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Abstract
In the celebrated paper on the reciprocal relation for the kinetic coefficients in irreversible
processes, Onsager (1931 Phys. Rev. 37 405) extended Rayleigh’s principle of the least energy
dissipation to general irreversible processes. In this paper, I shall show that this variational
principle gives us a very convenient framework for deriving many established equations which
describe the nonlinear and non-equilibrium phenomena in soft matter, such as phase separation
kinetics in solutions, gel dynamics, molecular modeling for viscoelasticity
nemato-hydrodynamics, etc. Onsager’s variational principle can therefore be regarded as a solid
general basis for soft matter physics.

1. Introduction

Soft matter represents a large class of materials, polymers,
colloids, liquid crystals, and surfactants. Though they are
diverse, they have a common feature that they all consist
of large structural units, and show large responses to weak
external perturbations.

The response of soft matter is characterized by its strong
nonlinear and non-equilibrium nature. For example, the
viscosity of polymer solutions is not constant, but decreases
with increase of shear rate, and depends on the past history
of shearing. In liquid crystals, the rotation of the molecular
axis (the director) is coupled with macroscopic flow, and
their optical response to electric field is strongly nonlinear.
Stretched gels show very slow stress relaxation associated
with the diffusion of solvent. Quenched solutions show quite
complex structural evolution in the process of phase separation.

To describe such nonlinear, non-equilibrium phenomena,
various kinetic equations have been proposed. Examples
are (i) the Smoluchowski equation for the conformational
change of polymers under flow [1, 2], (ii) the Ericksen–
Leslie equation for the flow of liquid crystals [3], (iii) the gel
dynamics equations [4], (iv) the phase separation dynamics of
solutions [5], etc.

In this paper, I will show that these equations are derived
from a variational principle which I shall call Onsager’s
variational principle. The variational principle is the same
as that proposed by Onsager in his celebrated paper on the
reciprocal relation in the phenomenological kinetic equations
for irreversible processes [6]. As Onsager stated in the paper,

the variational principle is an extension of Rayleigh’s principle
of the least energy dissipation [7]. The least energy dissipation
principle is well known in various linear systems such as
viscous flow in Newtonian fluid, and electric current in ohmic
devices. However, it should be emphasized that Onsager’s
phenomenological equation can give nonlinear time evolution
equations [8–10], and that therefore the variational principle
can be used to describe nonlinear phenomena.

Since the classical work of Onsager, various extensions
and reformulations have been made for his work, and there are
now several ways of deriving the phenomenological equations
for the irreversible processes [8–10, 13]. In this paper, I
will use the original formulation of Onsager and show that it
gives us a simple and unified way of deriving various basic
equations known in soft matter. The derivation presented
here is not entirely new: various parts have already been
published [2, 11, 12], and similar methods may have been
already used in other contexts. However, to my knowledge,
the presentation given here has not been published previously.

In order to make the argument as simple as possible, I shall
limit the discussion to (i) isothermal systems (the temperature
of the system is assumed to be constant), and (ii) slow kinetics
(the inertia effect is assumed to be negligible). These effects
may be taken into account in the same way as in [9, 13], but
will not be discussed here.

2. Hydrodynamic variational principle

Onsager’s variational principle is an extension of Rayleigh’s
principle of the least energy dissipation. Therefore this
principle is discussed first.
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To be clear, let us consider a motion of a rigid particle
moving in a viscous fluid under the influence of some external
force. The state of the particle is specified by six coordinates,
three coordinates denoting the position of the center of mass,
and three coordinates specifying the particle orientation. Let
Xi (i = 1, 2, . . . , 6) be such generalized coordinates. Suppose
that the external forces derive from a potential U(X)

Fi = − ∂U

∂Xi
. (1)

This is a generalized force and Fi stands for usual force or
torque. Under such forces, the particle moves. Let Vi = Ẋ i be
the generalized velocity of the particle. If the particle moves
in a Newtonian fluid, the fluid exerts a frictional force on the
particle. In the limit of small Reynolds number, the fluid
motion is described by the Stokes equation, and the frictional
force is written as a linear function of Vi [14, 15]

FH i = −
∑

j

ζi j V j . (2)

The coefficients ζi j are called friction coefficients, and
can be calculated by solving the equations in Stokesian
hydrodynamics.

The friction coefficients ζi j have an important property:
they are symmetric, and positive definite, i.e.

ζi j = ζ j i and
∑

i j

ζi j Vi V j � 0 for any Vi .

(3)
Notice that the relation ζi j = ζ j i is highly non-trivial. For
example it states that if a torque T acting on a point P of a
particle induces a velocity V of the point P, a force F acting
on P induces an angular velocity ω of the particle around P and
that the coefficients are equal to each other. Equation (3) can be
proved by Stokesian hydrodynamics, and is called the Lorentz
reciprocal relation [14].

Since the inertia effect is negligibly small in the usual
motion of small particles, one can assume that the frictional
force is always balanced with the potential force:

∑

j

ζi j V j = − ∂U

∂Xi
. (4)

Let (ζ−1)i j be the inverse of the matrix ζi j , then equation (4)
gives a time evolution equation for Xi :

dXi

dt
= −

∑

j

(ζ−1)i j
∂U

∂X j
. (5)

Notice that ζi j , (ζ−1)i j , and U are functions of Xi . Therefore,
equation (5) is, in general, a rather complex nonlinear equation
for Xi .

Using the reciprocal relation (3), the time evolution
equation (4) can be cast into a variational principle. Let W
and U̇ be defined by

W =
∑

i, j

ζi j Vi V j (6)

U̇ =
∑

i

∂U

∂Xi
Vi (7)

and the function R be defined by

R = 1

2
W + U̇ = 1

2

∑

i, j

ζi j Vi V j +
∑

i

∂U

∂Xi
Vi (8)

then it is easy to see that the force balance equation (4) is
equivalent to the condition ∂R/∂Vi = 0, i.e. the velocity Vi is
determined by the condition that R be minimum with respect
to Vi . This principle is called the principle of least energy
dissipation.

It should be noted that the basis of the variational
principle is the reciprocity and the positive definiteness of ζi j

(equation (3)). As far as these conditions are satisfied, the
time evolution equation can be cast in the variational principle.
Using the Stokes equation, it can be proved that equation (3)
is valid for any objects moving in Newtonian fluids. Therefore
the variational principle holds quite generally. For example, the
principle holds for objects with many degrees of freedom (such
as polymers or membranes), or for the mixture of such objects
(such as concentrated solutions of particles or polymers).

The function R is called a Rayleighian. The Rayleighian
consists of two terms W and U̇ . W is a quadratic function of
Vi , and stands for the work done to the fluid per unit time when
the particle moves with velocity Vi . The function (1/2)W is
called the energy dissipation function. The function U̇ is a
linear function of Vi and stands for the change of the potential
energy of the particle when it moves with velocity Vi .

3. Onsager’s variational principle

Onsager showed that the above principle holds for general
irreversible processes. Let Xi be the set of variables describing
the non-equilibrium state of the system, and let us assume that
the time evolution of the state can be written in the form

dXi

dt
=

∑

j

Li j
∂S(X)

∂X j
(9)

where S(X) is the entropy of the system, and Li j are the
phenomenological kinetic coefficients. Using the time reversal
symmetry in the equilibrium state, Onsager proved that Li j is
symmetric1

Li j = L ji . (10)

This reciprocal relation allows us to write the time evolution
equation (9) in the form of a variational principle. In the
original paper [6], Onsager formulated the variational principle
as the maximization of the function T Ṡ − (1/2)W . For
isothermal systems, this principle can be shown to reduce to
the principle of least energy dissipation: the time evolution of
the system is determined by minimizing

R = 1

2

∑

i, j

ζi j Ẋ i Ẋ j +
∑

i

∂A

∂Xi
Ẋi (11)

1 Here we are assuming that the state variables Xi are invariant under time
reversal transformation, and that there is no magnetic field.
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with respect to Ẋ i . In equation (11), A is the free energy for
the non-equilibrium state, and the second term stands for Ȧ,
the time derivative of A. The difference between equations (8)
and (11) is that Xi now stands for the general state variables
specifying the non-equilibrium state, and A(X) is the free
energy of the system.

Onsager’s variational principle is equivalent to the kinetic
equation

Ẋ j = −
∑

j

(ζ−1)i j
∂A

∂X j
(12)

but the variational principle has several advantages. This will
be demonstrated in the following sections.

4. Diffusion

As a simple application of the variational principle, let us
first consider the collective motion of particles in suspensions.
Consider the situation that there are many particles moving
together (diffusing or sedimenting) in a viscous fluid. In
such a situation, it is not sensible to focus on the dynamics
of individual particles; it is more important to focus on
the behavior of particles as a whole, for example how
the concentration of particles evolves in time, or how
the orientational distribution of particles evolves in time.
Onsager’s variational principle gives us a convenient tool to
answer these questions.

First let us consider a simple situation that the solution
is macroscopically at rest and that the individual particle is a
sphere of radius a. Let n(r, t) be the number density of the
particle at point r and time t . The volume fraction of the
particle is given by

φ(r, t) = vcn(r, t) (13)

where vc = 4πa3/3 is the volume of the particle.
The non-equilibrium state of the system is described by

φ(r, t), and our task is to derive a time evolution equation for
φ. Since φ satisfies the conservation equation

φ̇ = −∇ · (vpφ) (14)

we shall determine vp, the mean velocity of particles at r, by
the variational principle.

When particles move with velocity vp in a quiescent
solution, the energy dissipation is given by

W =
∫

dr ξ(φ)v2
p (15)

where ξ(φ) is the friction constant for the collective motion
of particles per unit volume. If the suspension is dilute,
ξ(φ) is simply given by 6πηan = 6πηaφ/vc. If the
suspension is not dilute, ξ(φ) is not easy to calculate due to
hydrodynamic interaction, but many studies have been made
and an approximate formula for ξ(φ) is known [14, 15].

The free energy A of the system can be expressed as a
functional of φ:

A =
∫

dr f (φ(r)) (16)

where f (φ) stands for the free energy per unit volume of the
suspension, and we have assumed that the effect of gravity is
negligible. From equation (16), Ȧ can be calculated by using
equation (14):

Ȧ =
∫

dr f ′(φ)φ̇ = −
∫

dr f ′(φ)∇ · (vpφ)

=
∫

dr vpφ · ∇ f ′(φ) (17)

where we have used integration by parts.
The Rayleighian is then given by

R = 1
2

∫
dr ξ(φ)v2

p +
∫

dr vpφ · ∇ f ′(φ). (18)

The minimization of R with respect to vp gives the following:

vp = −φ
ξ

∇ f ′(φ). (19)

The right-hand side can be rewritten by using the osmotic
pressure �(φ) of the colloidal solution

� = φ f ′(φ)− f (φ) (20)

as

vp = − 1

ξ
∇�. (21)

Equations (14) and (21) give the following diffusion equation:

∂φ

∂ t
= ∇ · [D(φ)∇φ] (22)

where D(φ) is given by

D(φ) = φ

ξ

∂�

∂φ
. (23)

This gives a diffusion constant in concentrated solution. It is
easy to confirm that in the case of dilute solution equation (23)
gives the Einstein formula D = kBT/(6πηa).

In the above example of diffusion, the variable Xi which
specifies the non-equilibrium state of the system is the spatial
distribution of the volume fraction of the particles φ(r).
Hence the suffix i is replaced by the spatial coordinate r.
The diffusion equation is a special form of Onsager’s kinetic
equation. Indeed, equation (22) can be written in the form of
the kinetic equation shown in equation (12):

φ̇(r) = −
∫

dr′ L(r, r′)
δA

δφ(r′)
(24)

where the kernel L(r, r′) is given by

L(r, r′) = −∇
[
φ(r)2

ξ(φ(r))
∇δ(r − r′)

]
. (25)

The kernel L(r, r′) is symmetric, i.e., for any functions φ1(r)
and φ2(r), the following identity holds:
∫

dr dr′ L(r, r′)φ1(r)φ2(r
′)

=
∫

dr dr′ L(r′, r)φ1(r)φ2(r
′). (26)
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Notice that in the above application of the variational
principle, what is determined by the variational principle is not
the time derivative of the state variable φ̇, but the velocity vp

which determines φ̇, yet the reciprocal relation for the kinetic
coefficients is satisfied (see equation (26)). As far as the time
evolution equation is obtained by the variational principle, the
final kinetic equations satisfy Onsager’s reciprocal relation.
This fact can be proved quite generally.

Suppose that the time derivative of the state variable Ẋ i is
written as a linear combination of some generalized velocities
Vi :

Ẋ i =
∑

j

ai j V j (27)

where ai j is a certain coefficient2. The matrix (ai j) needs not
be a square matrix: the number of velocity variables Vi can
be different from the number of state variables Xi . Suppose
that the energy dissipation function is written as a quadratic
function of Vi and that the Rayleighian is given by

R = 1

2

∑

i j

ζ̃i j Vi V j +
∑

i j

∂A

∂Xi
ai j V j . (28)

Minimization of R gives

Vi =
∑

jk

(ζ̃−1)i j
∂A

∂Xk
akj . (29)

This gives the following kinetic equation:

Ẋ i =
∑

j

Li j
∂A

∂X j
(30)

with
Li j =

∑

l,k

aika jl(ζ̃
−1)kl (31)

which satisfies the reciprocal relation (Li j = L ji) and positive
definiteness

∑
i, j xi x j Li j � 0.

The above example demonstrates an advantage of the
variational principle. If it is difficult to write down the
energy dissipation as a function of Ẋ i , one can choose any
set of variables Vi which describe the time evolution of the
system and determine them by the variational principle. This
flexibility is quite useful, and will be seen further in the
following examples.

5. Coupling between flow and particle motion

5.1. Colloidal suspensions

In section 4, it is assumed that the solution is at rest as a whole.
This assumption is not always correct. When colloidal particles
move relative to the solvent, it generally induces a macroscopic
flow of solutions. For example, when a colloidal suspension
initially placed on top of a pure solvent starts to sediment, the
particles do not sediment homogeneously. A certain part starts
to sediment faster than the other, and forms a lane where the

2 Notice that equation (14) can be written as φ̇(r) = ∫
dr′ a(r, r′)vp(r

′)
with a(r, r′) = −∇[δ(r − r′)φ(r)] and is a special form of equation (27).

particles and solvent move downward, while the solvent in the
other part moves upward.

In order to describe such phenomena, it is necessary to
take into account the fluid flow as a whole. Let v(r, t) be
the macroscopic velocity of the solution (v is defined as the
volume averaged velocity v = φvp + (1 − φ)φvs). If we
assume that the colloidal solution is regarded as a Newtonian
fluid with effective viscosity η(φ), the energy dissipation
function is written as

W =
∫

dr ξ(φ)(vp − v)2 + 1

2

∫
dr η(φ)

(
∂vα

∂rβ
+ ∂vβ

∂rα

)2

(32)
where the indices α, β denote the x, y, z components of
vectors and Einstein’s convention, that summation is taken over
repeatedly appearing indices, is used. The first term v2

p in
equation (15) has been replaced by (vp − v)2, and the second
term has been added to account for the energy dissipation
caused by the velocity gradient of the solution.

With the gravitational energy taken into account, the free
energy A of the solution is now given by

A =
∫

dr [ f (φ)− ρ1φg · r] (33)

where ρ1 = ρp − ρs is the density difference between the
particle and solvent. The time derivative of (33) is

Ȧ =
∫

dr ( f ′(φ)− ρ1g · r)φ̇(r)

=
∫

dr vpφ · (∇ f ′(φ)− ρ1g). (34)

Since the solution is incompressible, v has to satisfy the
constraint

∇ · v = 0. (35)

Therefore the Rayleighian is given by

R = 1
2 W + Ȧ +

∫
dr p(r)∇ · v (36)

where the last term stands for the effect of constraint (35). The
conditions δR/δvp = 0 and δR/δv = 0 give the following
equations:

ξ(vp − v) = −φ∇ f ′(φ)+ ρ1φg (37)

∇η · [∇v + (∇v)t )] + ξ(v − vp) = ∇ p. (38)

Equations (35), (37), (38) and (14) give a closed set of
equations which describes the coupling between the particle
motion (diffusion and sedimentation) and macroscopic flow.

Again one can show that the above set of equations can be
written in the form of Onsager’s kinetic equation:

φ̇(r) = −
∫

dr′ L(r, r′)
δA

δφ(r′)
(39)

with symmetric kernel L(r, r′).
It should be emphasized that the state variable in solutions

is φ(r), and vp and v are auxiliary variables introduced to
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describe the time evolution of φ(r). Equations (14) and (37)
can be written as

φ̇(r) = −∇ · (vφ)+ ∇ ·
[
φ

ξ
∇ δA

δφ(r)

]
. (40)

In some of the literature, the first term on the right-hand side
is called the ‘reversible part’. This terminology is misleading,
since there is no reason to discriminate the variable v from
other variable vp: both velocities are determined by the
balance of the dissipative force and the potential force.

5.2. Phase separation

A special case of the above coupled equation for flow and
diffusion is the equation used to describe the phase separation
kinetics in solution. Suppose a homogeneous solution is
brought into the state where D(φ) is negative, then the solution
starts to separate into two phases, the concentrated phase
and the dilute phase. The kinetics of phase separation has
been extensively discussed in statistical mechanics [5]. The
equations used there can be obtained by a minor modification
of the above equations.

In the final state of phase separation, the concentrated
region and the dilute region coexist with each other. At the
boundary between the two regions, concentration changes very
rapidly over the molecular length scale. In such a case, the
total free energy cannot be written in the form of equation (16).
There is an extra energy which corresponds to the interfacial
energy between the two regions. The effect of the interfacial
energy can be accounted for by replacing equation (16) by

A =
∫

dr [ f (φ)+ 1
2κs(∇φ)2] (41)

where κs is a positive constant. Then Ȧ is given by

Ȧ =
∫

dr
δA

δφ(r)
φ̇(r) =

∫
dr ( f ′(φ)− κs∇2φ)φ̇(r). (42)

The phase separation kinetics has been discussed by the set of
equations (14), (37) and (38) with f ′(φ) being replaced by
f ′(φ)− κs∇2φ.

6. Gel dynamics

Gel is a homogeneous mixture of elastic material and fluid. A
typical gel, polymeric gel, consists of cross-linked polymer and
solvent. The cross-linked polymer forms a three dimensional
network and gives an elasticity to the gel.

The deformation of the polymer network is coupled with
the transport of the solvent. For example, when a gel is
compressed, solvent bleeds out from the gel. Equations which
describe the coupled phenomena of network deformation
and solvent permeation can be derived from the variational
principle [4, 12]. The derivation is the same as for solutions.
The only difference is that in solutions, the free energy is
a function of polymer concentration, while in gels, the free
energy is a function of the deformation gradient of the polymer
network.

The state variable in a gel is the displacement vector
u(r, t) which represents the displacement of the point on
the network located at r in a certain reference state. If the
displacement is small, the free energy is given in the same form
as the elastic energy of deformation:

A =
∫

dr

[
1

2
K

(
∂uα
∂rα

)2

+ 1

4
G

(
∂uα
∂rβ

+ ∂uβ
∂rα

− 2

3
δαβ

∂uγ
∂rγ

)2]
(43)

where K and G are called the osmotic bulk modulus, and the
shear modulus respectively.

On the other hand, the energy dissipation is given by

W =
∫

dr ξ(u̇ − vs)
2 (44)

where vs stands for the velocity of the solvent.
In constructing the Rayleighian, one has to take into

account of the fact that gel behaves as an incompressible
material (i.e., the volume change of a gel can only occur by
taking in solvent from the surroundings, or bringing out solvent
to the surroundings). This constraint is expressed as

φ∇ · u̇ + (1 − φ)∇ · vs = 0 (45)

where φ is the volume fraction of solvent (which may be
assumed to be constant in the present consideration of small
deformation).

The Rayleighian is thus constructed as

R = 1

2

∫
dr ξ(u̇ − vs)

2 +
∫

dr
δA

δu
· u̇

+
∫

dr p(r)[φ∇ · u̇ + (1 − φ)∇ · vs]. (46)

The last term comes from the constraint (45). The conditions
δR/δu̇ = 0 and δR/δvs = 0 give the following set of
equations:

(
K + 1

3 G
)∇(∇ ·u)+ G∇2u = ∇ p (47)

and
∇ ·u = κ∇2 p (48)

where

κ = (1 − φ)2

ξ
. (49)

Equations (47) and (48) are the basic equations which describe
the coupling of deformation and diffusion in gels. Application
of these equations is discussed in [4].

7. Viscoelasticity of fluid

So far, we have assumed that the material is either a viscous
fluid of constant viscosity or an elastic material of constant
modulus. Actual soft matters are usually viscoelastic: they
have both viscosity and elasticity [1, 16], and the relation
between the stress and strain (or strain rate) is nonlinear.
Describing the complex flow and deformation behavior of soft
matter has been a central issue in rheology [1, 16]. Here I shall

5
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show that the complex rheological properties of soft matter can
again be handled by the variational principle. As an example, I
take a solution of rod-like polymers.

Consider first a dilute solution of rod-like polymers.
Suppose that the solution is uniform and flowing with
macroscopic velocity

v(r) = κ · r (50)

where κ stands for the velocity gradient tensor:

καβ = ∂vα

∂rβ
. (51)

The viscosity of the solution depends on the orientational
distribution of the polymers. Let ψ(u, t) be the probability of
finding a polymer in the direction of unit vector u. The time
derivative of ψ(u, t) satisfies the conservation equation

ψ̇ = − ∂

∂u
· (ψu̇) (52)

and u̇ is determined by the variational principle.
The energy dissipation function is written as a quadratic

function of u̇ and κ . If the polymer follows the macroscopic
flow, its direction changes according to

u̇flow =
(
I − uu

u2

)
· κ ·u. (53)

Deviation of u̇ from u̇flow causes extra energy dissipation. For
a slender rod, the energy dissipation per unit volume is shown
to be given by [2]

W = 1
2η0(κ + κ t ) : (κ + κ t)

+ nζr

∫
duψ

[
(u̇ − u̇flow)

2 + 1
2 (u · κ ·u)2

]
(54)

where η0 is the viscosity of solvent, κ t is the transpose of
the tensor κ , n is the number density of particles, and ζr

is the rotational friction constant of the polymer. The first
term on the right-hand side represents the energy dissipation
caused by solvent viscosity, and the second term represents the
dissipation due to the presence of rod-like polymers.

In dilute solutions. the free energy A is entirely due to the
orientational entropy, and is written as

A = nkBT
∫

duψ lnψ. (55)

From equations (52) and (55), Ȧ is calculated as

Ȧ = nkBT
∫

du
(
ψ̇ lnψ + ψ̇

)

= nkBT
∫

du u̇ψ
∂ lnψ

∂u
. (56)

Since u is a unit vector, u̇ has to satisfy the constraint

u̇ · u = 0. (57)

Thus the Rayleighian (per unit volume) is

R = n
∫

duψ

[
ζr

2
(u̇ − u̇flow)

2 + ζr

4
(u · κ · u)2

+ u̇kBT
∂ lnψ

∂u
+ λ(u)u · u̇

]

+ 1
4η0(κ + κ t ) : (κ + κ t). (58)

The condition δR/δu = 0 and the constraint (57) give

u̇ = − (
u2I − uu

) ·
(

kBT

ζr

∂ lnψ

∂u

)
+ u̇flow. (59)

Equations (59) and (52) give the following time evolution
equation for ψ(u, t):

∂ψ

∂ t
= ∂

∂u
· (u2I − uu

) ·
(

Dr
∂ψ

∂u
− κ · u

u2
ψ

)
(60)

where Dr = kBT/ζr is the rotational diffusion constant.
Equation (60) determines the orientational distribution of

rod-like polymers in the flow field. The macroscopic stress
tensor can be calculated by the following equation [2]:

σαβ = ∂R

∂καβ
. (61)

Equation (61) is derived according to the following reasoning.
Though we have regarded the solution velocity v as a given
quantity in the above treatment, v is in fact a quantity to be
determined by the variational principle as we have seen in
sections 5 and 5.2. The total Rayleighian is written as

Rtotal =
∫

dr R[ψ(u; r),v(r)]. (62)

Since R depends on v(r) through καβ = ∂vα/∂rβ , the
condition δRtotal/δvα(r) = 0 gives

∂

∂rβ

(
∂R

∂καβ

)
= 0. (63)

Comparing this with the force balance equation for the
macroscopic stress ∂σαβ/∂rβ = 0, we get equation (61).

For the Rayleighian (58), the stress tensor is given by

σαβ = n
∫

duψ[ζr(u̇α − u̇flowα)uβ

+ 1
2ζruαuβuμuνκμν] + η0(καβ + κβα). (64)

By using equation (59) and integration by parts, it can be
shown that (64) is written in the following form:

σαβ = n
∫

duψ[3kBT (uαuβ − δαβ)

+ 1
2ζruαuβuμuνκμν] + η0(καβ + κβα). (65)

Equations (60) and (65) give the constitutive equation: for
given velocity gradient, ψ(u; t) can be obtained by solving
equation (60), and then the stress can be calculated by
equation (65). The constitutive equation describes the
nonlinear viscoelasticity of the dilute solution of rod-like
polymers.

It can be easily shown that equation (60) is equivalent to
the usual form for the rotational diffusion equation [2]:

∂ψ

∂ t
= DrR2ψ − R · [(u × κ · u)ψ] (66)

where R = u×∂/∂u is the rotational differentiation operator.

6



J. Phys.: Condens. Matter 23 (2011) 284118 M Doi

8. Liquid crystals

8.1. Molecular theory

The theory described in section 7 can be extended for
concentrated solutions of rod-like polymers, especially for the
liquid crystalline phase. The molecular theory [2, 17] for the
rheology of the nematic phase of a rod-like polymer can be
formulated in the framework of the variational principle by
introducing two modifications to the above theory.

First, the expression for the energy dissipation function
must be modified. In concentrated solutions, free Brownian
rotation of an individual polymer is strongly prohibited
by the surrounding polymers, and therefore the effective
rotational friction constant ζ̃r becomes much larger than that
in dilute solution (estimation of ζ̃r has been made by the tube
model [17, 2]). Hence the energy dissipation is written as

W = n
∫

duψζ̃r [u̇ − u̇flow]2 . (67)

Here, only the dominant term for the energy dissipation is
taken into account: the first term in equation (54) which arises
from the solvent viscosity, and the last term in the integrand
which arises from the inextensibility of the polymer have been
ignored in equation (67).

Second, the expression for the free energy must be
modified. To describe the ordered state of the nematic phase,
it is essential to take into account the interaction between
polymers. Let U(u,u′) be the effective interaction between
two polymers directed along u and u′, then the free energy is
given by

A = n
∫

du kBTψ lnψ(u)

+ n

2

∫
du

∫
du′ U(u,u′)ψ(u)ψ(u′). (68)

Repeating the same calculation as for the dilute solution,
we get the following equation for the time evolution of the
orientational distribution function:

∂ψ

∂ t
= ∂

∂u
· (

u2I − uu
)

·
[

D̃r

(
∂ψ

∂u
+ ψ

kBT

∂Um f

∂u

)
− κ · u

u2
ψ

]
(69)

where D̃r = kBT/ζ̃r is the effective rotational diffusion
constant, and Um f (u) is the mean field potential given by

Um f (u) =
∫

du′ U(u,u′)ψ(u′). (70)

The stress tensor is given by

σαβ = n
∫

duψ

[
3kBT (uαuβ − δαβ)

+
(
δαμ − uαuμ)

u2

)
uβ
∂Um f

∂uμ

]
. (71)

Equations (69) and (71) give the constitutive equation for liquid
crystals.

8.2. Ericksen–Leslie theory

For nematics made of small molecules, the viscoelastic effect
and the nonlinear effect are not important. For such cases,
the flow of nematics can be described by the Ericksen–
Leslie theory, which can also be derived from the variational
principle.

In the Ericksen–Leslie theory, the state variable is the
director field n(r) which stands for the average direction of
molecules at point r. The energy dissipation W is a quadratic
function of ṅ and κ . The explicit form of W can be determined
by symmetry arguments. Using the fact that W is zero for
uniform rotation of the system, one can show that W is a
quadratic function of the strain rate

ε̇αβ = 1
2 (καβ + κβα) (72)

and the velocity of u relative to the macroscopic rotation

˜̇nα = ṅα − 1
2 (καβ − κβα)nβ. (73)

Constructing a quadratic function of ε̇αβ and ˜̇nα , the
coefficients of which can depend on n, we have

W = β1(ε̇αβnαnβ)
2+β2ε̇

2
αβ+β3(ε̇αβnβ)

2 +β4 ˜̇n2
α+β5 ˜̇nαε̇αβnβ

(74)
where β1, . . . , β5 are constants.

The Rayleighian therefore becomes

R = 1
2 W + hα ṅα − λnα ṅα (75)

where hα stands for the potential force conjugate to nα . The
time evolution of nα is determined by ∂R/∂ ṅα = 0, and
the stress tensor is given by equation (61). A straightforward
calculation gives the following expression for the stress tensor
σαβ and the time evolution equation for nα:

σαβ = α1ε̇μνnμnνnαnβ + α2nα ˜̇nβ + α3 ˜̇nαnβ + α4ε̇αβ

+ α5nαnμε̇μβ + α6nβnμε̇αμ (76)

γ1 ˜̇nα + γ2ε̇αβnβ − hα = λnα (77)

where

α1 = β1 α2 = 1
2β4 + 1

4β5

α3 = − 1
2β4 + 1

4β5 α4 = β2

α5 = 1
2β3 + 1

4β5 α6 = − 1
2β3 − 1

4β5

γ1 = −β4 = α3 − α2 γ2 = − 1
2β5 = α6 − α5.

(78)

Equations (76) and (77) constitute the Leslie–Ericksen
equation [3]. Notice that the Parodi relation α2 +α3 = α6 −α5

is automatically satisfied in this derivation.

9. Conclusion

In this paper, I have shown that many equations which have
been used in soft matter physics can be derived from the
classical variational principle proposed by Onsager. The
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variational principle is equivalent to Onsager’s kinetic equation
with reciprocal relations for the kinetic coefficients, but it has
several advantages.

(1) The variational principle allows us a great flexibility in
choosing state variables, and velocities. Also, the variational
principle is quite convenient for systems in which the velocity
Vi has to satisfy certain constraints such as the incompressible
condition.

(2) The variational principle demonstrates the logical
structure of Onsager’s theory clearly. The difficult part in the
usual kinetic formulation of Onsager’s theory is to find a proper
set of pairs of velocity and forces. If one uses the variational
principle, one obtains such pairs automatically.

The time evolution equations used in soft matter physics,
the diffusion equation, the flow–diffusion coupled equation,
the gel dynamics equation, the Smoluchowski equation,
and the Ericksen–Leslie equation are all derived from the
variational principle. Therefore they all belong to the same
class of equations represented by Onsager’s kinetic equation.
This indicates that Onsager’s variational principle is an
important principle in soft matter physics.
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