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The general theory of Kirkwood for the dynamics of polymer solutions and suspensions is reformulated in the 
form of a variational principle. This formulation is analogous to Lagrangian mechanics and the time evolution 
equation is derived from a certain scalar functional. The advantage of this formulation is that: (i) it states the 
essential physics of the Kirkwood theory without using the Riemannian geometry; and (ii) it suggests various 
new schemes of approximation. Two examples are given to illustrate the usefulness of the formulation, i.e., the 
dynamics of rodlike polymers and the deformation of an elastic particle in elongational flow. 

I. INTRODUCTION 

In 1949,1,2 Kirkwood gave a general theory for the 
dynamics of polymer solutions and suspensions. Based 
on the earlier work of Burgers, 3 Kuhn, 4 and Kramers, 5 

he established how to take into account the Brownian 
motion, how to include the effects of the macroscopic 
flow and the hydrodynamic interaction, and how to cal­
culate the stress tensor. After a correction6,1 of an 
error included in the original theory, his theory has 
been regarded as a very general foundation for the ki­
netic theory of polymer solutions and suspensions. 

Unfortunately, the original Kirkwood theory was 
written in the language of the Riemannian geometry, 
which has formidable appearance of mathematics. For 
example, his general diffusion equation for flexible 
polymers appeared almost impossible to solve even with 
the aid of computer. Thus for some time, the Kirkwood 
theory was regarded as being formally correct, but not 
useful for practical calculations. 

A new evolution of the Kirkwood theory was brought 
by Fixman, 8-10 who rewrote the theory in terms of the 
usual Cartesian coordinate. In the case of flexible poly­
mers' Fixman's representation was much more trans­
parent than Kirkwood's, and indeed enabled him to cal­
culate the intrinsic viscosity of polymers in a reason­
able approximation. 8,9 

The present work was motivated by the success of 
Fixman's work. In this paper, we shall give a new 
formulation of the Kirkwood theory. The formulation 
is analogous to the variational prinCiple proposed by 
Onsagerl1 for the general irreversible process. In this 
formulation, as in the Lagrangian mechanics, the time 
evolution equation is obtained from a variation of a cer­
tain scalar functional. (Similar variational principle 
based on Rayleigh's work has been successfully applied 
to polymer systems by Edwards and Freed. 12) Though 
the present formulation is merely a mathematical re­
writing of the Kirkwood theory, it has various merits: 

(i) The formulation states the physical content of the 
Kirkwood theory without using the sophisticated 
Riemannian geometry . 

(ii) The formulation is independent of the coordinate 
system, and allows a great freedom in choosing the co-

ordinate. Both Kirkwood's representation and Fixman's 
representation are naturally derived from this formula­
tion. A new representation which may be more conve­
nient for practical calculation is also obtained. An ex­
ample is given in Sec. V. 

(iii) As a consequence of these advantages, the varia­
tional principle suggests various new methods of ap­
proximation. An example is given in Sec. VI. Further 
examples will be given in the future. 

II. THE KIRKWOOD THEORY 

First we briefly review the Kirkwood theory. The 
Kirkwood theory considers a collection of Brownian par­
ticles, called beads, immersed in a Newtonian fluid of 
viscosity 1)s' interacting via a certain interaction poten­
tial. All beads are assumed to be a sphere of radius a. 
Though this model was proposed for polymer solutions, 
it can be readily applied to suspensions with certain 
gene ralization. 

If the Brownian motion is neglected, the dynamics of 
the beads is described by hydrodynamics. Since the 
relevant Reynolds number is very small, the Stokes ap­
proximation can be used. Let {R}=(Rt> R2, ••• , RN ) be 
the set of the position vectors of the beads, and F m be 
the nonhydrodynamic force acting on the mth bead. If 
the separation between beads is large compared to a, 
the velocity Rm of the mth beads is given by the Stokes­
Oseen law: 

where!; == 61T1/sa is the Stokes friction constant K the 
macroscopic velocity gradient and T(r), the Oseen ten­
sor 

T(r) == 81T1/~ I r I [1+ I ~ 2J (2.2) 

(I being the unit tensor). Defining the tensor Hnm as 

1 
Hnn= 1:' Hnm= T(Rn-Rm), (n*m) , (2.3) 

we can rewrite Eq. (2.1) as 

R" - K • R, == L Hnm • F m . (2.4) 
m 
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If the force is given by a known interaction potential 
V({R}) as 

av 
Fm=- aR ' 

01 

(2.5) 

the motion of the beads is determined by Eqs. (2.4) and 
(2.5). In general, however, a complication arises since 
the beads are usually subject to certain constraints such 
as the constant bond lengths or constant bond angles. If 
the degree of freedom of the system isj, such con­
straints are generally expressed as 3N - j functional re­
lations: 

Cp({R})=0 , (p=1,2, ... ,3N-j). (2.6) 

These constraints can be handled by two methods: 

(i) In the first method, which was adopted by Kirk­
wood, a set of independent variables {Q}= (QI' Q2' ... , Q,) 
are used to specify the configuration of the beads under 
the constraints (2.6). The velocity HOI is given as 

, "aR' 
Rm = LJ a==-Q Qa · 

a a 
(2.7) 

(Note that the dots in HOI and Qa do not mean the time 
derivatives, but simply define new variables.) 

The force F 01 now represents the potential force and 
the constraining force. Since the constraining force 
does no work, we have 

(2.8) 

Equations (2.4), (2.7), and (2.8) determine HOI' Qa' and 
Fm' 

(ii) An alternative method used by Fixman8 is to re­
gard Rm as an independent variable and to take into ac­
count the constraints by explicitly adding the constrain­
ing force to Eq. (2.1). 

av L ac~ ----+ A--Fm- aR ~ aR ' 
01 P 01 

(2.9) 

where A~ are unknowns, which are determined by the 
condition that HOI given by Eqs. (2.4) and (2.9) satisfies 

" ' acp 
LJRm'aR =0, (p=1,2, ... ,3N-j). 

01 01 

(2.10) 

[In Eq. (2.9), for the derivative aV({R})/aRm to be de­
fined, V({R}) must be defined over the entire 3N dimen­
sional phase space. If V({R}) is known only in the f­
dimensional constrained space, arbitrary generalization 
is allowed for V({R}) outside the constrained space. 
Whatever the generalized potential is, the resulting 
force F 01 is independent of the way of generalization as 
long as Eq. (2.10) is satisfied.] 

Equations (2.4), (2.7), and (2.8), or (2.4), (2.9), 
and (2.10) determine the motion of beads for given ve­
locity gradient. Now when the Brownian motion is in­
volved, one cannot determine the position of beads pre­
cisely. Instead one can determine the probability den­
sity oIt({R}, t) that the beads are in the configuration {R} 
at time t. The conservation equation for the probability 
is 

a~ =_2::-a_, [HOI»]' 
at 01 aRm 

(2.11) 

Now the essential point of the Kirkwood theory is the 
proposal that due to the Brownian motion a new term 
kB Tin», called the Brownian potential, must be added 
to the potential. Hence, Eqs. (2.8) or (2.9) are now re­
placed by 

~ aR a 
Eq. (2.8): ~F ·..:...:.:JI1=--(V+kB Tln») , 

01 m aQa aQa 
(2.12) 

a " flC, Eq. (2.9): Fm==--(V+kBTln'l1)+LJAPflR . (2.13) 
aRm P '" 

The set of equations [(2.4), (2.7), (2.11), and (2.12)] 
gives Kirkwood's representation for the diffUSion equa­
tion, and the set of equations [(2.4), (2.10), (2.11), and 
(2.13)] leads to Fixman's representation. The explicit 
form for the diffusion equation is complicated and given 
in Appendix A. 

To discuss rheological properties, we need to know 
the microscopic expression for the stress tensor. Ac­
cording to Kirkwood, the excess stress due to the pres­
ence of the polymers is given as 

a"B = - ~ L (RmaF 7!Il) + isotropic term, 
m 

(2.14) 

where a, /3(= x, y, z) denote the component of the vectors 
or tensors, n is the volume of the solution, and (, , . > 
represents the average over the distribution function 
'l1({R}, t): 

(, .. >=!d{R}'l1({R};t)... . (2.15) 

The total stress of the system is thus 

a~oBt=1).(KaB+KB,,)+p6aB+aaB' (2.16) 

Equation (2.14) agrees with the formula given by 
Batchelor. 13 

Since Eqs. (2.4), (2.7), and (2.12) [or Eqs. (2.4), 
(2.10), and (2.13)] determine Fm as a linear function of 
K(t) as 

(2.17) 

(where summation convention is used for the repeated 
Greek indices), the excess stress is generally written as 

with 

a~~) = - k(~RmaF~)({R}; »») 

()'~~) = - k(~Rm":::~~v({R}») KVI'(t) 

(2. 18) 

(2.19) 

(2.20) 

We call a(E) the elastic stress and (7(V) the viscous 
stress. The viscous stress (7(V)(t) at time t is propor­
tional to the velocity gradient K(t) at the same time, 
while the elastic stress (7(E)(t) is independent of it. The 
distinction between a(E) and a(V) is important and will 
be discussed in Sec. IV. 
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Before ending this section, a comment is made about 
the tensor Hnm' The formula (2.1) is correct only if the 
distance between beads is large enough, otherwise, Eq. 
(2.4) poses some problems. 14,15 For example, although 
the mobility tensor Hnm must be positive definite, i. e. , 

(2.21) 
n,m 

Hnm , defined by Eq. (2.3), does not always satisfy this 
condition. One way of avoiding this difficulty is to use 
an improved expression for Hnm. 16,17 Another way, 
which is formally very simple, but not so in practice is 
to introduce the "subbeads" which have infinitesimal 
size and cover the surface of the beads continuously. If 
R" and Fn are understood as representing the quantities 
of the subbeads, then Eq. (2.1) reduces to Green's 
function method known in zero Reynolds number hydro­
dynamics. 17 In this case, Eq. (2. 21) is guaranteed. 
With this understanding, the Kirkwood theory can be 
applied for suspensions of solid particles since any par­
ticle can be regarded as made up of infinite subparticles 
of infinitesimal size. 

III. THE VARIATIONAL FORMULATION 

Now we translate the above equations into a variational 
prinCiple. For that purpose we regard Rm as a function 
of {R} and introduce the following functionals: 

w[{R}] = fd{R} \It ~)R" -K' Rn} 
n,m 

, (W1}nm' (Hm - K' Rm) , (3.1) 

.A [{il}] = fd{R}[kBT,j,ln\It+kBT>it+~V], (3.2) 

where (I,,-I}nm is the inverse of Hnm: 

(3.3) 
m 

and the function ,j, is defined by 

. "a , 
oIr == - L... aR . [Rm \It] . 

111 m 
(3.4) 

With this definition, the variational principle can be 
stated as follows: Let 3C be defined by 

(3.5) 

then it follows: 

(i) The functional 3C becomes minimum for H", which 
satisfies the equations of motion [Eqs. (2.4), (2.10), 
and (2.13)]. For this {R}, 4 gives the time evolution of 
W({R}; t): 

a\It ==,j, 
at . (3.6) 

(ii) The minimum value of 3C is quadratic in the ve­
locity gradient tensor K, and the coefficients determine 
the viscous stress and the elastic stress as 

min3C==[t1J~~~vKB" Kvl' +cr~~) KBor]n 

+ terms independent of Kora' (3.7) 

The derivation of these results is straightforward and 
given in Appendix B. 

We now discuss some physical implication of the vari­
ational principle. 

Crudely speaking the variational principle states how 
to balance the "viscous" force which is included in W, 
with the "elastic" force which is included in .A. This 
may be seen more clearly in the case that the Brownian 
motion is neglected. In this case we have the following 
variational principle: Regarding Hm as simple variables 
(not functions of {R}), we introduce 

K({R}) = tW({R}) + A({R}) , (3.8) 

where 

W({H}) == L (R" - K' R,,) , (H-1
}nm' (Rm - K' Rm) , (3.9) 

n,m 

, "av ' 
A==LJ aR • Rm' 

111 m 
(3.10) 

It is easy to show that the hydrodynamic equations of 
motion [Eqs. (2.4) and (2.9)] are obtained by minimiz­
ing K with respect to {H} under given constraints. In 
this case, W r,epresents the hydrodynamic energy dis­
sipation, and A represents the rate of change of the po­
tential energy. This variational principle is a special 
form of the "principle of minimum energy dissipation" 
proposed by Onsager, in which R", and V represent the 
general thermodynamic variables and the entropy, re­
spectively. 

In the general case of Eq. (3.5), the functional W 
represents the mean energy dissipation caused by the 
hypothetical motion Hm. The functional.A represents 
the rate of change of the following quantity: 

{3.11} 

(Here V is assumed to be independent of time.) At 
equilibrium, .A [\It ] reduces to the usual free energy: 

(3. 12) 

since 

\Iteq == exp(- V /kBT} Ijd{R}exp(- V /kBT) . (3.13) 

The functional .A [\It ] represents the free energy (in the 
sense of nonequilibrium thermodynamics) for the state 
described by the distribution function oIr. We shall call 
.A [w ] the dynamic free energy. 

The dynamic free energy has the following property 
of irreversibility (see Appendix B): If there is no ve­
locity gradient, and if the potential V({R}; t) is indepen­
dent of time, the dynamiC free energy decreases mono­
tonically with time, i. e. , 

d.A • 
-=.A<O dt . 

(3.14) 

Thus .A[ilt] is always larger than .A [oIreq ) and can be a 
measure of how far the system is from the equilibrium 
state. 

Now a few comments are made as to practical applica­
tion of the variational principle: 

(1) The advantage of the variational principle is that 
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the functional3C is independent of the coordinate system. 
If one expresses 3C in terms of the generalized coordi­
nates {Q}, he gets Kirkwood's representation. Alterna­
tively, if he takes into account the constraints (2.6) by 
adding to 3C a new term 

"" ac, . 
~>.., aR . R., , ., (3.15) 

he gets Fixman's representation. Such flexibility in the 
choice of the coordinate is quite useful in actual calcula­
tion as will be demonstrated in Sec. V: 

(ii) The variational principle determines the rate of 
change such as R., or aw-/at, but not w- itself. Particu­
larly, it does not determine the steady state directly: 
The steady state is obtained only by time integration of 
aw- lat. In this sense, the present variational principle 
is different from the variational principle, recently pro­
posed by Fixmant9 which directly determines the steady 
state and gives upper and lower bounds for transport 
coefficients (see also Refs. 20 and 21). However, the 
two formulations have apparent similarity. In fact, in 
the special case of steady state, weak flow, the form of 
the functional to be minimized becomes the same in the 
two formulations. The connection between the two for­
mulations is not clear at present, but we hope to come 
back to that problem in the future. 

IV. THE PRINCIPLE OF THE HYPOTHETICAL WORK 

In this section, we discuss another interesting impli­
cation included in the Kirkwood theory. As is well 
known, in ideal elastic materials, the stress can be cal­
culated from the variation in the free energy caused by 
a hypothetical strain. On the other hand, in purely 
viscous liquids, the stress is related to the energy dis­
sipation. An interesting question is: How can we gen­
eralize these relations to viscoelastic materials? Al­
though the general answer to this question may be deli­
cate, there is a clear answer if the system is described 
by the Kirkwood theory. 

Consider a small hypothetical deformation OEa8 which 
displaces the material point ra to ra +OE",8r8' If the 
deformation is done in a time ot, the velOCity gradient 
is given by 

(4.1) 

We consider the limit of "instantaneous" deformation, 
i. e., the limit of ot- O. Since we keep OEa8 small but 
finite, IC becomes very large in this limit. 

In this limit, v4 can be neglected compared to OW and 
the real velOCity {it} is given by those which minimize 
W subject to the constraints (2.6). Thus, it follows: 

(i) During the instantaneous deformation, the beads 
move with the velocity {it} which minimize ·w subject to 
the constraints (2.6). The displacement OR., of the 
beads caused by the hypothetical deformation is given by 
Hmot. 

By straightforward calculation (see Appendix B) we 
can show: 

(ii) The energy diSSipation W is related to the coef-

ficient in the viscous stress as 

(4.2) 

(iii) The variation of the dynamic free energy .A is 
related to the elastic stress: 

0.A=(j~~)0E:8a , 

where 

and 

ow-== - L a~ • [ORm w-] . 
m m 

(4.3) 

(4.4) 

(4.5) 

The meaning of Eqs. (4.2) and (4.3) is obvious: When 
a small strain OE",8 is applied to the system in a very 
short time ot, part of the work done to the sy stem is 
immediately diSSipated due to the hydrodynamic friction, 
and the remainder is stored as an increase in the dy­
namic free energy. The former determines 1j~~~v and 
the latter (j~~). This result, though obvious, was useful 
for obtaining the microscopic expression for the stress 
tensor in concentrated suspensions. 22 

V. EXAMPLE 1: DYNAMICS OF RODLIKE POLYMER 
IN 01 LUTE SOLUTION 

We now give examples of the application of the varia­
tional principle. In this section, we consider the dy­
namics of rodlike polymers in dilute solution. The pri­
mary purpose of this section is to demonstrate the neat­
ness in the calculation based on the variational principle 
since the problem itself has been discussed by many 
authors. 2,23 

We consider a rodlike polymer of length L and diame­
ter d immersed in a Newtonian fluid. The polymer is 
assumed to be made up of N == L/ d beads which are placed 
along a straight line with equal separation d. The beads 
are numbered from -N/2 to N/2. Let R be the position 
of the center of mass, and u be the unit vector along the 
polymer, then the position, and the velocity of the nth 
bead is written as 

(5.1) 

Since u is a unit vector, the three components of u and 
it must satisfy the relation 

U",U", = 1 , 

uau", =0 . 

(5.2a) 

(5.2b) 

Here we use the representation which is intermediate 
between Kirkwood's and Fixman's. We regard the six 
components of the two vectors Rand u as independent 
variables and take into account the above constraint by 
Fixman's method. 

Now from Eqs. (2.2) and (5.1), H"m is written as 

(5.3) 

where 

(5.4) 

and the term 10nm/~ is neglected since this term turns 
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out to be negligible for large N. The inverse of Hnm is 
given as 

(Wl)nm = (h-I)nm(r _ ~u) , (5.5) 

where (h-I)nm is the inverse matrix of hnm . 

Substituting Eqs. (5.1) and (5.5) into Eq. (3.1) we 
have 

ow = J du J dR 'It {~r[(U - K . U)2 - t(u' K' U)2] 

+~t[(R -K' R)2 - t(u' (R - K' R»2]} , 

where 

n,m n,m 

Hence, 

X = JdU JdR {t~J(U - K' U)2 -t(u' K' U)2]'It 

(5.6) 

(5.7) 

( a. a .)( . } - _. u'It + - . R'It kB T In 'It + V) - AU' ulJl 
au aR ' 

(5.8) 
where V(u; t) is the potential energy due to an external 
field. The last term of Eq. (5.8) comes from the con­
straints (5.2) with A'It being the Lagrangian multiplier. 

A cautionary remark is made here. Since lJI(u) in­
cludes the factor o( I u I - 1), it follows that, for arbitrary 
function X( u), 

X(u)'It(u) = [X(U)]lul=1 'It(u) . (5.9) 

Thus, in the expression of '\\7, we can use the relation 
(5.2a). On the other hand, since 

a 'It a 'It 
x(u) au "* [X(u) ]101 =1 au ' (5.10) 

the relation (5. 2a) cannot be used in the first term in 
.A. It must be remembered that the relation (5. 2a) can 
be used only when the expression has the factor 'It. 

Now from ax/au= 0 and aX/aR= 0, we have 

(5.11a) 

~t[(R -K' R) -tu' (R-K' R)u] + a~(kBTln'It)=O. 
(5. 11 b) 

From Eqs. (5.2b) and (5.11), u and R are solved as 

. 1 ~'K'~ 
u=--V(kBTln'It+V)+K'u- 112 u, (5.12) 

~r u 

. 1 ( a ( R = - - 1+ uu)· -R k B T In I}I") + K • R , 
~t a 

(5.13) 

where 

( uu) a 
V == 1 - iUj"2 • au . (5.14) 

The minimum of X is 

+ terms independent of K . (5.15) 

Comparing this with Eq. (3.7), we get the expression 
for the stress tensor 

(5. 16) 

(5.17) 

where C == 1/0 is the number of polymers per unit 
volume. By partial integration, a~~) is rewritten as 

a~~) = - c fdufdRkBT I}I" a:" [(°8 " -7U~1 )ua] + c(uaVBV) 

(5.18) 

Finally, using Eqs. (5.12) and (5.13) and the relation 

a. . 
-. u'It=V' u'It 
au ' 

(5.19) 

we obtain the diffusion equation 

a 'It [ 'It J -=DV' V'It+-VV -v· [K'U-(U'K'U)U] 
at r kBT 

a a 'It a + D - • (1+ uu) • - - - • K' R'It 
taR aR aR 

(5.20) 

where 

(5.21) 

It is easy to show that Eq. (5.20) is rewritten is a more 
familiar form 

~! = DrlR[IR'It + k:TIRV] -IR· [UX(K' u)l}I"] 

a a 'It a 
+ D t aR • (I + uu) . aR - 8R • K' R'It , 

where 

a lR==ux -
au 

(5.22) 

(5.23) 

is the rotational operator. When rewritten in terms of 
the usual polar coordinates (8, (/J), Eqs. (5.16), (5.17), 
and (5.20) agree with those given in Refs. 2 and 19. 

For completeness, the explicit expressions for Dr and 
D t are now obtained. Since ~m decreases quickly with 
In - m I, we may approximate it as 

(5.24) 

j N/2 1 
li = 2 dm hOm = "4d In(N /2) . 

1 7111. 
(5.25) 

Hence, 

(h-1)nm = °nm/Ii (5.26) 

and 
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_ 2 fN/2 m 2 _ 1fl1,(Nd)3 _ 1f1j.L3 

!;r-2d 0 dm n - 31n(N/2) - 31n(L/2d)' 
(5.27) 

?; t == N /n = 41fl1, L/ln(L/2d) . (5.28) 

These results agree with those of Kirkwood and his 
collaborators. 2 

VI. EXAMPLE 2: DEFORMATION OF AN ELASTIC 
PARTICLE IN ELONGATIONAL FLOW 

As the next example, we consider the following prob­
lem: Determine the deformation of an elastic particle 
of spherical shape placed in the elongational flow (see 
Fig. 1) 

(6.1) 

Rigorous treatment for this problem becomes very 
complicated, particularly when the deformation becomes 
large. We shall now show that a simple approximate 
calculation is possible based on the variational principle. 

Again we assume that the elastic particles are made 
up of beads, whose pOSitions are denoted by Rm' With­
out loss of generality, we can assume that the center 
of particle is at the origin. An essential simplification 
can be made if we assume that the deformation of the 
particle is a homogeneous elongation represented by 

R" =E' ~O) (6.2) 

with 

E~['/: 
0 

:J ' 1/5 

0 

(6.3) 

where ~O) is the position of the particle in the unde­
formed state. Mathematically, the parameter A is re­
garded as a generalized coordinate characterizing the 
conformation of the particle. 

We neglect the Brownian motion and use the varia­
tional principle of Eq. (3.8). Since the velOCity of the 
beads is expressed as 

r/25 0 

~J~" R" = E • R.:0) = : -1/25 

0 

{:/' 0 

~J~ -1/2 

0 

(6.4) 

the energy dissipation function is written as 

W = (~ - K J X(A) , (6.5) 

where 

X(A) = L [tR"",(Ir1)mnxx R n" 
m.n 

+ t Rmy(Jr1)mnyyRny + Rm.(Jrl)"",uRn.] . (6.6) 

Though straightforward calculation of the summation in 

x 

z 

FIG. 1. Deformation of an elastic particle in a elongational 
flow. 

Eq. (6.6) is difficult, X is easily obtained from the con­
sideration of th!l special case: If the particle is an rigid 
ellipsoid, then A == 0 and the energy dissipation is given 
by i1(A)K2, where 1j(A) is the excess elongational viscosity 
(per particle) of the solution of the rigid ellipSOid with 
principal axis Aa, a/5, and a/5. Hence, X=17(A). 
According to Jefferey, 24 

-(A) 4 3 4e
5 

11 =:i 1fa 11, [(3 _ e2) In(l + e)/(l- e) - 6e](l- e2)' (6.7) 

where e= (1- A-3)1/2 is the ellipticity of the particle. 
U(A) be the elastic energy of the deformed particle. 
Then K in Eq. (3.8) is given as 

Let 

1- (A )2. au K='211(A) - -K +A-A aA . 

Hence, aK/ax == 0 gives, 

dA' [ A au] 
dt =A=A K -17(A) 8i" . 

Since 

au A2 (aU)2 
min K = AK 8i" - 217 8i" 

the stress is obtained as 

au 
aCE) _ aCE) == CA-' a(V) - a(V) - 0 

•• xx 8A'.. xx - , 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

where C == 1/0 is the number of particles in unit volume. 

Further calculation requires the knowledge of U(A). 
As an example, we consider the case that the elastic 
energy U(A) is proportional to the surface area S(A) of 
the particle 

(6.12) 

For ellipSOidal particles, we have 

r, (1 2r1/S ~ 
S(A) = 21fa2l(1 - e2

)1/3 + -: arcsin(e)J (6.13) 

Equation (6.9) determines the time evolution of A. In 
the steady state, the deformation is determined by the 
following equation: 

A au 
K = 17(A) ai" . (6.14) 

Thus, the intrinsic viscosity is obtained as 
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FIG. 2. The elongational ratio A and the intrinsic elongational 
viscosity [lj(K)] of an elastic particle is plotted against the 
elongational rate K: a, the radius of the undeformed sphere; 
718 , the solvent viscosity; 'Y the surface tension. For K > Kc. 

their particle will rupture. 

(6.15) 

Figure 2 shows the elongational ratio and the intrinsic 
viscosity as a function of the elongational rate K. An 
interesting feature of this graph is that there is a criti­
cal elongational rate Kc which corresponds to the maxi­
mum of the right-hand side of Eq. (6.14) 

A au Y 
Kc = max-(,) - = 0.094 - . 

1}" aA m]s 
(6.16) 

According to Eq. (6.9), for K < Kc' A approaches mono­
tonically to the steady state given by Eq. (6.14), while 
for K> Kc. 'A increases indefinitely, i. e., the droplet 
will rupture. This general feature agrees with the re­
suit of more sophisticated calculation. Ralison and 
Acrivos25 carried out a numerical calculation for the 
large deformation of a droplet in a elongational flow of 
Newtonian liquid. Their result can be compared with 
the present calculation since, as far as the steady state 
is concerned, the deformation of the droplet of infinite 
viscosity is equal to the deformation of an elastic par­
ticle whose deformation energy is given by Eq. (6.12). 
According to Ralison and Acrivos, the rupture occurs 
at the critical elongational rate about 0.105Y/m]s, which 
is only 10% larger than Eq. (6.16). Furthermore, for 
small K [Eq. (6.14)] gives the following magnitude of 
deformation25 

r= LI - L2 == 75 aK1}s , 

Ll + L2 32 Y 
(6.17) 

where Ll and L2 are the length of the long axis and the 
short axis of the droplet, respectively. On the other 
hand, the rigorous perturbation calculation25 gives the 
coefficient 57/32 instead of 75/32. Thus, the present 
variational calculation gives reasonably good approxi-
mation. 
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APPENDIX A: EXPLICIT EXPRESSION FOR THE 
DIFFUSION EQUATION AND THE STRESS TENSOR 

In this appendix, explicit expressions are given for 
the diffusion equation and the stress tensor in Kirkwood's 
and Fixman's representation. 

1. Kirkwood's representation 

Equation (2.4) is solved for F m as 

Fn = (Wl)n," • (Nm - K' Rm) 

= (Wl)nm (:~:Qa -K' Rm) (AI) 

(In this appendix, summation is implied over the re­
peated indices.) Substituting Eq. (AI) into Eq. (2.12), 
we have 

~ • (-I) • [aRm' _. ] __ _ a_( ) 
aQ

a 
H nm aQb Qb K RIO - aQ

a 
V+kBTlnil • 

This equation is solved as 

Q• =Q'(V)+h F(E) 
a a ab b , (A2) 

where 

(h-I ) _ ~ • (-1) • aRm 
ab- aQ. H nm aQb ' (A3) 

(E) a ( ) Fa =--a- V+kBTlnil , 
Q. 

(A4) 

• (V) _ ~ • (-I) • • 
Q. -habaQb H nm K Rm. (A5) 

In the generalized coordinate system, the conservation 
of the probability is written as 

a \If 1 a . 
at = - Vi aQ

a 
[vgQa \If) , (A6) 

where g is the determinant of the metric tensor gab' 
i. e. , 

(~) _aRm. aRm 
g= det\5ab ; gab - aQ. aQb' (A7) 

Substituting Eq. (A3) into Eq. (A6), we have the diffu­
sion equation 

ail _ J.... _a_v;:-f f ~ + ~iI) _ . (V) 1 (AB) 
at - vg aQa g Lhab \kB T aQb aQb Qa \IfJ • 

Since the force is obtained from Eqs. (AI) and (A2) as 

the stress is calculated as 

alE) = _ .!. (R F(E» n m m ' 

2. Fixman's representation 

(A9) 

(AIO) 

(All) 

(A12) 

(A13) 

Substituting Eqs. (2.4) and (2.13) into Eq. (2.10), we 
have an equation for Ap. 
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ac a ac, 
h A =-'. H ·-[ks Tln'l1+V]--·f(·Rm , 

1>11 q aR" nm aRm aRm 

where 

acp aCq 

hpq= aR" . Hnm' aRm' 

Hence 

(-I) aCq _a_[k Tln'l1+V] +A(V) "A,= h I>qaR,,' Hnm aRm s P , 

where 

A(V)-_(h-I ) ~Cq. IC' R I> - I>q aR" n . 

The forces are thus obtained as 

F(E) = _ [_a __ aCI> (h-I) 
n aR" aR" ,,, 

aCq a ] 
x aRm' Hml ' aR

I 
(ksT In'l1 + V) , 

F(V)_A(V)acp 

n - I> aR,,' 

and the stress is given by Eqs. (A12) and (A13). 

APPENDIX B: THE VARIATIONAL PRINCIPLE 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

The variational principle is proved in Kirkwood's 
representation. Substituting Eq. (2.7) into Eq. (3.1) 
and using the definitions (A3)-(A5), we have 

w= fd{Q}vg'lt[h;HQa -Q~V»(Qb _Q!V» 

+ (K' R,,)' (H-1)nm' (K' Rm) - (h-l)abQ~V)Q!V)] . 
(A20) 

Since the function 'l1 is given as 

. 1 a • 
'It = - vg aQ

a 
(vgQa 'It) , (A2l) 

the functional v1 is rewritten, by partial integration as 

.A = fd{Q}vg Qa 'It a~a [ksTln 'It +ksT + V] 

= - fd{Q}vg 'ltQaF~E) 

Hence, 

(A22) 

x = if d{Q}vg 'It[(h-l)ab(Qa - Q~V»(Qb - Q~V» + (K • R,,) 

. (WI)nm' (K' Rm) - (h-1)abQ!V)Q!V) - 2Qa F!E)]. (A23) 

Thus ax/aQa=O gives Eq. (A2). The minimum of Xis 
obtained as 

minX = ~f d{Q}vg 'It [ - habF~E) F~E) - 2Q!V) F dE) 

+ (K' Rn)' (WI)nm' (K' Rm) - (h-l)abQ!V)Q~V)]. (A24) 

Now using the symmetry, hab=hba , and Eq. (A10), we 
have 

Q• (V) F (E) = r(K' D) • (Wi) . aRm h J F(E) 
a a L'.a...,. nm 8Q

b 
ab a 

=_F~E)'IC'Rm' (A25) 

Also the third and the fourth terms in Eq. (A24) is re­
written, by use of Eq. (A5) as 

(K' R,,)' (W1)nm' (K' Rm) - (h-\bQ~V)Q!V) 

- [I(' D - ~Q' (V)] . (Wi) . 1(. R 
- ~'n aQa a nm m 

= - F~V) • f(' Rm . 

Thus, 

min x= if d{Q}vg [- habF!E)F!E) 

_2F(E)·I(.R -F(V)·K·R] 
m m m m 

from which Eq. (3.7) follows. 

If there is no velocity gradient, 

A = min X = - i Jd{Q} vg'lt habF!E) F!E) 

(A26) 

(A27) 

(A28) 

Since H.., is positive definite, hab is also positive defi­
nite. Thus, the right-hand side of Eq. (A28) is always 
negative. This proves Eq. (3.14). 
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