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Continuum mechanical model is proposed for dynamical processes in gels that involve coupling
between the elastic deformation and solvent permeation. Basic equations are derived by two methods, by
a physical argument, and by a variational principle. The model is then applied to discuss the swelling of
gels, in which solvent permeation causes deformation, and the squeezing of gels, in which mechanical
force induce solvent permeation. The model is also applied to the dynamics of the volume transition
of gels. It is shown that the elasticity of gels creates various unusual features in the phase transition
dynamics.
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1. Introduction

Gel is an elastic material swollen with a fluid.1,2) An
example of a gel is an edible jelly. When a solution of
gelatin is kept in a refrigerator, the solution loses its fluidity
and becomes a gel. The gel is a soft elastic material; it can be
easily deformed by hand, but it recovers its original shape
when the hand is released. The gel contains a large amount
of water, which can permeate through the gel. The
permeation of water can be controlled by a mechanical
force: the liquid in a soft jelly can be squeezed out by
applying some weight to the top of the jelly.

Most gels are made of polymers. By creating bridges
between polymers (either by a chemical reaction or by
forming physical junctions), the fluid state of the polymer
solution is transformed to an elastic state, i.e., a gel [see
Fig. 1(a)]. An example of this type of gel is the small beads
used in diapers. When placed in water, the beads absorb a
volume of water up to thousands times larger than their own
volume.

Gels can also be made from colloidal solutions. By
changing the condition of the solvent (such as the PH or salt
concentration), the colloidal particles aggregate to form a
three-dimensional network as shown in Fig. 1(b). Examples
of this type of gel are yogurt and bean curd.

This state of matter (elastic materials containing fluids)
are ubiquitous in our everyday life: they are found in foods,
cosmetics, and medicines. Gels are also important in
industry: in printing and coating, one needs to preserve the
shape of a material while the solvent is evaporating. Many
processes in the fabrication of electronic devices rely on
this state of matter. Gels are also important in agricultural,
biological, and environmental applications. The fact that our
bodies are made of gels indicates their importance.

The purpose of this article is to discuss the non-equi-
librium phenomena that take place in gels. The problems we
are addressing are illustrated in Fig. 2.
(1) Swelling and drying; [Fig. 2(a)]: a dry gel placed in a

water absorbs water and swells. Conversely, the gel
shrinks as the water evaporates from the surface. This
process is not just a process of volume change: During
the process, stress field is created within the gel, which
causes the deformation of the gel, and in some cases,
creates cracks within the gel.

(2) Squeezing; [Fig. 2(b)]: When a gel is squeezed, the
stress squeeze out the solvent from the gel.

(3) Forced permeation; [Fig. 2(c)]: When a solvent on one
side of the gel is pressed by a piston, it will permeate
through the gel.

These phenomena are seen in our everyday life, and have
been used in many industrial processes for a long time.
However, the theoretical aspects of the phenomena seem to
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Fig. 1. (Color online) Process of forming gels. (a) Gelation of polymer

solutions and (b) gelation of collidal solutions.
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Fig. 2. (Color online) (a) Swelling of a gel, (b) squeezing a gel, and (c)

pumping water into a gel.
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have been ignored or have attracted little attention compared
with their applications. Accordingly, theories for the above
phenomena have not been worked out. Early works on gel
dynamics focused on the analysis of dynamic light scattering
and the swelling of gels.3,4) Tanaka and Filmore4) proposed
an equation describing the swelling of gels, but it turned
out that this equation is only valid for spherical gels. This
has been corrected by Tanaka and coworkers,1,5) but
equations describing the general gel dynamics have not
been derived.

The purpose of this article is to provide a general
framework by which one can discuss the swelling and
squeezing of gels using the same basic equations. The
framework can be constructed in the same way as the two-
fluid model for solutions. In fact, from the viewpoint of
continuum mechanics, a gel can be regarded as a homoge-
neous mixture of a fluid (solvent) and a solid (a network
made of polymers or colloidal particles). We call this model
the fluid–solid model.

The idea of the fluid–solid model is not new. Continuum
mechanical models for mixtures of solids and fluids have
been studied in geophysics in which the flow of underground
water is coupled with the elastic deformation of the ground.
The mechanics dealing with such phenomena is called poro-
mechanics (the mechanics of porous materials).6–8) Although
the gel dynamics discussed here has some common features
with poro-mechanics, there are differences.

Firstly, a gel is a very soft material. It can be easily
deformed and can change its volume enormously: the
volume of a fully swollen gel can be thousands times larger
than the dry gel. Therefore, the model must be able to
describe large deformations and large volume changes.

Secondly, the bulk modulus of a gel is much larger than
the shear modulus, and therefore gel can be regarded as an
incompressible material. Hence gel can change its volume
only by absorbing a solvent. This gives some unique features
for the mathematical structures of gel dynamics.

Thirdly, gels can undergo a phase transition: a small
change of external parameters causes a very large change in
volume. In the process of phase transitions, gels show many
unusual and interesting behaviors.

Gel dynamics has been constructed by several
groups,3,9–13) each studying different problems with different
objectives. Accordingly, although there is a general con-
sensus on the physics underlying the model, the equations
proposed by these authors are not exactly the same. In this
article, the discussion is restricted to slow phenomena in
gels, i.e., the problems illustrated in Fig. 2. Fast phenomena
such as wave propagation or density fluctuations are not
discussed here.

The discussion is also restricted to the continuum
mechanics of gels. The molecular aspects of gels, on which
many studies have been done,1,14) are not discussed. In
continuum mechanics, it does not matter whether the gel is a
polymer gel or a colloidal gel. However, the present
discussion is mostly suited for polymer gels since we are
making two assumptions that are generally satisfied for
polymer gels but not for colloidal gels.
(1) The network of gels is purely elastic: the network is not

broken and does not undergo plastic deformation. This
condition is usually satisfied for strong chemical gels

made of polymers but not for weak physical gels or
colloidal gels.

(2) The specific density �p of the network component is
equal to that of the solvent �s, and is a constant
independent of temperature and pressure.

�p ¼ �s ¼ � ¼ constant ð1Þ

The second assumption, which is commonly made for
polymer solutions, can be stated as follows. Let � be the
volume fraction of the polymer network, then the mass
density of the polymer mp, and that of the solvent ms are
given by

mp ¼ ��; ms ¼ �ð1� �Þ: ð2Þ

The total mass density of the gel mp þ ms is constant
independent of temperature and pressure.

Since we are focusing on polymer gels, we shall refer to
the network component as the polymer network.

2. Equilibrium Theory for Soft Elastic Materials

2.1 Swelling equilibrium
Let us start the discussion with the equilibrium state of

gels. A gel placed in a solvent changes its volume by
absorbing or desorbing the solvent and eventually reaches
thermodynamic equilibrium. The equilibrium state of a gel
can also be defined when the gel is subject to an external
force [as shown in Fig. 2(b)]. In this case, the swelling is
not uniform but the final state is at thermodynamic equi-
librium.

Equation (1) indicates that gels can change their volume
only by absorbing or desorbing a solvent. Note that when we
discuss the volume of gels, we are referring to the volume of
the region surrounded by the material points that move with
the polymer network. Also note that the deformation of gels
actually means the deformation of the polymer network.
The swelling of a gel can therefore be regarded as the
deformation of the polymer network constituting the gel.

The mathematical framework describing the deformation
of a polymer network is the same as that developed for
rubber elasticity. Rubber is made of a polymer network and
can be regarded as a special case of a gel in which there is no
solvent (or the flow of solvent can be ignored). The
continuum theory of rubber elasticity has been discussed
in many literatures,15,16) and the following section is a brief
summary.

2.2 Description of deformation
Let us consider the deformation of a soft elastic material

(rubber or gel) that is isotropic and homogeneous when all
external forces are removed. We shall use the force-free
state as the reference to describe the deformation. We label
each point on the material (or more precisely the points that
move together with the polymer network) by its position X
in the reference state. The deformation of the whole material
is characterized by the function ~xxðXÞ which denotes the
position of the material point X after deformation.

Although the deformation of the material is described by
some complex nonlinear function ~xxðXÞ, the local deforma-
tion is always simple and can be represented by a linear
transformation. The vector dX joining two nearby material
points in the reference state is transformed to
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dx ¼ dX �
@

@X
~xxðXÞ; ð3Þ

or in terms of components,

dxi ¼ Fij dXj; ð4Þ

where i and j are the x; y; z components of the vector, and Fij

is defined by

FijðXÞ ¼
@ ~xxi

@Xj

: ð5Þ

(In this article, we use the standard summation convention in
which summation is taken over the repeated indices.) The
quantity Fij is called the deformation gradient. Locally, the
material can be regarded as undergoing a linear trans-
formation from Xi to FijXj.

The linear transformation Xi! FijXj changes a sphere in
the reference state to an ellipsoid in the deformed state. Let
�1; �2, and �3 be the lengths of the principal axes of the
ellipsoid. It is easy to show that the �2

i are equal to the
eigenvalues of the symmetric tensor Cij ¼ FikFjk and are the
solutions of the following equation:15)

detðCij � �ij�2Þ ¼ 0: ð6Þ

Thus the �i are functions of Fij. From this equation it is easy
to show the following relations:15)

�2
i ¼ FijFij ð7Þ

�1�2�3 ¼ detðFijÞ: ð8Þ

2.3 Stress tensor
The equilibrium state of the elastic material is completely

determined by the free energy functional A½ ~xx� which
denotes the free energy of the material in the deformed
state characterized by the function ~xxðXÞ. The free energy A
is the sum of the local free energy which is entirely
determined by the local deformation characterized by Fij.
Let ~AAðFijÞ be the free energy density of the material subject
to the deformation Fij, then the total free energy of the
system can be written as

A ¼
Z

dX ~AAðFijðXÞÞ: ð9Þ

Here ~AAðFijÞ is the free energy density referring to the
reference state, i.e., the free energy of deformation per unit
volume in the reference state.

Note that in the case of gels, ~AAðFijÞ is the difference in the
free energy of the two states shown in Fig. 3. Figure 3(a) is
the reference state, where a gel of unit volume is immersed
in a solvent. Figure 3(b) is the deformed state, where the
point X is displaced to the point ~xx ¼ F � X. If the volume of
the gel in state (b) is larger than that in state (a), the gel
absorbs some of the surrounding solvent. Therefore, ~AAðFijÞ
includes not only the work needed to deform the polymer
network but also the work needed to mix the polymer
network with the solvent.

The equilibrium state is determined by the condition
�A=� ~xxi ¼ 0, i.e., the variation of A with respect to � ~xxi is
equal to zero. Since

�A ¼
Z

dX
@ ~AA

@Fij

@� ~xxi

@Xj

¼ �
Z

dX
@

@Xj

@ ~AA

@Fij

� �
� ~xxi þ

Z
dSNj

@ ~AA

@Fij

� ~xxi; ð10Þ

(Ni being the unit vector normal to the boundary), the
condition �A=� ~xxi ¼ 0 requires that

@ ~��ij

@Xj

¼ 0; ð11Þ

where

~��ij ¼
@ ~AAðFijÞ
@Fij

: ð12Þ

Equation (11) is the force balance equation written in the
frame of the reference state: ~��ij is the stress in the reference
frame. For a given external force applied on the surface,
the solution of eqs. (11) and (12) under a suitable boundary
condition determines the deformation of the material in
mechanical equilibrium. The swelling equilibrium and
volume transition of gels under an external force have been
discussed in this manner.13)

The above formulation, which uses the coordinate X in the
reference state, has a disadvantage that all physical quanti-
ties such as stress and volume fraction are for the point in the
reference state, not the actual point in the current state. It is
convenient to use the coordinate in the current state. This
can be done as follows.

Let AðFijÞ be the free energy density with reference to the
current state, i.e., the free energy of deformation per unit
volume in the current state. Since the volume change of the
material is given by detðFijÞ, A and ~AA are related to each
other by

AðFijÞ ¼
~AAðFijÞ

detðFijÞ
: ð13Þ

The total free energy of the material is then written as

A ¼
Z

dxAðFijðxÞÞ; ð14Þ

where the deformation gradient Fij is expressed as a function
of x, and the integral is evaluated over the volume of the
material in the deformed state.

To obtain the equilibrium condition, let us consider a
hypothetical small deformation that displaces the material
point x to xþ �uðxÞ. For this deformation, the deformation
gradient changes by

�Fij ¼
@�ui

@Xj

¼
@�ui

@xk

@ ~xxk

@Xj

¼
@�ui

@xk
Fkj: ð15Þ

X Xx̃ ·F=

(a) (b)

Fig. 3. (Color online) Definition of the free energy density for gels (a):

Reference state and (b) current state.
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Also, let us assume that the gel is subject to some external
force f ext acting on the surface. The change of the free
energy is then given by

�A ¼
Z

dx
@A

@Fij

�Fij �
Z

dS fext;i�ui

¼
Z

dx
@A

@Fij

@�ui

@xk
Fkj �

Z
dS fext;i�ui:

ð16Þ

By integration by parts, we have

�A ¼ �
Z

dx
@�ij

@xj
�ui þ

Z
dSð�ijnj � fext;iÞ�ui; ð17Þ

where ni is the unit vector normal to the surface of the gel
and �ij is defined by

�ij ¼
@A

@Fik

Fjk: ð18Þ

Therefore the condition for the system to be in equilibrium is

@�ij

@xj
¼ 0; ð19Þ

and at the boundary

�ijnj ¼ fext;i: ð20Þ

Equations (19) and (20) indicate that �ij is the stress
tensor in the gel. Equation (19) represents the force balance
in the bulk and eq. (20) represents the force balance at the
surface.

2.4 Expression for the free energy density
Before proceeding further, we briefly discuss the explicit

form of the free energy density AðFij; TÞ. (Here the temper-
ature dependence of the free energy is written explicitly
since we will discuss the swelling or shrinking induced by
the temperature change.) Note that for isotropic materials,
the free energy of deformation does not depend on which
direction the material is stretched; it depends on the
magnitude of the stretch. Therefore, the free energy density
A depends on Fij only through �1, �2, and �3, and can be
written as

A ¼ Að�1; �2; �3; TÞ: ð21Þ

The function Að�1; �2; �3; TÞ can, in principle, be determined
by experiments. In practice, this is difficult, and has only
been carried out for limited systems.17) Conventionally,
the functional form of the free energy density has been
determined on the basis of some molecular or phenomeno-
logical theories. Since this subject has been discussed
extensively in textbooks of polymer physics,2,14,18) we shall
discuss about it very briefly.

Let us take the dry state (the state without a solvent) as the
reference state of the gel. Since the unit volume in the
reference state occupies the volume detðFijÞ in the deformed
state swollen with the solvent, the volume fraction of the
polymer � is given by

� ¼
1

detðFijÞ
¼

1

�1�2�3

: ð22Þ

The free energy density of a gel consists of two terms:

Að�1; �2; �3; TÞ ¼ Aelð�1; �2; �3; TÞ þ Amixð�; TÞ; ð23Þ

where Ael is the free energy associated with the elastic
deformation of the polymer network and Amix is the mixing
free energy.

The elastic term Ael has been studied both theoretically
and experimentally in polymer physics. The simple Gaussian
chain network model gives2,18)

Aelð�1; �2; �3; TÞ ¼
1

2
C1ð�Þ

X
i

�2
i � 3

 !
; ð24Þ

where C1ð�Þ is given by, according to molecular theory,

C1ð�Þ ¼
kBT�

2wNx

; ð25Þ

where Nx is the mean number of segments in the polymer
chain connecting the neighboring junctions and w is the
volume of a segment.

The mixing term Amix is a function of the polymer volume
fraction � only. A simple model for Amix is to use the
expression for the mixing energy for a polymer solution:2)

Amixð�; TÞ ¼
kBT

w
ð1� �Þ lnð1� �Þ þ �ðTÞ�ð1� �Þ
� �

; ð26Þ

where �ðTÞ is a temperature-dependent dimensionless
parameter (called the chi parameter), which represents the
dis-affinity between the polymer and solvent. If � is
increased, solvent molecules are expelled from the gel and
the gel shrinks, while if � is decreased, the gel swells.

2.5 Swelling equilibrium in stress-free state
Given the expression for the free energy A, it is easy to

calculate the equilibrium state for isotropic free swelling. In
this case, �1, �2, and �3 are all equal to ��1=3 [see eq. (22)].
The free energy density is written as

Að�;TÞ ¼ Aelð�1 ¼ �2 ¼ �3 ¼ ��1=3; TÞ þ Amixð�;TÞ: ð27Þ

Since the total free energy of the system (per unit volume in
the reference state) is Að�; TÞ=�, the equilibrium value �eq is
determined by @ðAð�; TÞ=�Þ=@� ¼ 0 or

�
@A

@�
� A ¼ 0: ð28Þ

For the free energy density given by eqs. (24) and (26),
the equilibrium condition of eq. (28) is written as

@

@�

ð1� �Þ lnð1� �Þ
�

þ �ðTÞð1� �Þ þ
3

2Nx

�2=3

� �
¼ 0

at � ¼ �eq: ð29Þ
This equation determines the equilibrium swelling of a
force-free gel. For � < 0 and Nx � 1, �eq has been shown to
be small; thus eq. (29) can be solved as

�eq ¼
1

2
� �

� �
Nx

� ��3=5

: ð30Þ

The equilibrium volume fraction �eq can be very small if Nx

is large, i.e., if the gel is made of long weakly cross-linked
polymers.

2.6 Free energy for small deformation
In general, it is difficult to determine the explicit form of

the free energy density Að�1; �2; �3; TÞ as a general nonlinear
function of the deformation. For a small deformation,
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however, it can be determined generally using the symmetry
argument as it is done in the linear theory of elasticity.

Let uiðxÞ be the displacement of the material point at x.
We assume that uiðxÞ is small and consider only the lowest
order term. For an isotropic material, the free energy density
is written as19)

A ¼
1

2
K

@uk

@xk

� �2

þ
1

4
G

@ui

@xj
þ
@uj

@xi
�

2

3
�ij
@uk

@xk

� �2

; ð31Þ

where K and G are material constants called the osmotic
modulus and the shear modulus respectively. G stands for
the restoring force for a deformation that does not involve
a volume change (such as a shear). On the other hand, K
stands for the restoring force when the volume of the gel is
changed. It should be noted that the osmotic modulus K is
different from the bulk modulus, which we are assuming to
be infinitely large: K is the restoring force for the swelling
deformation (i.e., the gel volume increases by absorbing
solvent).

Given the expression for free energy density, it is easy to
show that K and G are given by

K ¼ �2 @
2

@�2

Að�Þ
�

� �
at � ¼ �eq; ð32Þ

G ¼
@2

@�2
A �1 ¼ �eqð1þ �Þ; �2 ¼ �3 ¼ �eqð1� �=2Þ
� 	

at � ¼ 0; ð33Þ
where �eq ¼ ��1=3

eq . Note that the shear modulus G has a
contribution from Ael only, while the osmotic modulus K has
contributions from both Amix and Ael.

Equation (31) must be modified if the temperature of the
gel is changed. Consider that the temperature is changed
from T0 to T . The volume of the gel changes by
	eqðTÞ ¼ ½VeqðTÞ � VeqðT0Þ�=VeqðT0Þ, where VeqðTÞ is the
equilibrium volume of the gel at temperature T , In this case,
the free energy density is written as

A ¼ A0 þ
1

2
K
@uk

@xk
� 	eqðTÞ

� �2

þ
1

4
G

@ui

@xj
þ
@uj

@xi
�

2

3
�ij
@uk

@xk

� �2

;

ð34Þ

and the stress tensor is

�ij ¼ K
@uk

@xk

� �
�ij � K	eqðTÞ�ij

þ G
@ui

@xj
þ
@uj

@xi
�

2

3
�ij
@uk

@xk

� �
:

ð35Þ

The term �K	eqðTÞ�ij corresponds to the thermal stress in
the standard theory of elasticity. One might think that the
swelling of a gel is a phenomenon similar to the thermal
expansion of metals. Although this analogy is useful, there is
an important difference between gels and metals.

In the case of metals, the equilibrium is attained as soon as
the temperature is changed since the thermal expansion of
metals is basically caused by the change of the inter atomic
distance. On the other hand, in the case of gels, the volume
change occurs as a result of the permeation of the solvent.
(There is, of course, a change of the specific volume of the
solvent due to thermal expansion, but this effect is very
small and is ignored in this article.) Consequently, the

swelling equilibrium of gels is attained very slowly since the
relaxation time is basically determined by the permeation
speed of the solvent.

2.7 Constraint for solvent permeation
So far, the solvent in the gel has played no or a minor role.

The solvent is important in calculating the free energy, but
it does not appear explicitly in the governing equations:
the equations governing the equilibrium shape, such as
eqs. (19), (20), and (35), are the same as those in the theory
of elasticity. We now show that the solvent in gels can affect
the equilibrium shape.

Consider that a weight is placed on top of a gel as it is
shown in Fig. 4(a). The equilibrium shape of the gel can be
calculated, in the case of a small deformation, by solving
eqs. (19) and (35) under the boundary condition given by
eq. (20). These equations are precisely the same as those in
the theory of elasticity.

Now let us consider the hypothetical situation shown in
Fig. 4(b), where the whole gel is surrounded by a flexible
thin film that can deform freely but blocks the permeation of
the solvent. In such a situation, the volume of the gel cannot
change. In this case, the equilibrium shape is determined by
minimizing the free energy under the constraint that the total
volume is unchanged. Therefore, in the variational calcu-
lation, we need to take into account of the constraint that the
volume change �V caused by the deformation �ui is equal to
zero:

�V ¼
Z

dx
@�ui

@xi
¼ 0: ð36Þ

Therefore the variational calculation as illustrated in eq. (16)
now reads

�A ¼
Z

dx
@A

@Fij

�Fij �
Z

dS fext;i�ui

� p

Z
dx
@�ui

@xi
¼ 0;

ð37Þ

where p is a Lagrangian multiplier for the constraint given
by eq. (36).

Equation (37) gives the following equations for the bulk
and the boundary:

@

@xj
ð�ij � p�ijÞ ¼ 0 in the bulk; ð38Þ

ð�ij � p�ijÞnj¼ fext;i at the boundary: ð39Þ

The Lagrangian multiplier p is determined by the condition
that the total volume of the gel is V . Equation (39) indicates
that the stress tensor is now given by �ij � p�ij, and that p

represents the pressure created by the constraint that the total
volume of the gel cannot change.

The situation shown in Fig. 4(b) is rather artificial, but it
suggests an important consequence of the constraint of the
volume change. As we have discussed, the permeation of the
solvent takes place very slowly. If the permeation of the
solvent cannot take place, the gel must deform keeping its
local volume unchanged; thus the variation must be
calculated under the constraint

@�ui

@xi
¼ 0; ð40Þ
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which must be satisfied at all points. This gives the following
condition for the variational calculation:

�A ¼
Z

dx
@A

@Fij

�Fij �
Z

dS fext;i�ui �
Z

dx pðxÞ
@�ui

@xi

¼ 0: ð41Þ
The equilibrium condition is

@

@xj
ð�ij � p�ijÞ ¼ 0; in the bulk; ð42Þ

ð�ij � p�ijÞnj¼ fext;i at the boundary: ð43Þ

Note the difference between eqs. (38) and (42). In eq. (38),
p is a constant independent of position, while in eq. (42) p is
a function of x. This situation is schematically illustrated in
Fig. 4(c). Suppose that the gel is divided into compartments
by a hypothetical flexible membrane which prevents the
solvent from permeating. The pressure p in eq. (42) can be
regarded as the pressure in each compartment.

The effect of solvent permeation can be seen more
quantitatively by the following example (see Fig. 5).
Suppose that a rod-like specimen of a gel of length L and
radius a immersed in a solvent is stretched at time t ¼ 0

from L to Lþ�L. Such an experiment was first performed
by Takigawa et al.,20) and they observed the following
phenomena.

When the gel is stretched, it is deformed keeping its
volume constant since there is no time for the surrounding
solvent to permeate into the gel. Therefore, the initial change
of the gel radius �a0 is given by the condition ðLþ
�LÞðaþ�a0Þ2 ¼ La2, i.e.,

�a0

a
¼ �

1

2

�L

L
: ð44Þ

As time goes on, the solvent permeates through the gel, and
the equilibrium radius is given by the Poisson ratio 
 which
can be expressed by K and G:

�a1

a
¼ �


�L

L
; ð45Þ

where 
 is given by, according to the theory of elasticity,


 ¼
K � ð2=3ÞG

2½K þ ð1=3ÞG�
: ð46Þ

Thus the diameter of the gel increases by a factor of
�
þ ð1=2Þ ¼ ðG=2Þ=½K þ ð1=3ÞG�.

As the diameter of the gel changes with time, the restoring
force F also changes. Since the gel behaves as an
incompressible material, the initial restoring force is given
by

F0 ¼ 3G
�L

L
S ð47Þ

(S ¼ �a2 is the area of the cross section). On the other hand,
the equilibrium restoring force is given by

F1 ¼
3G

1þ ðG=3KÞ
�L

L
S: ð48Þ

Thus the stress decreases by a factor of ð1þ G=3KÞ�1

as time goes on. Such behavior has indeed been ob-
served.20)

(a) (b) (c)

Fig. 4. (Color online) (a) When a weight is placed on a gel in a solvent, the gel is deformed and eventually reaches an equilibrium configuration. (b) The

gel is now wrapped by a flexible membrane, which prevents the solvent from permeating through it. The equilibrium configuration of such a gel is

different from that of the unwrapped gel since the volume of the gel is conserved. (c) Schematic picture of the gel in which the permeation of the solvent

is blocked.

t < 0

t = 0

t =

F0

F

1 + ε

1

Fig. 5. (Color online) Experiment on stretching a gel in solvent. A gel in

swollen equilibrium is stretched at time t ¼ 0 and kept at a constant

length. The force needed to maintain the gel at the length changes with

time because the stretching induces the permation of the solvent.
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3. Basic Equations for Gel Dynamics

3.1 Slow dynamics in gels
Having discussed the equilibrium state of gels, we now

consider the dynamics and discuss how to model the
phenomena illustrated in Fig. 2.

Our objective here is to determine the velocity field of the
polymer network vpðx; tÞ and that of the solvent fluid vsðx; tÞ.
The velocity field vpðx; tÞ is equal to the time derivative of
the displacement field ~xxðX; tÞ, i.e.,

vpðx; tÞ ¼
@

@t
~xxðX; tÞ at x ¼ ~xxðX; tÞ: ð49Þ

For simplicity, we assume that the temperature is constant
throughout the system. Such an assumption is allowed since
the thermal diffusivity is 103 to 104 times larger than the
diffusion constant of the solvent.

In the following, we derive the equations for vp and vs by
two ways. One is based on a simple physical argument, and
the other is based on Lagrangian mechanics.11) The second
derivation is rather formal, but it is convenient for deriving
equations for more general cases such as multicomponent
fluids.21)

3.2 Derivation of gel dynamics equation 1
As we have discussed, the permeation of the solvent is a

slow process. Let us consider the limit at which the solvent
permeation is infinitesimally slow. At this limit, the local
volume of the gel element cannot change with time. This is
equivalent to the situation shown in Fig. 4(c), where the
permeation of the solvent is prohibited by the hypothetical
membrane. In such a case, the stress tensor is given by �ij �
p�ij and the mechanical equilibrium equation is given by

r � ð� � pIÞ ¼ 0: ð50Þ

Now let us consider the effect of solvent permeation.
Suppose that the hypothetical membrane is removed. Then
the solvent will permeate from the high-pressure region to
the low-pressure region. The permeation speed is represent-
ed by the velocity of the solvent relative to that of polymer
network, vs � vp, and we can assume that this speed is
proportional to the gradient of the pressure:

vs � vp ¼ ��0rp: ð51Þ

Equation (51) is the empirical relation known as Darcy’s
law for porous materials. In general, �0 is a tensor and can
be a function of the deformation gradient of the polymer
network. However, to simplify the analysis, we assume that
�0 is a scalar and depends on � only.

The mass conservation law is expressed by

@�

@t
¼ �r � ð�vpÞ; ð52Þ

and the incompressible condition is written as

r � ½�vp þ ð1� �Þvs� ¼ 0: ð53Þ

Equations (50)–(53) are the basic set of equations in gel
dynamics.22) Given the free energy functional AðFij;TÞ and
the Darcy constant �0ð�Þ, one can calculate, in principle, the
time evolution of the gel by solving this set of equations. At
this point, it may not be clear how the above set of equations

are sufficient to solve the problem. The mathematical
structure of the basic equations of gel dynamics is slightly
peculiar, but we will show that the above equations are the
complete set of equations in later sections.

To solve the partial differential equation, we need
boundary conditions. There are two sets of boundary
conditions; for the mechanical condition and for the
permeation condition of the solvent.22,23)

(1) Mechanical condition: This is essentially the same as
the boundary condition for the theory of elasticity. Let
f ext be the force acting at the outer surface of the gel
per unit area. Then the force balance at the boundary
gives the following equation:

ð� � pIÞ � n ¼ f ext: ð54Þ

If the boundary is constrained geometrically, other
conditions are imposed. For example, if the polymer
network is glued to a wall, vp must be equal to the
velocity of the wall.

(2) Permeation condition: If the solvent can permeate
freely through the boundary, the pressure p in the gel
must be equal to the solvent pressure pout outside of the
gel at the boundary. On the other hand, if the solvent
cannot permeate through the boundary, the pressure
gradient normal to the boundary must be zero. These
conditions are expressed by the following equations:

p¼ pout; permeable boundary; ð55Þ
n �rp¼ 0; no permeable boundary; ð56Þ

where pout is the pressure in the outer solvent.

3.3 Derivation of gel dynamics equation 2
We now give another derivation for the above set of

equations.11) This derivation is based on the Lagrangian
mechanics for dissipative systems. The derivation is more
formal, and maybe less transparent, but it is more powerful
for solving problems.

Consider a dynamical system with f degrees of freedom,
described by the coordinates q1; q2; . . . ; qf . Let Kðqi; _qqiÞ be
the kinetic energy of the system and UðqiÞ be the potential
energy. The equation of motion of the system is given by the
following Euler equation:

d

dt

@K

@ _qqi

� �
¼
@K

@qi
�
@U

@qi
: ð57Þ

Equation (57) does not involve any dissipative force.
Rayleigh showed that if there is a dissipative force fi that
is proportional to the velocity _qqi, i.e.,

fi ¼ �
ij _qqj; ð58Þ

the equation of motion can be written as24,25)

d

dt

@K

@ _qqi

� �
¼
@K

@qi
�
@U

@qi
�
@W

@ _qqi
; ð59Þ

where Wðqi; _qqiÞ is given by

W ¼
1

2

ij _qqi _qqj; ð60Þ

and is called Rayleigh’s dissipation function. The dissipation
function is equal to half of the energy dissipated in the
system per unit time.
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If the inertia effect is negligibly small, one may set the
kinetic energy term K in eq. (59) equal to zero. This gives

@U

@qi
þ
@W

@ _qqi
¼ 0: ð61Þ

It is convenient to write eq. (61) in the following form:

@

@ _qqi
ð _UU þWÞ ¼ 0; ð62Þ

where _UU is defined by

_UU ¼
X
i

@U

@qi
_qqi; ð63Þ

which represents the change of the potential energy.
Equation (62) can be written in a variational form.26,27) Let
R be defined by

R ¼ _UU þW ; ð64Þ

then the variational principle states that the actual velocity is
determined by �R=� _qqi ¼ 0. This variational principle is a
simple rewriting of the force balance equation �@U=@qi þ
fi ¼ 0. However the variational form gives us a convenient
tool for deriving the equation of motion, particularly for
systems with constraints.

Now let us use this principle to derive the kinetic equation
for gels.11) The time evolution of a gel is entirely
characterized by the two velocity fields vpðxÞ and vsðxÞ.
The energy dissipation in the system is mostly caused by the
relative motion between the polymer and solvent. [In a fluid–
fluid mixture, the energy dissipation has two origins; one
arises from the relative motion and the other arises from the
viscosity of the fluid. In the fluid–solid mixture, the latter
mechanism is negligibly small, and the energy dissipation
function is given by eq. (65).] Thus, W can be written as

W ¼
1

2

Z
dx 
ð�Þðvp � vsÞ2; ð65Þ

where 
ð�Þ is the friction constant per unit volume of the gel.
The free energy of the system is given by eq. (14); thus,

its time derivative is calculated as

� _AA ¼
Z

dx
@A

@Fij

_FFij: ð66Þ

Using the relation, _FFij ¼ ð@vpi=@xkÞFkj [see eqs. (15) and
(18)], we have

� _AA ¼
Z

dx �ij
@vpi

@xj
: ð67Þ

In performing the variational calculation for �R, we need
to take into account the constraint that vp and vs must satisfy
the incompressible condition given by eq. (53). Thus, the
functional R to be minimized is

R ¼
Z

dx



1

2

ð�Þðvp � vsÞ2

þ � : rvp � pr � ½�vp þ ð1� �Þvs�
�
: ð68Þ

The equations �R=�vp ¼ 0 and �R=�vs ¼ 0 give


ð�Þðvp � vsÞ ¼ r � � � �rp; ð69Þ

ð�Þðvs � vpÞ ¼ �ð1� �Þrp: ð70Þ

Adding eqs. (69) and (70), we obtain eq. (50). Equation (70)
gives the Darcy law [eq. (51)], where

�0ð�Þ ¼
1� �

ð�Þ

: ð71Þ

Thus, the set of equations in the previous subsection have
been derived from the variational principle.

3.4 Gel dynamics for small deformation
The above set of equations can be written explicitly in

the case that the deformation of the polymer network is
small. Let uðx; tÞ be the displacement of the polymer
network at point x. The network velocity vpðx; tÞ is equal to
_uuðx; tÞð¼ @u=@tÞ. The expression for the stress tensor is
given by eq. (35), and therefore the force balance equation
[eq. (50)] can be written as

K þ
G

3

� �
rr � uþ Gr2u ¼ rp: ð72Þ

For a small deformation, � and � can be regarded as
constant. Therefore, the incompressible condition in eq. (53)
can be written as

�r � _uuþ ð1� �Þr � vs ¼ 0: ð73Þ

Equation (73) and the Darcy law [eq. (51)] give

r � _uu ¼ �r2p; ð74Þ

where

� ¼ ð1� �Þ�0 ¼
ð1� �Þ2


ð�Þ
: ð75Þ

Equations (72) and (74) are the linearized form of the gel
dynamics.

Note that in the above set of equations, the time derivative
_uu is not given explicitly, rather it appears in a spatial
differential equation. It is possible to derive a more familiar
equation. For example, if one defines the volume change
	ðx; tÞ by

	 ¼ r � u; ð76Þ

one can easily prove from eqs. (72) and (74) that 	 satisfies
the following diffusion equation:

@	

@t
¼ Dr2	; ð77Þ

where D is defined by

D ¼ K þ
4

3
G

� �
�: ð78Þ

Although eq. (77) is simple, it is not useful for solving
problems. This is because the boundary conditions for 	 are
not given in usual problems, and we must go use eqs. (72)
and (74) as we shall see in later examples.

From eq. (77), one might think that the swelling process
of a gel is the simple diffusion process of a solvent through a
gel network. This is not correct. Although the diffusion of
the solvent is a key factor in swelling kinetics, it is not the
only factor. In the following we shall show examples which
demonstrate that such an understanding is too naive and can
lead to the wrong conclusion.
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3.5 Tanaka–Filmore equation
In the special case that the average velocity �vp þ ð1�

�Þvs is equal to zero, the above set of equations can be
simplified. In this case, vs ¼ ��=ð1� �Þvp, and eqs. (70)
(72) give




ð1� �Þ2
vp ¼ K þ

G

3

� �
rr � uþ Gr2u; ð79Þ

or

@u

@t
¼ D rr � uþ �r2u

� �
; ð80Þ

where D is given by eq. (78) and

� ¼
G

K þ ð4=3ÞG
: ð81Þ

Equation (80) is called the Tanaka–Filmore (TF) equation.
The TF equation4) was proposed to describe the swelling
of spherical gels. In the case of the isotropic swelling of
spherical gels, the average velocity is zero and the TF
equation is valid. However, in the general case, such as the
swelling of cylindrical or sheetlike gels, the average
velocity is nonzero, and the TF equation is not valid. The
TF equation cannot describe the phenomena of squeezing
and filtration.

4. Examples of Analysis

In this section, we solve the linear kinetic equations given
in the previous section for some typical situations, and
discuss the characteristic features of gel dynamics.

4.1 Gel dynamics in one dimension
We first consider a simple one-dimensional problem. This

is realized in a thin gel glued to a rigid wall as shown in
Fig. 6. In Fig. 6, the dark block indicates an impermeable
wall, while the patterned block indicates a permeable wall
made of a porous material. In this article, we assume that the
solvent permeates through the porous wall freely (i.e., the
pressure drop across the porous wall is zero).

If the gel is thin, the displacement vector u has a
component normal to the wall only. We take the x coordinate

normal to the wall, the origin of which is taken to be at the
wall boundary. Then

ux ¼ uðx; tÞ; uy ¼ uz ¼ 0: ð82Þ

The xx-component of the stress tensor in eq. (35) is given
by

�xx ¼ K þ
4

3
G

� �
@u

@x
� K	eq: ð83Þ

Therefore the basic equations (72) and (74) become

K þ
4

3
G

� �
@2u

@x2
¼
@p

@x
; ð84Þ

@2u

@x@t
¼ �

@2p

@x2
: ð85Þ

The boundary condition depends on the situation and will be
discussed in the following sections.

4.1.1 Swelling of a constrained gel sheet
Consider the case that a gel in swelling equilibrium is

glued to an impermeable wall as shown in Fig. 6(a). Assume
that the temperature is changed at time t ¼ 0 and the gel
starts to swell for t > 0. We consider the kinetic process of
swelling.

Since the left wall is fixed and impermeable for the
solvent, the boundary condition at x ¼ 0 is

uðx; tÞ ¼ 0; ð86Þ
@p

@x
¼ 0: ð87Þ

On the other hand, the right end of the gel is free. Let pout be
the pressure of the solvent outside the gel. Then eqs. (54)
and (55) give the following boundary conditions at x ¼ h.

�xx � p ¼ �pout; ð88Þ
p ¼ pout: ð89Þ

From eq. (84) and the boundary condition (88), p is obtained
as

p ¼ pout þ �xx ¼ pout þ K þ
4

3
G

� �
@u

@x
� K	eq: ð90Þ

Eliminating @u=@x from eqs. (85) and (90), we find that p
satisfies the following diffusion equation

@p

@t
¼ D

@2p

@x2
; ð91Þ

where D is given by eq. (78). Equation (91) can be solved
for pðx; tÞ: the boundary condition is given by eqs. (87) and
(89), and the initial condition is pðx; 0Þ ¼ pout � K	eq. [This
follows from the initial condition @u=@x ¼ 0 and eq. (90).]
The solution is given by

pðx; tÞ ¼ pout � K	eq

X1
n¼0

4

ð2nþ 1Þ�
sin
ð2nþ 1Þ�x

h

� �

� exp �
ð2nþ 1Þ2t

�

� �
; ð92Þ

where

� ¼
h2

D�2
: ð93Þ

x

x

h h

fext

h
pout

t =

t = 0
pini

p

(a) (b) (c)

Fig. 6. (Color online) (a) Swelling of a constrained gel: a thin gel sheet of

thickness h is glued to a rigid wall and is allowed to swell. (b) Negative

squeezing: the other side of the same gel is glued to a porous wall which

is pulled by external force fext (c) Time evolution of the pressure

distribution. In case (a), pini ¼ pout � K	eq and in case (b), pini ¼
pout � fext.
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Figure 6(c) shows a schematic diagram of the time
evolution of pðx; tÞ. When the temperature is changed, the
pressure inside the gel drops suddenly from pout to
pout � K	eq, and a large pressure gradient is created near
the free surface of the gel. This causes the solvent to diffuse
into the gel and the gel to swell. Equilibrium is attained
when the pressure becomes equal to pout everywhere in the
gel. Note that in the present problem the pressure pout

appears only as the reference of the pressure and does
not affect the swelling behavior; the swelling behavior is
unaffected even if the solvent pressure is changed during the
swelling process.

The variation of the gel thickness �hðtÞ is given by uðh; tÞ,
which is calculated from pðx; tÞ by integrating eq. (90):

�hðtÞ ¼ uðh; tÞ ¼
Z h

0

dx
@u

@x

¼
1

K þ ð4=3ÞG

Z h

0

dx½pðx; tÞ � pout þ K	eq�:
ð94Þ

This gives the equilibrium thickness

�hð1Þ ¼
K

K þ ð4=3ÞG
h	eq: ð95Þ

Note that the equilibrium swelling ratio �hð1Þ=h is not
equal to 	eq in this case. This is because the gel is
constrained in the x- and y-directions.

4.1.2 Squeezing of a gel sheet
Next, let us consider the case shown in Fig. 6(b), where

the right side of the gel is glued to a permeable wall upon
which an external force fext (per unit area) starts to be
applied at time t ¼ 0. The boundary conditions at x ¼ h now
become

�xx � p ¼ fext; and p ¼ 0; at x ¼ h; ð96Þ

where we have set pout equal to zero. This problem can be
solved by the same method as that described in the previous
example. The analysis indicates that p satisfies the same
diffusion equation, and the initial condition is pðx; 0Þ ¼
� fext. Thus the behavior is precisely the same as that of the
swelling: the only difference is that K	eq is now replaced by
fext. At equilibrium, the volume of the gel changes by a
factor of

�hð1Þ
h
¼

fext

K þ ð4=3ÞG
: ð97Þ

4.1.3 Filtration through a gel sheet
We now consider the situation shown in Fig. 7(a). The left

side of the gel is glued to a porous wall. At time t ¼ 0, the
pressure in the left compartment is increased to pext while
the pressure in the right compartment is kept at zero; the
pressure pout is taken to be zero. Then the solvent will
permeate from left to right. If the right side of the gel is set
free as in the case shown in Fig. 7(a), the process causes the
swelling of the gel. An experimental and theoretical study of
this situation was performed by Takigawa et al.28)

The boundary conditions at x ¼ 0 are

u ¼ 0 and p ¼ pext at x ¼ 0: ð98Þ

On the other hand, the boundary conditions at x ¼ h are

�xx � p ¼ 0 and p ¼ 0 at x ¼ h; ð99Þ

where �xx is now given by eq. (83) with 	eq ¼ 0.
Equations (84) and (99) are solved for p:

p ¼ K þ
4

3
G

� �
@u

@x
: ð100Þ

Hence p satisfies the same diffusion equation as before. The
boundary conditions are now pð0; tÞ ¼ pext and pðh; tÞ ¼ 0,
and the initial condition is pðx; 0Þ ¼ 0.

The solution of the equation is shown in Fig. 7(b). In this
case, the final state is not an equilibrium state, but a steady
state in which the solvent flows with constant speed. In the
steady state, the pressure drops linearly with x across the gel:

pðx;1Þ ¼ pext 1�
x

h

� �
; ð101Þ

and the velocity of the solvent is vs ¼ �pext=h. The flow
exerts a constant force on the polymer network, and the gel
swells accordingly.

@u

@x
¼

pext

K þ ð4=3ÞG
1�

x

h

� �
for t!1 ð102Þ

The volume change of the gel is given by

�h

h
¼

1

h

Z h

0

dx
@u

@x
¼

pext

2½K þ ð4=3ÞG�
: ð103Þ

This can be compared with the volume change in the
squeezing case [eq. (97)]. There is a difference of factor 1/2,
which originates from the fact that in the case of squeezing,
the external force acts at the surface only, while in the case
of filtration, the pressure drop acts as a force on the body of
the polymer network.

pext pext
pext

pext

x

p

h
0

h

p

t =

h

h
0

(a) (b) (c) (d)

x

t =
Fig. 7. (Color online) (a) The left side of the gel

sheet is glued to a porous wall, and the solvent is

pumped into the gel by the pressure difference

between the left and right compartments. (b) Time

evolution of the pressure distribution. (c) The same

situation as in (a) except that the right side is also

glued to a porous wall whose position is fixed. (d)

Time evolution of the pressure distribution.
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If the right side of the gel is constrained by a porous wall
fixed in space as shown in Fig. 7(c), the pressure distribution
changes as shown in Fig. 7(d). This situation has been
studied experimentally by Tokita et al.,29) but a theoretical
analysis has not been carried out. The pressure and solvent
velocity approach the same values as those for (a) in the
steady state, but their transient behaviors are different. In
particular, the relaxation time in situation (c) is one-quarter
of that in (a).

4.1.4 Swelling of a spherical gel
The swelling of a spherical gel is a classical problem

studied by Tanaka and Filmore.4) Since the average velocity
is zero, the swelling can be analyzed by the TF equation
[eq. (80)], but here we derive it using the variational
principle.

Let uðr; tÞ be the displacement of an element at point r. In
the swelling of a sphere, the polymer network is locally
deformed uniaxially; the strain �k in the radial direction and
the strain �? normal to it are given by

�k ¼
@u

@r
; �? ¼

u

r
: ð104Þ

Substituting these into eq. (34), we have

A ¼
Z a

0

dr 4�r2
1

2
K

@u

@r
þ 2

u

r
� 	eq

� �2
"

þ
2

3
G

@u

@r
�

u

r

� �2
#
; ð105Þ

where a is the radius of the gel. Equation (105) gives

_AA ¼
Z a

0

dr 4�r2 K
@u

@r
þ 2

u

r
� 	eq

� �
@ _uu

@r
þ 2

_uu

r

� ��

þ
4

3
G

@u

@r
�

u

r

� �
@ _uu

@r
�

_uu

r

� ��
: ð106Þ

On the other hand, the energy dissipation function can be
written as

W ¼ 1

2

Z a

0

dr 4�r2
ð _uu� vsÞ2 ¼
1

2

Z a

0

dr 4�r2 1

�
_uu2; ð107Þ

where we have used vs ¼ ��=ð1� �Þ _uu. The variational
condition �ðW þ _AAÞ=� _uu ¼ 0 gives the following time evo-
lution equation for u:

@u

@t
¼ D

@2u

@r2
þ

2

r

@u

@r
�

2

r2
u

� �
; ð108Þ

where D is given by eq. (78). Equation (108) can be derived
directly from the TF equation [eq. (80)].

The boundary condition can also be obtained from the
variational principle:

K
@u

@r
þ 2

u

r
� 	eq

� �
þ

4

3
G

@u

@r
�

u

r

� �
¼ 0 at r ¼ a:

ð109Þ
Tanaka and Filmore solved the above boundary value
problem for the case of K � G and showed that the longest
relaxation time � is given by

� ¼
a2

�2�K
for K � G: ð110Þ

Studies of the general case were carried out,30,31) and it has
been shown that at the other limit K � G the longest
relaxation time diverges as

� ¼
a2

15�K
for K � G: ð111Þ

The longest relaxation time is proportional to 1=K at both
limits of K=G!1 and 0. This behavior is observed for all
gels as we shall see later.

4.2 Coupling effect of elastic deformation and swelling
The problems discussed so far are one-dimensional in the

sense that the displacement of the polymer network takes
place only in a certain fixed direction (normal to the wall or
in the radial direction). We now discuss cases where it is
essential to take into account the displacement in two or
three dimensions. The examples shown here again demon-
strate the characteristic features of gel dynamics different
from simple diffusion.

4.2.1 Swelling of a free gel sheet
The swelling of a free gel sheet is a simple example that

requires analysis in two dimensions. The reason for this is
illustrated in Fig. 8. When the diffusion starts, the elements
near the surface start to swell, while the inner part remains
unswollen [see Fig. 8(b)]. The elements near the surface
tend to extend the inner elements laterally, while the inner
elements resist this. Therefore, a lateral extension is attained
by their balance.

Again we take the x-direction to be normal to the sheet. If
the gel is thin, the deformation in the y- and z-directions may
be assumed to be uniform. Therefore, if we take the origin of
the y- and the z-coordinates to be at the center of the sheet,
the displacement of the material point ðx; y; zÞ can be written
as follows:

ux ¼ uðx; tÞ; uy ¼ �ðtÞy; uz ¼ �ðtÞz: ð112Þ

The stress tensor for such a deformation is given by

�xx ¼ K þ
4

3
G

� �
@u

@x
þ 2K �

4

3
G

� �
�� K	eq; ð113Þ

(a)

(b)

(c)

Fig. 8. (Color online) Time evolution of the swelling of a gel sheet. (a)

Initial state. (b) Intermediate state, where the outer part is swollen, while

the inner part is unswollen. (c) Final equilibrium state.
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�yy ¼ �zz ¼ K �
2

3
G

� �
@u

@x
þ 2K þ

2

3
G

� �
�� K	eq:

ð114Þ
Since there is no external force acting in the x-direction,
�xx � p must be zero. Therefore,

p ¼ K þ
4

3
G

� �
@u

@x
þ 2K �

4

3
G

� �
�� K	eq: ð115Þ

Note that the pressure p depends only on x, and does not
depend on y or z.

Equation (74) is then written as

@ _uu

@x
þ 2_�� ¼ �

@2p

@x2
: ð116Þ

Eliminating @u=@x from eqs. (115) and (116), we have

@p

@t
þ 4G _�� ¼ D

@2p

@x2
: ð117Þ

Note that there is an unknown term _��. This is determined by
the force balance condition in the y- and z-directions. The
total force acting across the plane normal to y- and z-must
zero, i.e., Z h=2

�h=2
dxð�yy � pÞ ¼ 0: ð118Þ

If @u=@x is expressed in terms of p using eq. (115), eq. (118)
is written as Z h=2

�h=2
dx p ¼ Khð3�� 	eqÞ: ð119Þ

Equations (117) and (119) give a coupled equation for pðx; tÞ
and �ðtÞ. The initial condition is

pðx; 0Þ ¼ �K	eq; �ð0Þ ¼ 0; ð120Þ

and the boundary condition is

pðh=2; tÞ ¼ pð�h=2; tÞ ¼ 0: ð121Þ

If eq. (115) is substituted for p in eq. (119), one gets the
following equation

uðh=2; tÞ � uð�h=2; tÞ ¼ �h: ð122Þ

The right-hand side is the change of the gel thickness �hðtÞ.
Equation (122) indicates that

�hðtÞ
h
¼ �ðtÞ; ð123Þ

i.e., during the swelling process, the aspect ratio of the gel
remains unchanged: the gel swells keeping its original shape.
This result is highly nontrivial since the shape of the gel is
determined by a subtle balance of forces as illustrated in
Fig. 8. Surprisingly, the same conclusion holds for the
swelling of a cylindrical gel.

The above set of equations can be solved by the standard
method of eigen function expansion. Let � be the longest
relaxation time. For t � �, the solution can be written as

pðx; tÞ ¼ f ðxÞ expð�t=�Þ; �ðtÞ ¼
	eq

3
þ A expð�t=�Þ:

ð124Þ

Substituting eq. (124) into eq. (117), we have

@2 f

@x2
¼

f þ 4AG

D�
: ð125Þ

The solution of this equation can be written as

f ðxÞ ¼ B cosð�xÞ þ B0 sinð�xÞ � 4GA; ð126Þ

where � ¼ ðD�Þ�1=2. From eqs. (119) and (121), it can be
shown that B0 ¼ 0 and � is the solution of the equation

� cotð�Þ ¼
4G

3K þ 4G
; ð127Þ

where

� ¼
�h

2
: ð128Þ

Let � be the smallest positive solution of eq. (127), then � is
given by

� ¼
h2

4D�2
: ð129Þ

If K=G� 1, the smallest solution of eq. (127) is � ¼ �=2
and

� ¼
h2

�2�K
: ð130Þ

In this case, eq. (130) agrees with eq. (93), the relaxation
time of the constrained gel. On the other hand, if K=G� 1,
the smallest solution of eq. (127) becomes � ¼ ð3=2Þ

ffiffiffiffiffiffiffiffiffiffi
K=G
p

and the longest relaxation time is

� ¼
h2

12�K
: ð131Þ

Therefore, in the limit of K ! 0, the relaxation time � goes
to infinity. This is different from the result for the con-
strained gel. In the case of the constrained gel, the relaxation
time is proportional to 1=½K þ ð4=3ÞG�, which does not
diverge in the limit of K ! 0. Note that for both constrained
gel and the free gel, the swelling is governed by the
permeation of the solvent normal to the sample. However,
the relaxation time is different. This example demonstrates
that the swelling process cannot be described by the
diffusion equation [such as eq. (80)] alone.

4.2.2 Swelling of a cylindrical gel
The swelling of a long cylindrical gel can be analyzed by

a method similar to that given above. This case is important
since swelling experiments are usually performed for
cylindrical gels. On the other hand, the development of
theoretical analysis has been rather slow. In early analysis,32)

the TF equation was used and the effect of stretching in the
axial direction was ignored. The failure of the TF equation
was corrected by Li and Tanaka,5) who proposed a method
of accounting for the axial stretching. They proposed the
physical mechanism, but did not express it in mathematical
equations, and they solved the problem in an intuitive (and
approximate) way. A more accurate calculation was per-
formed by Wang et al.,33) but the analysis still involved
approximation. A rigorous result has been obtained only
recently.34) Leaving the detail to,34) we here summarize the
main result.

As the cylindrical gel swells, both the radius aðtÞ and the
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length LðtÞ increase with time, but it can be shown that the
gel swells keeping its aspect ratio constant.

aðtÞ
að0Þ
¼

LðtÞ
Lð0Þ

ð132Þ

The longest relaxation time � for the swelling process is
given by

� ¼
a2

�2D
; ð133Þ

where � is the smallest positive solution of the equation.

�J01ð�Þ þ
K � ð4=3ÞG
K þ ð4=3ÞG

J1ð�Þ ¼ 0: ð134Þ

Here J1ð�Þ is the Bessel function of the first kind. Analysis
of the equation gives the following expression for the
relaxation time

�¼ 0:1730
a2

�K
for K � G ð135Þ

and

�¼ 0:125
a2

�K
for K � G: ð136Þ

The relaxation time is proportional to 1=K at the two limits
of K=G! 0 and 1.

The above asymptotic behavior of the relaxation time at
the limits of G=K ! 0 and 1 is common to gels with
sheetlike or spherical shapes. In fact, this is a general result;
it has been proved35) that the relaxation time of an
unconstrained gel always has the following characteristic
behavior:

� ¼
C1

L2

�K
for K � G,

C2

L2

�K
for K � G,

8>><
>>: ð137Þ

where C1 and C2 are constants that depend on the shape of
the sample and L is the characteristic size of the sample.
(The divergence of � at the limit of K ! 0 was first
proposed by Onuki31) but his derivation was based on the TF
equation, which is not correct for gels with a general shape.)

Analysis can be performed for a cylindrical gel stretched
in the axial direction (see Fig. 5), and the time dependence
of the stress and the radius of the gel can be calculated
explicitly.34)

4.2.3 Gel confined by rigid plate
As the final example, we analyze the situation shown in

Fig. 9, the swelling of a gel slab whose top and bottom are
glued to impermeable walls. For the gel to swell, the solvent
must permeate sideways. Therefore, the relaxation time is
determined not by the thickness h but by the lateral size a of
the gel. An experiment for such a system was first performed
by Suzuki et al.,36) and theoretical analysis was carried out
in ref. 37.

We assume that the gel is a disk of thickness h and radius
a. We take cylindrical coordinates ðr; �; zÞ, the origin of
which is at the center of the bottom circle. For a thin gel
(h� a), we may assume that the pressure is independent of
z, i.e., p ¼ pðr; tÞ, and that the displacement in the z

direction is uniform:

uzðz; tÞ ¼ �ðtÞz: ð138Þ

The volume change of the polymer network is

r � u ¼
@uz

@z
þ

1

r

@ðrurÞ
@r
¼ �þ

1

r

@ðruzÞ
@r

: ð139Þ

The second term on the right-hand side of eq. (139) is much
smaller than the first term and can be ignored. Therefore,
eq. (74) is written as

_�� ¼ �
1

r

@

@r
r
@p

@r

� �
; ð140Þ

which is solved for p using the boundary condition p ¼ 0 at
r ¼ a:

pðr; tÞ ¼
_��

4�
ðr2 � a2Þ: ð141Þ

The force acting on the top plate is given by

�zz � p ¼ K þ
4

3
G

� �
�� K	eq � p: ð142Þ

Since there is no force acting on the top plate, the force
balance equation is written asZ a

0

dr 2�r K þ
4

3
G

� �
�� K	eq � p

� �
¼ 0: ð143Þ

Using eqs. (141) and (143) we have

_�� ¼
1

�
ð�� �eqÞ; ð144Þ

where

z

r

a

h

fext

p

t =

t = 0

a
r(a)

(b)
(c)

Fig. 9. (Color online) (a) The top and bottom sides

of a disklike gel are glued to a rigid impermeable

wall, and the gel is allowed to swell. (b) The same

situation as in (a), but now the swelling of the gel is

caused by an external force applied on the top wall.

(c) Time evolution of the pressure distribution.
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�eq ¼
K

K þ ð4=3ÞG
	eq; ð145Þ

and

� ¼
a2

8D
: ð146Þ

Equation (145) is the same as eq. (95); the equilibrium
swelling ratio of the gel constrained at one side (Fig. 6) is
equal to that constrained at both sides (Fig. 9). On the other
hand, their relaxation times are different: the relaxation time
of the gel constrained at both sides is much larger than that
of the gel constrained at one side. This is because in the case
of Fig. 9, the solvent cannot enter the gel from the top and
must diffuse into the gel over the long distance a.

A similar analysis can be performed for the situation that
swelling is induced by an external force acting on the rigid
plate.38) In this case, eq. (143) is replaced byZ a

0

dr 2�r K þ
4

3
G

� �
�� p

� �
¼ �a2 fext: ð147Þ

This gives

_��þ �� ¼
fext

K þ ð4=3ÞG
: ð148Þ

This corresponds to a mechanical model in which a spring
and dashpot are connected in parallel (this model is called
the Voigt model in rheology).

5. Volume Transition

5.1 Specific features of volume transition
We now consider a problem that cannot be handled by

the linearized equation. Specifically, we shall discuss the
phenomenon called the volume transition. The volume
transition is a phenomenon that the equilibrium volume of a
swollen gel changes enormously (typically by a factor of
hundreds) with a small change of external parameters such
as temperature or solvent composition.1,39) This phenomenon
is a type of phase transition, the phase having the large
volume is called the swollen phase and that having the small
volume is called the shrunken phase.

The volume transition of gels has often been discussed
using the analogy of the gas–liquid transition of fluids since
the order parameter of the transition is the volume (or the
density), and there is no symmetry change associated with

the transition. However, it must be noted that there is a
fundamental difference between the two transitions: the gas–
liquid transition is a phase transition taking place in a fluid,
while the volume transition of gels is a transition taking
place in elastic materials. In this section we shall discuss
the kinetics of volume transitions of gels, focusing on the
similarities and differences between the two transitions.

5.2 Analysis of one dimensional case
5.2.1 Kinetic equation

We shall first discuss the kinetics of volume transitions
taking place in one dimension, i.e., the situation that the gel
can expand in only one direction.40,41) This is the situation
where the analogy between the volume transition and the
gas–liquid transition is justified. However, it must be noted
that this is a rather idealized situation. The situation may be
realized by constraining a cylindrical gel in a tube as shown
in Fig. 10(a), or by gluing a thin gel sheet on a rigid wall
[Fig. 10(b)]. Both setups have some technical difficulties. In
the former case, one must ensure that there is sufficient
lubrication between the gel and the tube wall. In the latter
case, one must ensure that the displacement can take place
only normal to the wall, which is not easy since the gel is
subject to buckling instability as we shall discuss later.

We take the x coordinate along the direction that the gel
can move and let ~xxðX; tÞ be the x-coordinate at time t of
a point on the gel located at X in the reference state. We
assume that the gel is fixed to an impermeable wall at X ¼ 0.
We also assume that the the gel is free at the other end at
X ¼ H and can absorb the solvent [see Fig. 10(c)]. The
thickness of the gel at time t is given by

hðtÞ ¼ ~xxðH; tÞ; ð149Þ

and the apparent (or overall) volume change is given by
hðtÞ=hð0Þ. The local volume change at X is given by

�ðX; tÞ ¼
@ ~xxðX; tÞ
@X

: ð150Þ

If the reference state is taken to be the dry state, the polymer
volume fraction � is given by 1=� .

To derive the kinetic equation, it is convenient to use the
Rayleighian formulation described in §3.3 Let vsðX; tÞ be the
solvent velocity at position ~xxðX; tÞ at time t. Since the
polymer velocity is given by vp ¼ _~xx~xx, the energy dissipation
function [eq. (65)] can be written as

(a)

(b)
(c)

x

x

0

0 X

(X, t) h(t)x̃

H
reference state

current state

Fig. 10. (Color online) (a) An Examples realizing

volume transition in one dimension. A cylindrical

gel is allowed to swell in a tube. (b) Another

example. A thin gel slab with one side glued to a

rigid wall is allowed to swell. (c) The coordinate

system used to describe the the kinetics of the gel.
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W ¼ 1

2

Z H

0

dX ~

ð�Þð _~xx~xx� vsÞ2 ¼
1

2

Z H

0

dX
~



ð1� �Þ2
_~xx~xx
2
; ð151Þ

where we have used the fact that the average velocity � _~xx~xxþ
ð1� �Þvs is zero. [Note that the average velocity � _~xx~xxþ ð1�
�Þvs is zero only when the one end of the gel is fixed to an
impermeable wall. If the right end of the wall in Fig. 10(c) is
permeable, the average velocity is nonzero.]

On the other hand, the free energy A is written as

A ¼
Z H

0

dX ~AAð�Þ: ð152Þ

Therefore, _AA is calculated as

_AA ¼
Z

dX
@ ~AA

@�
_��

¼
Z

dX
@ ~AA

@�

@ _~xx~xx

@X

¼ �
Z

dX
@�

@X
_~xx~xx; ð153Þ

where

�ð�Þ ¼
@ ~AA

@�
ð154Þ

and integration by parts has been used.
Thus, the Rayleighian is written as

R ¼
Z

dX
1

2

 _~xx~xx

2 �
@�

@X
_~xx~xx

� �
; ð155Þ

where


 ¼
~



ð1� �Þ2
: ð156Þ

Minimizing eq. (155) with respect to _~xx~xx, we have


 _~xx~xx ¼
@�

@X
¼
@�

@�

@�

@X
ð157Þ

or

@ ~xx

@t
¼ Dð�Þ

@2 ~xx

@X2
; ð158Þ

where

Dð�Þ ¼
1


ð�Þ
@�

@�
: ð159Þ

At X ¼ H, the gel is allowed to swell freely. Therefore,
the boundary condition at X ¼ H is � ¼ 0. This gives the
following boundary condition:

@ ~xx

@X
¼ �eq at X ¼ H; ð160Þ

where �eq is the solution of �ð�Þ ¼ 0. On the other hand, at
X ¼ 0, the gel is fixed to a rigid wall, i.e.,

~xx ¼ 0; at X ¼ 0: ð161Þ

Equation (158) and the boundary conditions in eqs. (160)
and (161) determine the free swelling in one dimension.

The kinetic equation [eq. (158)] can be rewritten in a
more familiar form. By differentiating both sides of
eq. (158) with respect to X, we have

@�

@t
¼

@

@X
Dð�Þ

@�

@X

� �
: ð162Þ

Thus, � satisfies the usual nonlinear diffusion equation.
However, eq. (162) is not very useful since the boundary
condition for � is not known.

5.2.2 Scaling property
An important feature of the equations given above is that

the material property is entirely characterized by �ð�Þ and

ð�Þ, and there is no material parameter with the dimension
of length or time. Therefore, for a given problem, the time
scale and length scale are set by the boundary conditions
such as the size of the specimen. This gives the following
scaling property.10) Let ~xxðX; tÞ be the solution to eq. (158) for
a gel of length H, then � ~xxð�X; �2tÞ is the solution of the same
equation for a gel having length �H.

To understand the implications of the scaling property,
consider the swelling of two gels having the same shape, one
being larger than the other by a factor of �. The scaling
property indicates that the shape of the larger gel at time
�2t is the same as that of the smaller gel at time t. Especially,
the relaxation times of the two gels differ by a factor of �2;
i.e., the relaxation time is proportional to the square of the
gel size. Such a scaling relation is known for phenomena
governed by a linear diffusion equation, but the scaling
relation actually holds for the nonlinear case as well. This
scaling relation is a general property of gel dynamics and it
holds not only for the one-dimensional case discussed here
but also for the three-dimensional case.

5.2.3 Coexistence condition
We now consider the time dependence of the volume

transition. Suppose that the gel slab shown in Fig. 10(a) was
initially in the shrunken state and that the temperature has
been changed so that the equilibrium state of the gel is now
in the swollen state. We discuss how the shrunken state
transforms to the swollen state.

Figure 11 shows how the transformation takes place.
Since the solvent can diffuse into the gel from the right, the
swollen phase appears at the right end and expands toward
the left. Let XIðtÞ be the position of the interface between the
swollen phase and shrunken phase. At XIðtÞ, � changes
discontinuously.

The discontinuity in � at the interface can be determined
by the condition that the system is in local equilibrium.40,41)

Consider a small region across the interface. Let �X be the
size of this region in the reference state and �x be the size in
the current state. Let us assume that, within this region, the
fraction w is in the shrunken state and the rest, 1�w. is in
the swollen state. Let �sh and �sw be the respective values of
� in these states. They satisfy the condition

�x ¼ ½w�sh þ ð1� wÞ�sw��X: ð163Þ

The local free energy of this region is given by

~AAlocal ¼ ½w ~AAð�shÞ þ ð1�wÞ ~AAð�swÞ��X: ð164Þ

The position of the interface is determined by minimizing
eq. (164) with respect to �sh, �sw, and w under the constraint
in eq. (163), i.e., they are given by
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@ ~AAlocal,p

@�sh

¼ 0;
@ ~AAlocal,p

@�sw

¼ 0;
@ ~AAlocal,p

@w
¼ 0; ð165Þ

where

~AAlocal,p ¼ Alocal � p½w�sh þ ð1�wÞ�sw��X: ð166Þ

Equations (165) and (166) give

�ð�shÞ ¼ �ð�swÞ ¼
~AAð�shÞ � ~AAð�swÞ
�sh � �sw

; ð167Þ

where �ð�Þ is given by eq. (154).
Equation (167) indicates that �sh and �sw are obtained by

constructing the common tangent in the plot of ~AA against �
as shown in Fig. 12(a). The construction of the common
tangent is equivalent to the Maxwell construction in the gas–
liquid transition. Thus, the coexistent condition in gels is
very similar to that in the gas–liquid transition.

The above argument indicates that if the solution �ðX; tÞ
of eq. (158) or (162) satisfies �sh < �ðX; tÞ < �sw in a
certain region, the solution must be replaced by the
discontinuous solution in the region. Alternatively, one
can formulate the problem as a problem with a moving
boundary condition:

@ ~xx

@t
¼ D1ð�Þ

@2 ~xx

@X2
for X < XIðtÞ; ð168Þ

@ ~xx

@t
¼ D2ð�Þ

@2 ~xx

@X2
for X > XIðtÞ; ð169Þ

where D1ð�Þ and D2ð�Þ denote the function Dð�Þ in the
regions of � < �sh and � > �sw, respectively. The swelling
ratio @ ~xx=@X is discontinuous at the interface;

@ ~xx

@X
¼ �sh at X ¼ XIðtÞ � 0; ð170Þ

@ ~xx

@X
¼ �sw at X ¼ XIðtÞ þ 0: ð171Þ

The interface velocity _XXiðtÞ can be determined by the
condition that the velocity of the polymer network at the
interface d~xx½XIðtÞ; t�=dt must be continuous at X ¼ XIðtÞ:

�sh
_XXIðtÞ þ

@ ~xx

@t

� �
X¼XIðtÞ�0

¼ �sw
_XXIðtÞ þ

@ ~xx

@t

� �
X¼XIðtÞþ0

: ð172Þ

Using @ ~xx=@t ¼ D@�=@X [see eq. (158)], we have40)

_XXIðtÞ ¼ �

��
Dð�Þ

@�

@X

��
½½���

; ð173Þ

where ½½F�� is the jump of F at the interface, i.e., ½½F�� ¼
FðXI þ 0Þ � FðXI � 0Þ.

Equation (173) allows us to estimate the velocity of the
interface. The velocity @ ~xx=@t ¼ D@�=@X is much larger in
the swollen state than that in the shrunken state. Hence,
½½D@�=@X�� can be approximated by D@�=@X at X ¼
XI þ 0. Furthermore, this value can be approximated
by Dð�swÞð�eq � �swÞ=ðH � XIÞ [see Fig. 11(b)]. Hence,
eq. (173) gives41)

_XXI ¼ Dð�swÞ
�eq � �sw

ðH � XIÞð�sw � �shÞ
: ð174Þ

The equation is easily solved to give

time 0

time t

h0

XI (t)

XI (t)
X

Hw (1 w)

λ λ(X, t)

λsw
λeq

λsh

(a) (b)

Fig. 11. (Color online) Intermediate state of volume transition. (a) The gel is initially in a shrunken phase, and the swollen phase appears at the right end.

The boundary between the swollen phase and the shrunken phase moves to the left. XIðtÞ is the coordinate (in the reference frame) of the boundary at

time t. (b) Typical behavior of the function �ðX;TÞ for the state where the swollen phase and shrunken phase coexist at point XI.

(a)
λsh

A(λ)˜

σ(λ)

λsh

λsw

λsw

λeq

λ

λ

(b)

Fig. 12. (a) Free energy density per unit volume of the reference

state plotted against the swelling ratio � . (b) Stress is plotted against � .

�eq is the solution of �ð�Þ ¼ 0, and �sh and �sw are determined by

eq. (167).
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XIðtÞ ¼ H �
ffiffiffiffiffiffiffi
DIt
p

; ð175Þ

where

DI ¼ Dð�swÞ
ð�eq � �swÞ
�sw � �sh

’ Dð�swÞ
�eq � �sw

�sw

; ð176Þ

and we have used the relation �sw � �sh. Thus, the
motion of the interface is essentially determined by the
parameters in the swollen state, and the time needed for
the interface to move from the left end to the right end is
estimated as

� ¼
H2

DI

: ð177Þ

The time is proportional to H2 in accordance with the scaling
property.

5.3 Complications in volume transitions
We have seen that the volume transition of gels has some

similarity to the gas–liquid phase transition in the one-
dimensional case. This is, however, a special situation. In
fact, the similarity between the volume transition in gels
and the gas–liquid transition is superficial: there are more
differences than similarities. In this section, we shall discuss
the differences.

5.3.1 Volume transition of a spherical gel
Let us consider the volume transition of a spherical gel.

Let us assume that each point of the gel can move only in the
radial direction. Thus, the swelling of the gel is completely
described by the function ~rrðR; tÞ which denotes the radial
coordinate at time t of the gel element that was at R in the
reference state. This assumption reduces the problem to a
one-dimensional partial differential equation. Even if such a
simplifying assumption is made, the kinetics of the volume
transition of spherical gels is complex and is quite different
from that of the one-dimensional case.42,43) This is because
the deformation mode is different. In the one-dimensional
case, the deformation takes place in the x direction only, and
there is no deformation in the y- and z-directions, while in
the swelling spheres, the deformation takes place in the
radial direction as well as in the tangential direction. The
deformation in the radial direction is given by

�kðR; tÞ ¼
@~rrðR; tÞ
@R

; ð178Þ

and the deformation in the tangential direction is given by

�?ðR; tÞ ¼
~rrðR; tÞ
R

: ð179Þ

The time evolution equation for ~rrðR; tÞ can be obtained by
the same method as that described in §5.2.1. The equation is
different from eq. (158). Particularly, the condition at the
interface between the swollen phase and shrunken phase is
different. Note that ~AA in eq. (167) is a function of �?, the
stretch in the direction normal to the x-axis. In the one-
dimensional case, �? is fixed. Therefore, �sh and �sw are
constant and do not change as the interface moves. On the
other hand, in the spherical gel, �? varies with time as the
gel swells. Therefore �k;sh and �k;sw also change with time.
This gives a complication to the problem.

Suppose that the swollen phase and shrunken phase
coexist as shown in Fig. 13. The condition for the two
phases to coexist depends on whether the swollen phase
occupies the outer part or inner part of the sphere. Suppose
at some temperature TI, the gel is in the shrunken state
(state I in Fig. 13). As the temperature is increased, a
swollen phase starts to appear near the surface (since the
solvent must diffuse into the gel from the surface), and
moves toward the center (state II). Eventually the whole
sphere becomes in the swollen phase (state III). If the
temperature is then decreased, the shrunken phase starts to
appear near the surface (since the solvent must diffuse out of
the gel through the surface), and moves toward the center.
The temperature at which the shrunken phase starts to appear
will be different from the temperature at which the swollen
phase starts to appear: there is a hysteresis when the
temperature is changed cyclically.

5.3.2 Hysteresis
The hysteresis explained in the previous section is a result

of the gel being an elastic material. If the material is a fluid,
it does not matter whether the swollen phase (or the large-
volume phase) occupies the outer part or inner part of the
gel. On the other hand, if the material is elastic, it matters,
since the free energy of the system involves the energy of
deformation. This is the basic difference between the gas–
liquid transition and the volume transition in gels.

The volume transition in elastic materials must exhibit
hysteresis. This is explained in Fig. 14. Consider the
temperature at which the free energy of the shrunken state
(the small volume state) is equal to that of the swollen state
(the large volume state). Figure 14 shows the free energy of
the material at this temperature plotted against the volume of
the material. The dashed line denotes the free energy of the
homogeneous state and the solid line is the free energy of the
state in which two phases coexist with each other.

For the fluid [Fig. 14(a)], the free energy in the coex-
istence region is flat; thus, the gas state can be transformed
to the liquid state without any extra work. [The free energy
discussed here is the Gibbs free energy GðV; T ; pÞ ¼
FðV ;T ; pÞ þ pV , where FðT ;VÞ is the Helmholtz free
energy.] On the other hand, for elastic materials [Fig. 14(b)],

V

T

Fig. 13. (Color online) Hysteresis effect in the volume transition of

spherical gels.
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the free energy in the coexistence region has a peak in the
middle of the region. The peak originates from the elastic
energy of deformation required for the two phase to coexist.
In fluids, the cost of the coexistence of the gas phase and
liquid phase is the inter-facial tension, which is negligibly
small compared with the bulk energy. On the other hand, in
elastic materials, the cost of the coexistence of the swollen
phase and shrunken phase is the elastic energy of deforma-
tion, which is a bulk energy and cannot be neglected.44) In
order to cause the spontaneous transformation of the
shrunken phase to the swollen phase, the temperature must
be changed so that there is no bump in the free energy curve.
This temperature will be different from the temperature at
which the swollen phase transforms spontaneously to the
shrunken phase. Therefore, the transition must have a
hysteresis effect.

It has been shown43,45) that the kinetics of the volume
transition can be quite complex; the volume change does not
take place monotonically with time; occasionally there is an
incubation period before a large volume change occurs, or
the volume change stops for a while in the middle of the
shrinking process and then starts again. Such behavior has
indeed been observed experimentally.39,46)

5.3.3 Mechanical instability
The elasticity of gels complicates the kinetics of volume

transitions as we have discussed. There are other complica-
tions which make the problem even more difficult: the
buckling effect.

The buckling effect can be seen in the simple situation
shown in Fig. 15(a). Consider the swelling of a gel fixed to a
substrate [see Fig. 15(a)].47) Since the bottom of the slab is
fixed, the slab cannot expand in the plane parallel to the
substrate. If the equilibrium volume change is small, the gel
swells homogeneously as discussed in §4.1. If the volume
change is large (either due to a large temperature change,
or a volume transition), the gel will buckle as shown in
Fig. 15(b). The buckling occurs since the gel volume can
increase [therefore reducing the bulk modulus term in
eq. (35)] by sacrificing the shear modulus term.

Analytical calculations and computer simulations have
been performed for the buckled state.48,49) It is clear by the
scaling property discussed in §5.2.2 that the characteristic
size of the wrinkles ‘ is of the order of the thickness of the
gel slab h.

Buckling can take place in a gel that is not subject to any
constraints. Consider the swelling of a spherical gel. An
element of the gel near the surface is in a situation similar to
that of the constrained gel. The surface of the gel is swollen,
while the inner core is not swollen. If the volume change
near the surface is rapid, the gel elements near the surface
buckle, and wrinkles appear on the surface of the sphere [see
Figs. 15(c) and 15(d)]. The wrinkles disappear eventually
when the whole gel reaches the equilibrium state [see
Fig. 15(e)]. In the case of a spherical gel, the wrinkles
appear in the intermediate state; the initial and final states
are a smooth sphere. The characteristic size of the wrinkles
is determined by time. By the scaling property, the size of
the wrinkles can be estimated by

‘ ’
ffiffiffiffiffi
Dt
p

: ð180Þ

There are other types of mechanical instabilities, and
various patterns such as bamboo like patterns and bubble-
like patterns have been observed in the transition state of
volume phase transition.

6. Conclusion

In this article, we have proposed a continuum mechanical
theory that describes the dynamics of gels. The characteristic
feature of gels is that the permeation of a solvent (or its

A(V) A(V)

V V
(a) (b)

Fig. 14. (Color online) Free energy curve of a sys-

tem undergoing a volume transition for fluid system

(a) and elastic system (b). The free energy is drawn

as a function of the total volume of the system at the

temperature at which the free energy of the shrunken

state (or small volume state) is equal to that of the

swollen state (or large volume state). In the fluid

system, the free energy of the fluid is flat in the

coexistence region since the cost of coexistence is

negligible. On the other hand, in the elastic system,

the free energy has a peak in the coexistence region

since the elastic energy of deformation contributes

to the free energy cost of coexistence.

h

(a) (b)

(c) (d) (e)

Fig. 15. (Color online) (a) and (b) Buckling of a swollen gel fixed on a

substrate. (c)–(e) Wrinkles seen at the surface of spherical gels in the

intermediate stage of the transition from the shrunken state to the swollen

state.
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diffusion) is coupled with the elastic deformation of the gel.
This may be compared with a fluid mixture in which the
diffusion and fluid flow are coupled with each other. The
basic equations of gels can be constructed in the same way
as those for a fluid mixture, but the difference is that one
component of the gel is an elastic material. This results in
unique features in the kinetics of gels.
(1) Although the diffusion of the solvent in the gel can be

described by diffusion equations such as eq. (77), the
dynamics can be markedly different due to the
elasticity. This is clearly demonstrated in the relaxation
time of the free swelling of gels: the relaxation time
diverges in the limit of K ! 0, even though the
diffusion constant remains finite.

(2) The elasticity gives specific kinematics in the phase
transition of gels. When the swollen phase and
shrunken phase coexist with each other, there is a
very large cost of free energy. This causes the strong
hysteresis and unusual kinematics in the volume
transition of gels.

In this article, we restricted the discussion to problems
that can be treated by analytical calculation. As gel
dynamics generally requires the solution of coupled non-
linear equations, numerical calculation is important. In early
works, the coupling between the gel deformation and solvent
permeation was not treated properly. Simulations based on
proper models will have value for both scientific study and
industrial applications.
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