|∇v|2 + u2|∇φ̄|2

)
dxds

+
∫

Qt∩{| v̄∗
k∗ − v̄∗

1+ū∗ |>σ}

(
|∇u|2 + v2|∇φ̄|2

)
dxds

]
, (3.53)
1+ū
k
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where Qt := Ω × (0, t). Notice that

t1∫
0

(
‖u‖L2(Ω)‖u‖H1(Ω) + ‖v‖L2(Ω)‖v‖H1(Ω)

)
‖v̄k − v̄‖2

L2(Ω)ds

≤
(
‖u‖L∞((0,t1);L2(Ω))‖u‖L2((0,t1);H1(Ω))

+ ‖v‖L∞((0,t1);L2(Ω))‖v‖L2((0,t1);H1(Ω))
)
· ‖v̄k − v̄‖2

L4((0,t1);L2(Ω))

→ 0

as k → ∞. Using the following inequalities
∣∣∣∣ 1
1 + ū∗

k

− 1
1 + ū∗

∣∣∣∣ = 1
(1 + ū∗

k)(1 + ū∗)
∣∣ū∗

k − ū∗∣∣
≤

∣∣ū∗
k − ū∗∣∣

≤
∣∣c̄∗n,k − c̄∗n

∣∣ +
∣∣c̄∗p,k − c̄∗p

∣∣
≤ |c̄n,k − c̄n| + |c̄p,k − c̄p|

and
∣∣∣∣ v̄∗k
1 + ū∗

k

− v̄∗

1 + ū∗

∣∣∣∣ = 1
(1 + ū∗

k)(1 + ū∗)
∣∣(1 + ū∗)v̄∗k −

(
1 + ū∗

k

)
v̄∗
∣∣

≤ 1
(1 + ū∗

k)
∣∣v̄∗k − v̄∗

∣∣ + |v̄∗|
(1 + ū∗

k)(1 + ū∗)
∣∣ū∗

k − ū∗∣∣
≤

∣∣v̄∗k − v̄∗
∣∣ +

∣∣ū∗
k − ū∗∣∣

≤ 2
(∣∣c̄∗n,k − c̄∗n

∣∣ +
∣∣c̄∗p,k − c̄∗p

∣∣)
≤ 2

(
|c̄n,k − c̄n| + |c̄p,k − c̄p|

)
,

we have
∣∣∣∣Qt1 ∩

{∣∣∣∣ 1
1 + ū∗

k

− 1
1 + ū∗

∣∣∣∣ > σ

}∣∣∣∣ → 0,
∣∣∣∣Qt1 ∩

{∣∣∣∣ v̄∗k
1 + ū∗

k

− v̄∗

1 + ū∗

∣∣∣∣ > σ

}∣∣∣∣ → 0

as k → ∞.
Therefore, (3.53) implies that

lim sup
k→∞

sup
t∈(0,t1)

∫
Ω

(
K̃ũ2

k + ṽ2
k

)
dx ≤ Cσ2 exp

{
C

t1∫
0

(
1 +

(
‖v̄‖L2(Ω) + ‖φ1‖H2(Ω)

)4)
dx

}

·
∫

Qt1

(
|∇u|2 + |∇v|2 + u2|∇φ̄|2 + v2|∇φ̄|2

)
dxdt.

In the derivation, we have used the assumption that v̄k → v̄ in L4((0, t1);L2(Ω)) as k → ∞, and we complete 
the proof by letting σ → 0. �
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In order to use Schauder’s fixed point theorem, we want to find a ball BR(0) = {(f, g) ∈X : ‖(f, g)‖X ≤ R}
such that BR(0) is invariant under F i.e., G := F (BR(0)) ⊆ BR(0) and the closure of G is compact in X. 
The existence of such a ball can be proved as follows:

By Lemma 1 and Gronwall’s inequality, we have

sup
0≤t≤t1

∫
Ω

(
K1u

2 + v2)dx ≤
∫
Ω

(
K1u

2
0 + v2

0
)
dx · exp

{
K2

t1∫
0

(
1 +

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
ds

}
, (3.54)

∫
Qt1

(
|∇u|2 + |∇v|2

)
dxdt

≤ 1
γ

∫
Ω

(
K1u

2
0 + v2

0
)
dx ·

(
1 + K2t1 exp

{
2K2

t1∫
0

(
1 +

(
‖v̄‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
ds

})
, (3.55)

where Qt1 := Ω×(0, t1). By (3.54)–(3.55), we may estimate the norms of u and v in spaces L∞((0, t1); L2(Ω))
and L2((0, t1); H1(Ω)). Moreover, (3.54) implies

∥∥(cn, cp)
∥∥
X

≤ C

( t1∫
0

(∫
Ω

(
K1u

2 + v2)dx)2
)1/4

≤ C1t
1/4
1

(
‖u0‖L2(Ω) + ‖v0‖L2(Ω)

)
exp

{
C2

(
‖v̄‖4

L4((0,t1);L2(Ω)) + t1
(
‖φ1‖4

H2(Ω) + 1
))}

≤ C1t
1/4
1

(
‖u0‖L2(Ω) + ‖v0‖L2(Ω)

)
exp

{
C2

(∥∥(c̄n, c̄p)
∥∥4
X

+ t1
(
‖φ1‖4

H2(Ω) + 1
))}

which implies that ‖F (c̄n, c̄p)‖X = ‖(cn, cp)‖X ≤ R if

C1t
1/4
1

(
‖u0‖L2(Ω) + ‖v0‖L2(Ω)

)
exp

{
C2

(
R4 + t1

(
‖φ1‖4

H2(Ω) + 1
))}

≤ R, (3.56)

which can be fulfilled by fixing R > 0 as a constant and letting t1 > 0 sufficiently small such that

C1
(
‖u0‖L2(Ω) + ‖v0‖L2(Ω)

)
t
1/4
1 exp

{
C2

(
‖φ1‖4

H2(Ω) + 1
)
t1
}
≤ R exp

{
−C2R

4}.
Therefore, we get the ball BR(0) as an invariant set of the map F .
Claim now that the image of the ball BR(0), G := F (BR(0)) is precompact in X i.e., the closure of G is 

compact in X as follows:

Lemma 3. The closure of the image G := F (BR(0)) ⊆ BR(0) of the ball BR(0) = {(f, g) : ‖(f, g)‖X ≤ R} is 
compact in X, where F is defined at (3.9) and R is defined in (3.56) such that BR(0) is invariant under F .

Proof. We may follow the proof of the standard PNP system (cf. [3] and [4]). Eq. (3.10) implies

∣∣∣∣
〈
∂cn
∂t

, η

〉∣∣∣∣ =
∣∣∣∣
∫
Ω

[
1

1 + c̄∗n + c̄∗p

((
1 + c̄∗n

)
(∇cn − cn∇φ̄) + c̄∗n(∇cp + cp∇φ̄)

)]
· ∇ηdx

∣∣∣∣
≤

∫
Ω

(
|∇cn| + |cn∇φ̄| + |∇cp| + |cp∇φ̄|

)
|∇η|dx

≤
(
‖∇cn‖L2(Ω) + ‖cn∇φ̄‖L2(Ω) + ‖∇cp‖L2(Ω) + ‖cp∇φ̄‖L2(Ω)

)
‖∇η‖L2(Ω)



C.-Y. Hsieh et al. / J. Math. Anal. Appl. 422 (2015) 309–336 327
for any test function η ∈ H1(Ω). By (3.55), ‖∇cn‖L2((0,t1);L2(Ω)) and ‖∇cp‖L2((0,t1);L2(Ω)) are uniformly 
bounded for (cn, cp) ∈ G. Moreover, by (3.27) and Holder’s inequality, we may get ‖cn∇φ̄‖L2((0,t1);L2(Ω))
and ‖cp∇φ̄‖L2((0,t1);L2(Ω)) are uniformly bounded for (cn, cp) ∈ G. Consequently, ‖∂cn

∂t ‖L2((0,t1);H−1(Ω)) is 
uniformly bounded for (cn, cp) ∈ G.

Similarly, we have the uniform boundedness of ‖∂cp
∂t ‖L2((0,t1);H−1(Ω)). Moreover, (3.54) and (3.55) give 

cn, cp ∈ L2((0, t1); H1(Ω)). Therefore, by Aubin–Lions lemma, G is precompact in L2((0, t1); L2(Ω)) and 
also in X = (L4((0, t1); L2(Ω)))2 because of the boundedness of cn, cp in L∞((0, t1); L2(Ω)). �

By Lemma 2, Lemma 3, and Schauder’s fixed-point theorem, there exists a fixed point (cn, cp) ∈ BR(0)
of F , which is a solution of

∂cn
∂t

= ∇ ·
[

1
1 + c∗n + c∗p

((
1 + c∗n

)
(∇cn − cn∇φ) + c∗n(∇cp + cp∇φ)

)]
, (3.57)

∂cp
∂t

= ∇ ·
[

1
1 + c∗n + c∗p

((
1 + c∗p

)
(∇cp + cp∇φ) + c∗p(∇cn − cn∇φ)

)]
(3.58)

with (3.3)–(3.8), where

c∗n = min{cn+, 5M0} = min
{
max{cn, 0}, 5M0

}
,

c∗p = min{cp+, 5M0} = min
{
max{cp, 0}, 5M0

}
.

We will now show c∗n = cn and c∗p = cp in a short time interval (0, t0) by the following lemma:

Lemma 4. The solution of (3.57)–(3.58), (3.3)–(3.8) satisfies cn, cp ≥ 0 and cn + cp ≤ 5M0 for 0 < t < t0
for some t0 > 0.

Proof. Let cn− = min{cn, 0}. Then

1
2
d

dt

∫
Ω

c2n−dx = −
∫
Ω

1
1 + c∗p

(
|∇cn−|2 − cn−∇φ · ∇cn−

)
dx

≤ − 1
1 + 5M0

∫
Ω

|∇cn−|2dx + ‖cn−‖L3(Ω)‖∇φ‖L6(Ω)‖∇cn−‖L2(Ω)

≤ − 1
1 + 5M0

∫
Ω

|∇cn−|2dx + C‖cn−‖1/2
L2(Ω)‖cn−‖

1/2
H1(Ω)‖∇φ‖L6(Ω)‖∇cn−‖L2(Ω)

≤ − 1
1 + 5M0

‖∇cn−‖2
L2(Ω) + β‖cn−‖2

H1(Ω) + C(β)‖cn−‖2
L2(Ω)‖∇φ‖4

L6(Ω)

≤ ‖cn−‖2
L2(Ω)

(
1 + C‖∇φ‖4

L6(Ω)
)
,

where β = 1
1+5M0

. Since ‖cn−‖L2(Ω) = 0 at t = 0 and 1 + C‖∇φ‖4
L6(Ω) ∈ L1((0, t1)), cn− ≡ 0 i.e. cn ≥ 0.

Similarly, we may let cp− = min{cp, 0} and get

1
2
d

dt

∫
Ω

c2p−dx = −
∫
Ω

1
1 + c∗n

(
|∇cp−|2 + cp−∇φ · ∇cp−

)
dx

≤ ‖cp−‖2
L2(Ω)

(
1 + C‖∇φ‖4

L6(Ω)
)
,
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which implies cp− ≡ 0 i.e., cp ≥ 0. Now, we consider u := cn + cp and v := cn − cp which satisfy

ut = ∇ · (∇u− v∇φ), (3.59)

with boundary condition

(∇u− v∇φ) · ν = 0. (3.60)

To estimate the maximum of u, for M ≥ 2M0, we set u(M) := max{u − M, 0} and AM (t) := {x ∈ Ω :
u(x, t) > M}. Multiply (3.59) by u(M) and take integration by parts. Then

1
2
d

dt

∫
Ω

(
u(M))2dx = −

∫
Ω

∣∣∇u(M)∣∣2dx +
∫

AM (t)

(
v∇φ · ∇u(M))dx

≤ −1
2

∫
Ω

∣∣∇u(M)∣∣2dx + 1
2

∫
AM (t)

v2|∇φ|2dx

≤ −1
2

∫
Ω

∣∣∇u(M)∣∣2dx + 1
2

∫
AM (t)

u2|∇φ|2dx. (3.61)

For the last inequality in (3.61), we have used the fact that u2 ≥ v2 because of cn, cp ≥ 0. Hence

∥∥u(M)∥∥2
L∞((0,τ);L2(Ω)) +

∥∥∇u(M)∥∥2
L2((0,τ);L2(Ω)) ≤ 2

τ∫
0

∫
AM (t)

u2|∇φ|2dxdt

= 2
τ∫

0

∫
AM (t)

(
u(M) + M

)2|∇φ|2dxdt

≤ 4
τ∫

0

∫
AM (t)

((
u(M))2 + M2)|∇φ|2dxdt (3.62)

for τ ∈ (0, t1). For simplicity, we employ some notations used in [16] that

Qs := Ω × (0, s),

V2(Qs) := L∞(
(0, s);L2(Ω)

)
∩ L2((0, s);H1(Ω)

)
,

and

‖w‖Qs
:= ‖w‖L∞((0,s);L2(Ω)) + ‖w‖L2((0,s);H1(Ω))

for w ∈ V2(Qs). In addition, we have the embedding

‖w‖Lr((0,s);Lq(Ω)) ≤ Cs‖w‖Qs
(3.63)

for all w ∈ V2(Qs), where 1/r + d/2q = d/4, and

Cs = β0 +
(
sd/2|Ω|−1) 1

2− 1
q
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with β0 depends only on q, r, d, and Ω. Notice that the constant Cs for (3.63) is increasing in s, then for 
0 < s ≤ t1, we can use the same constant Ct1 such that

‖w‖Lr((0,s);Lq(Ω)) ≤ Ct1‖w‖Qs
, (3.64)

where Ct1 is the constant in (3.63) with domain Qt1 . Now, from (3.62), we have

∥∥u(M)∥∥2
Qτ

≤ C

τ∫
0

∫
AM (t)

((
u(M))2 + M2)|∇φ|2dxdt (3.65)

for 0 < τ < t1, where C is a positive constant independent of cn, cp, u, v, φ, M , and τ . We will use C to 
denote constants that may vary from line to line, but they are independent of cn, cp, u, v, φ, M , and τ . 
Then, by Hölder’s inequality,

∥∥u(M)∥∥2
Qτ

≤ C
∥∥|∇φ|2

∥∥
L3(Qτ (M))

(∥∥(u(M))2∥∥
L

3
2 (Qτ (M))

+
∥∥M2∥∥

L
3
2 (Qτ (M))

)
= C‖∇φ‖2

L6(Qτ (M))
(∥∥u(M)∥∥2

L3(Qτ (M)) + M2∣∣Qτ (M)
∣∣ 2
3
)

(3.66)

where Qτ (M) := Qτ ∩ {(x, t) ∈ Qτ : u(x, t) > M}. Here, by using the same inequality as (3.27) and (3.54), 
we have

‖∇φ‖2
L6(Ω) ≤ C

(
‖v‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)

≤ C
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

t1∫
0

(
1 +

(
‖v‖2

L2(Ω) + ‖φ1‖2
H2(Ω)

)2)
ds

}

≤ C
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

t1∫
0

(
1 + 2‖v‖4

L2(Ω) + 2‖φ1‖4
H2(Ω)

)
ds

}

≤ C
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]},
where R is the radius of the ball in X where we obtain the solution (cn, cp) as a fixed point of F . That is, 
∇φ ∈ L∞((0, t1); L6(Ω)) ⊂ L6(Qt1). Moreover,

‖∇φ‖2
L6(Qτ (M)) ≤ ‖∇φ‖2

L6(Qτ )

≤ Cτ
1
3
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}.
Hence, (3.66) implies

∥∥u(M)∥∥2
Qτ

≤ Cτ
1
3
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}
·
(∥∥u(M)∥∥2

L3(Qτ (M)) + M2∣∣Qτ (M)
∣∣ 2
3
)
. (3.67)

We now estimate the norm of u(M) in the right-hand side of (3.67) by Hölder’s inequality and (3.63),

∥∥u(M)∥∥
L3(Qτ (M)) ≤

∥∥u(M)∥∥
L2+ 4

d (Qτ (M))

∣∣Qτ (M)
∣∣ 4−d
12+6d

≤ Ct1

∥∥u(M)∥∥ ∣∣Qτ (M)
∣∣ 4−d
12+6d .
Qτ
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Notice that

∣∣Qτ (M)
∣∣ ≤ |Qτ | = τ |Ω|.

Thus, for (3.67), if τ ≤ τ0, where

τ0 := min
{
t1,

(
1
2C

−1C−2
t1

(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)−1|Ω|− 4−d
6+3d

· exp
{
−K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}) 2+d
2
}
,

i.e.,

CC2
t1τ

1
3
0
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}|Qτ0 |
4−d
6+3d ≤ 1

2 ,

then we have

∥∥u(M)∥∥2
Qτ

≤ 2CM2τ
1
3
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)∣∣Qτ (M)
∣∣ 2
3

· exp
{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}
≤ 2CM2t

1
3
1
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)∣∣Qτ (M)
∣∣ 2
3

· exp
{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}.
By Theorem 6.1 of Chapter II in [16], we have

‖u‖L∞(Qτ ) ≤ 4M0
(
1 + C̃τ

1
3
)

for 0 < τ ≤ τ0, where

C̃ = 2
2
κ+ 1

κ2 |Ω| 13C1+ 1
κ

t1

(
2Ct

1
3
1
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
· exp

{
K2

[
t1
(
1 + 2‖φ1‖4

H2(Ω)
)

+ 2R4]}) 1
2 (1+ 1

κ )

with κ = 4−d
3d . Therefore, u(x, t) ≤ 5M0 for 0 < t < t0, where t0 = min{τ0, 1/(4C̃)3}. �

By Lemma 4, c∗n = cn and c∗p = cp for 0 < t < t0 in (3.57)–(3.58). Moreover, we have cn, cp ∈ L∞(Qt0).
Therefore, we may conclude the following theorem:

Theorem 5. Suppose that the initial data cn,0 and cp,0 satisfy (3.7) and (3.8), respectively. Then there 
exists t0 > 0 (depending on ‖cn,0‖L∞(Ω), ‖cp,0‖L∞(Ω), ‖φ1‖H2(Ω), d, α, and Ω) such that the system 

(3.1)–(3.8) has a solution (cn, cp, φ) with 0 ≤ cn, cp ∈ L∞((0, t0); L∞(Ω)) ∩L2((0, t0); H1(Ω)) and ∂cn∂t , 
∂cp
∂t ∈

L2((0, t0); H−1(Ω)).

Remark 6. By using the Moser iteration method, we have another approach to estimate the upper bound of 
cn + cp. We can rewrite (3.59) to be

ut = ∇ · (∇u− uV ), (3.68)
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where

V =
{ v

u∇φ if u �= 0,
0 if u = 0.

Note that we have proved that cn, cp ≥ 0 in Lemma 4, then |v/u| ≤ 1 for u �= 0. Moreover, by (3.27) and 
Lemma 1, V ∈ L∞((0, t1); L6(Ω)). Set w = uθ for θ > 1. From (3.68), we deduce that

1
2
d

dt

∫
Ω

w2dx = −
∫
Ω

(
|∇w|2 + θ(θ − 1)uθ−2w

∣∣∇u2∣∣− (2θ − 1)wV · ∇w
)
dx

≤ −1
2

∫
Ω

|∇w|2dx + 1
2(2θ − 1)2

∫
Ω

w2|V |2dx

≤ −1
2

∫
Ω

|∇w|2dx + 1
2(2θ − 1)2‖V ‖2

L6(Ω)‖w‖2
L3(Ω). (3.69)

Then for 0 < τ < t1, we have

∫
Ω

w2dx

∣∣∣∣
t=τ

+
∫
Qτ

|∇w|2dxdt ≤ (2θ − 1)2‖V ‖2
L6(Qτ )‖w‖2

L3(Qτ ) +
∫
Ω

w2dx

∣∣∣∣
t=t0

≤ μ2θ2‖w‖2
L3(Qτ ) + (2M0)2θ|Ω|,

where μ = 2‖V ‖2
L6(Qτ ). If λ > 0 satisfies 1

3(1+λ) (1 + d
2 ) = d

4 , then by (3.64)

‖w‖L3(1+λ)(Qτ ) ≤ Ct1‖w‖Qτ
,

where Ct1 is the constant in (3.64) with q = r = 3(1 + λ). Thus, (3.69) implies

‖w‖L3(1+λ)(Qτ ) ≤ 2Ct1

{
μθ‖w‖L3(Qτ ) + (2M0)θ|Ω|1/2

}
= 2Ct1

{
μθ‖w 1

1+λ ‖1+λ
L3(1+λ)(Qτ ) + (2M0)θ|Ω|1/2

}
. (3.70)

Set

Φk =
∥∥u(1+λ)k∥∥

L3(1+λ)(Qτ ) = ‖u‖(1+λ)k

L3(1+λ)k (Qτ )
,

then by letting θ = (1 + λ)k, (3.70) becomes

Φk ≤ 2Ct1

{
μ(1 + λ)kΦ1+λ

k−1 + (2M0)(1+λ)k |Ω|1/2
}
. (3.71)

From the recursion inequalities (3.71), one can use induction to deduce that

Φk ≤
(
4Ct1(1 + λ)

) (1+λ)k−1
λ (1 + λ)

(1+λ)k−1
λ2 − k

λ

· max
{
μ

(1+λ)k−1
λ Φ

(1+λ)k
0 ,max

{
μ

(1+λ)k−1
λ , 1

}(
2 max

{
|Ω| 12 , 1

}
M0

)(1+λ)k}
.
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Therefore,

‖u‖L∞(Qτ ) = lim
k→∞

Φ
(1+λ)−k

k

≤ (4Ct1)
1
λ (1 + λ)

1
λ+ 1

λ2

· max
{
μ

1
λΦ0, 2 max

{
μ

1
λ , 1

}
· max

{
|Ω| 12 , 1

}
M0

}
.

This provides an estimate of upper bound of u = cn + cp.

In the next section, we do compare the modified PNP to the classical PNP in numerical results.

4. Numerical experiments

In this section, we discuss on numerical results of modified PNP (2.26)–(2.28) comparing with those of 
PNP (2.10)–(2.12). The computational domain is [−1, 1] for numerical experiments. Mesh size is fixed with 
h = 2−7 and time step size with dt = 10−3 throughout numerical experiments.

In time discretization, the backward Euler is used as follows:

ck+1
n − ckn

dt
= ∇ ·

{
D(1 + ck+1

n )
1 + ck+1

n + ck+1
p

(
∇ck+1

n + znq

kBT
ck+1
n ∇φk+1

)

+ Dck+1
n

1 + ck+1
n + ck+1

p

(
∇ck+1

p + zpq

kBT
ck+1
p ∇φk+1

)}
(4.1)

ck+1
p − ckp

dt
= ∇ ·

{
D(1 + ck+1

p )
1 + ck+1

n + ck+1
p

(
∇ck+1

p + zpq

kBT
ck+1
p ∇φk+1

)

+
Dck+1

p

1 + ck+1
n + ck+1

p

(
∇ck+1

n + znq

kBT
ck+1
n ∇φk+1

)}
(4.2)

∇ ·
(
ε∇φk+1) = −znqc

k+1
n − zpqc

k+1
p , (4.3)

for k = 0, 1, · · · with initial data c0n and c0p. We set no-flux boundary conditions for charge densities and 
Dirichlet boundary condition for the electrostatic potential,

φk+1(−1) = φ0(−1), φk+1(1) = φ0(1) for k = 0, 1, 2, · · · . (4.4)

The edge averaged finite element (EAFE) method and the finite element method with piecewise linear basis 
functions are used to solve Nernst–Planck equations (4.1), (4.2) and Poisson equation (4.3), respectively [27]. 
The variational formulation of the modified PNP (2.26)–(2.28) is given by

(
ck+1
n , ξ

)
+ dt

(
D(1 + ck+1

n )
1 + ck+1

n + ck+1
p

(
∇ck+1

n + znq

kBT
ck+1
n ∇φk+1

)
,∇ξ

)

+ dt

(
Dck+1

n

1 + ck+1
n + ck+1

p

(
∇ck+1

p + zpq

kBT
ck+1
p ∇φk+1

)
,∇ξ

)

=
(
ckn, ξ

)
, (4.5)

(
ck+1
p , η

)
+ dt

(
D(1 + ck+1

p )
1 + ck+1

n + ck+1
p

(
∇ck+1

p + zpq

kBT
ck+1
p ∇φk+1

)
,∇η

)

+ dt

(
Dck+1

p

1 + ck+1
n + ck+1

p

(
∇ck+1

n + znq

kBT
ck+1
n ∇φk+1

)
,∇η

)

=
(
ckp, η

)
, (4.6)
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ε
(
Δφk+1, ζ

)
= −

(
znqc

k+1
n + zpqc

k+1
p , ζ

)
. (4.7)

However, the numerical computation of (4.1)–(4.3) is not an easy task, especially solving the charge con-
centration and the electrostatic potential both at the same time. To over come the drawback, we apply a 
sub-updating iterative step because Poisson equation is not in time scale, that is, the electrostatic potential 
should be simultaneously updated with the charge density in time.

Let Dn,n = D(1+ck+1,m
n )

1+ck+1,m
n +ck+1,m

p
, Dn,p = Dck+1,m

n

1+ck+1,m
n +ck+1,m

p
, Dp,p = D(1+ck+1,m

p )
1+ck+1,m

n +ck+1,m
p

, and Dp,n = Dck+1,m
p

1+ck+1,m
n +ck+1,m

p
. 

Then the sub-updating numerical scheme with the index m is given by

(
ck+1,m+1
n , ξ

)
+ dt

(
Dn,n

(
∇ck+1,m+1

n + znq

kBT
ck+1,m+1
n ∇φk+1,m

)
,∇ξ

)

=
(
ckn, ξ

)
− dt

(
Dn,p

(
∇ck+1,m

p + zpq

kBT
ck+1,m
p ∇φk+1,m

)
,∇ξ

)
, (4.8)

(
ck+1,m+1
p , η

)
+ dt

(
Dp,p

(
∇ck+1,m+1

p + zpq

kBT
ck+1,m+1
p ∇φk+1,m

)
,∇η

)

=
(
ckp, η

)
− dt

(
Dp,n

(
∇ck+1,m

n + znq

kBT
ck+1,m
n ∇φk+1,m

)
,∇η

)
, (4.9)

ε
(
Δφk+1,m+1, ζ

)
= −

(
znqc

k+1,m+1
n + zpqc

k+1,m+1
p , ζ

)
(4.10)

for m = 0, 1, 2 · · · letting ck+1,0
n = ckn, ck+1,0

p = ckp. The boundary condition of the electrostatic potential is

φk+1,m+1(−1) = φ0(−1), φk+1,m+1(1) = φ0(1) for k,m = 0, 1, 2, · · · . (4.11)

Remark 7. Developing numerical scheme satisfying energy law is another work in numerical computations. 
The numerical discretization scheme for (4.8)–(4.10) has a certain limitation for preserving energy law in 
finite dimensional space. However, the comparison of dissipations �∗, � of the modified and original PNP 
systems may provide the difference between two systems.

In Fig. 4.1, we present numerical results of initial data (top row), equilibrium states cn, cp (middle row) 
and φ (bottom row) for the modified and original PNP systems with boundary conditions φ(−1) = 0.05, 
φ(1) = 0.0 (left panel) and φ(−1) = 0.0, φ(1) = 0.05 (right panel), respectively. These results show that 
the modified and original PNP systems have the same equilibrium states even though they are totally 
different systems of equations. However, different dynamics of the modified and original PNP systems can 
be expressed by numerical results of �∗ and � in time (see Fig. 4.2) due to the extra term kBT

Dn,p
cncp|�u∗

n−�u∗
p|2

in the dissipation functional of the modified PNP system.

5. Conclusion

By employing an energetic variational approach, we derive a modified PNP system to describe the dynam-
ics of non-ideal ions, such as those with relatively high concentrations. In this work, we maintain the energy 
functional as the original PNP system but modify dissipation functional with an additional dissipation term, 
which accounts for the relative velocity fields of different ion species. The modified PNP system is highly 
coupled and may even involve degenerate parabolicity in the system. The analysis and simulation of such 
a system become much more involved than the original PNP system. As one preliminary step, we develop 
(with rigorous proof) the local existence theorem of this modified PNP system. By comparing the numerical 
results of the modified PNP system and the original PNP system, we verify that these two systems have 
the same equilibrium states but with different dynamics because of different dissipations. In the following 
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Fig. 4.1. The comparison of numerical results cn, cp, φ of the modified PNP system to those of original PNP system. Initial data 
(top row), charge densities (middle row), and the electrostatic potential (bottom row). The left panel is for the numerical results 
with the electrostatic potential boundary condition, φ(−1) = 0.05, φ(1) = 0.0, and the right one for the numerical results with 
φ(−1) = 0.0, φ(1) = 0.05.
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Fig. 4.2. The comparison of the dissipation of the modified PNP system to those of the original PNP system. The left panel is for 
the numerical results with the electrostatic potential boundary condition, φ(−1) = 0.05, φ(1) = 0.0, and the right one for the 
numerical results with φ(−1) = 0.0, φ(1) = 0.05.

up work, we are including modifications to both free energy functional and the dissipation functional, and 
study the resulting PNP-type system theoretically and numerically.
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