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Abstract

In this chapter, a general energetic variational framework for modeling the
dynamics of complex fluids is introduced. The approach reveals and focuses on
the couplings and competitions between different mechanisms involved for specific
materials, including energetic contributions vs. kinematic transport relations,
conservative parts vs. dissipative parts and kinetic parts vs. free energy parts
of the systems, macroscopic deformation or flows vs. microscopic deformations,
bulk effects vs. boundary conditions, etc. One has to notice that these variational
approaches are motivated by the seminal works of Rayleigh [107] and Onsager
[101, 102]. In this chapter, the underlying physical principles and background,
as well as the limitations of these approaches are demonstrated. Besides the
classical models for ideal fluids and elastic solids, these approaches are employed
for models of viscoelastic fluids, diffusion and mixtures.
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1 Introduction

The focus of this chapter is on the mathematical modeling of anisotropic complex
fluids whose motion is complicated by the existence of mesoscales or sub-domain struc-
tures and interactions. These complex fluids are ubiquitous in daily life, including
wide varieties of mixtures, polymeric solutions, colloidal dispersions, biofluids, electro-
rheological fluids, ionic fluids, liquid crystals and liquid crystalline polymers. On the
other hand, such materials often have great practical utility since the microstructure
can be manipulated by external field or forces in order to produce useful mechani-
cal, optical or thermal properties. An important way of utilizing complex fluids is
through composites of different materials. By blending two or more different compo-
nents together, one may derive novel or enhanced properties from the composite. The
properties of composites may be tuned to suit a particular application by varying the
composition, concentration and, in many situations, the phase morphology. One such
composite is polymer blends [122]. Under optimal processing conditions, the dispersed
phase is stretched into a fibrillar morphology. Upon solidification, the long fibres act
as reinforcement and impart great strength to the composite. The effect is particularly
strong if the fibrillar phase is a liquid-crystalline polymer [100]. Another example is
polymer-dispersed liquid crystals, with liquid crystal droplets embedded in a polymer
matrix, which have shown great potential in electro-optical applications [127].

Unlike solids and simple liquids, the model equations for complex fluids continue to
evolve as new experimental evidences and applications become available [98]. The com-
plicated phenomena and properties exhibited by these materials reflects the coupling
and competition between the microscopic interactions and the macroscopic dynamics.
New mathematical theories are needed to resolve the ensemble of micro-elements, their
intermolecular and distortional elastic interactions, their coupling to hydrodynamics
and the applied electric or magnetic fields. The most common origin and manifesta-
tion of anomalous phenomena in complex fluids are different “elastic” effects [78]. They
can be attributed to the elasticity of deformable particles; elastic repulsion between
charged liquid crystals, polarized colloids or multi-component phases; elasticity due
to microstructures, or bulk elasticity endowed by polymer molecules in viscoelastic
complex fluids. These elastic effects can be represented in terms of certain internal
variables, for example, the orientational order parameter in liquid crystals (related
to their microstructures), the distribution density function in the dumbbell model for
polymeric materials, the magnetic field in magnetohydrodynamic fluids, the volume
fraction in mixture of different materials, etc. The different rheological and hydrody-
namic properties will be attributed to the special coupling (interaction) between the
transport (macroscopic fluid motions) of the internal variable and the induced (micro-
scopic) elastic stress [116, 117]. This coupling gives not only the complicated rheological
phenomena, but also formidable challenges in analysis and numerical simulations of the
materials.

The common feature of the systems described in this chapter is the underlying
energetic variational structures. For an isothermal closed system, the combinations of
the First and Second Laws of Thermodynamics yields the following energy dissipation
law [57, 39, 6, 11]:

d

dt
Etotal = −∆, (1)

where Etotal is the sum of kinetic energy and the total Helmholtz free energy, and
∆ is the entropy production (here the rate of energy dissipation). The choices of
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the total energy functional and the dissipation functional, together with the kinematic
(transport) relations of the variables employed in the system, determine all the physical
and mechanical considerations and assumptions for the problem.

The energetic variational approaches are motivated by the seminal work of Rayleigh
[107] and Onsager [102, 101]. The framework, including Least Action Principle and
Maximum Dissipation Principle, provides a unique, well defined, way to derive the
coupled dynamical systems from the total energy functionals and dissipation functions
in the dissipation law (1) [68]. Instead of using the empirical constitutive equations,
the force balance equations are derived. Specifically, the Least Action Principle (LAP)
determines the Hamiltonian part of the system [51, 5, 2] and the Maximum Dissipation
Principle (MDP) accounts for the dissipative part [102, 11]. Formally, LAP represents
the fact that force multiplies distance is equal to the work, i.e., δE = force× δx, where
x is the location and δ the variation/derivative. This procedure gives the Hamiltonian
part of the system and the conservative forces [5, 2]. The MDP, by Onsager and
Rayleigh [107, 102, 101, 68], produces the dissipative forces of the system, δ 1

2
∆ =

force× δẋ. The factor 1
2
is consistent with the choice of quadratic form for the “rates”

that describe the linear response theory for long-time near equilibrium dynamics [75].
The final system is the result of the balance of all these forces (Newton’s third theorem).

Both total energy and energy dissipation may contain terms related to microstruc-
ture and those describing macroscopic flow. Competition between different parts of
energy, as well as energy dissipation defines the dynamics of the system. The main
goal of this chapter is on describing the role of microstructures in the special coupling
between the kinematic transport and the induced “elastic” stresses.

2 Non-equilibrium thermodynamics
In this section some basic thermodynamic principles and general relations between

energy laws and differential equations are described.

2.1 Energetic variational approaches

The First Law of thermodynamics [57] states that the rate of change of the sum of
kinetic energy K and the internal energy U can be attributed to either the work done
by the external environment, or the heat:

d

dt
(K + U) = Ẇ + Q̇.

In other words, the 1st Law of thermodynamics is really the law of conservation of
energy. It is noticed the internal energy describes all the interactions in the system. In
order to analyze heat, one needs to introduce the entropy S [57], which naturally leads
to the Second Law of thermodynamics [39, 57]:

T
dS
dt

= Q̇+ ∆

where T is the temperature, S is the entropy. ∆ is the entropy production which is
always nonnegative and gives the rate of energy dissipation in irreversible systems.
Subtracting the two laws, in the isothermal case when T is constant, one arrives at:

d

dt
(K + U − TS) = Ẇ −∆,
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where F = U −TS is the Helmholtz free energy. We denote Etotal = K+F to be total
energy of the system. If the system is closed, when work done by the environment
Ẇ = 0, the energy dissipation law of the system can be written as:

dEtotal

dt
= −2D. (2)

The quantity D = 1
2
∆ is sometimes called the energy dissipation. The dissipative

law allows one to distinguish two types of systems: conservative (or Hamiltonian) and
dissipative.

The choices of the total energy components and the energy dissipation take into
consideration all the physics of the system and determine the dynamics through the
two distinct variational processes: LAP and MDP. To derive the differential equation
describing the conservative system (∆ = 0), one employs the principle of least ac-
tion (LAP) [2, 5]. By taking the variation with respect to the unknown function x
(the trajectory in Lagrangian coordinates, if applicable), one can get the inertial and
conservative forces from the kinetic and free energies respectively:

δ

(ˆ T

0

Kdt
)

=

ˆ T

0

(forceinertial · δx) dt,

δ

(ˆ T

0

Fdt
)

=

ˆ T

0

(forceconservative · δx) dt.

Notation When taking the variation of the functional this chapter follows the standard
procedure of taking “derivative” with respect to the unknown function [55, 51]. Hence,
here

δ

(ˆ T

0

Kdt
)

= lim
h→0

ˆ T

0

K (x + hδx)−K (x) dt

It is important to note, that variation δ is equivalent to Fréchet and Gâteaux deriva-
tives, when they are defined [56]. The resulting “force” here will be called the varia-
tional derivative and denoted δK

δx
= forceinertial. This corresponds to the strong form

of Euler-Lagrange equation for this functional. In this notation denominator points to
the function with respect to which the variation of the functional in the numerator is
taken.

Notice, this gives the natural variational form (the weak form) of the forces, with
suitable test functions. The differential form of the system (Euler-Lagrange equation)
can also be written as force balance (the strong form):

forceinertial = forceconservative. (3)

The inertial force corresponds to the inertial term ma in Newton’s Second Law, where
a is the acceleration.

Remark 1 The standard approach [5] dictates to define the Lagrangian functional
L = K−F and the action functional as A (x) =

´ T
0
Ldt. The Euler-Lagrange equation

in this case is δA
δx

= 0.

For a dissipative system, according to Onsager [101, 102], the dissipation D is taken
to be proportional to a “rate” raised to a second power. Then, using maximum dissi-
pation principle (MDP) [68], the dissipative force (linear with respect to the same rate
function) can be derived as follows:

δD = forcedissipative · δxt.
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Note, that the test function in MDP is different from that in LAP before.

Remark 2 It is important to note, that although the limitation for the dissipation D
to be quadratic in “rate” is rather restrictive, strong nonlinearities can be introduced
through coefficients not dependent on the “rate”.

When all forces are derived, according to the balance of forces equation (Newton’s
1st and 2nd Laws, where inertial force plays role of ma):

forceinertial = forceconservative + forcedissipative. (4)

Notation For shorter notation, one can write equation (4) as δK
δx

= δF
δx

+ δD
δxt
.

It is important to notice, that the equation (4) uses the strong form of the variational
result. This might bring ambiguity in the original variational weak form, since the test
functions may be in different spaces.

2.2 Hookean spring

Figure 1: Spring attached to a wall on
one end, with mass m on the other end.

As a start, a simple ordinary differential equa-
tions (ODE) example of a dissipative system is con-
sidered here, which had been originally proposed by
Lord Rayleigh [107]: the Hookean spring of which
one end is attached to the wall and the other end to
a massm (See fig. 1). Let x (t) be a displacement of
the mass from the equilibrium. Consider the spring
have friction based damping which is proportional
to the velocity (relative friction to the resting me-
dia). Under these assumptions,

K =
mx2

t

2
, F =

kx2

2
, D =

γx2
t

2
,

where k is spring strength material parameter and γ is damping coefficient. The energy
dissipation law is clearly as follows:

d

dt

(
mx2

t

2
+
kx2

2

)
= −γx2

t .

The corresponding action functional of the spring [51] in terms of the position x(t):

A =

ˆ T

0

mx2
t

2
− kx2

2
dt.

Then Least action principle, i.e. variation with respect to the trajectory x(t) yields
[51]:

δA =

ˆ T

0

mxt (δx)t − kxδx dt =

ˆ T

0

(−mxtt − kx) δx dt.

On the other hand, the principle of maximum dissipation gives:

δD
δxt

= γxt.
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Indeed, looking at forces involved and formulating Newtons 2nd Law (F = ma) for
this system one can get mxtt = −kx− γxt, or equivalently

mxtt + γxt + kx = 0, (5)

which is equivalent to the variational force balance δA
δx

= δD
δxt

for this example.
Looking at the explicit solution of (5), it is clear that the Hamiltonian part describes

the transient dynamics, the oscillation near initial data, while the dissipative part gives
the decaying long time behavior near equilibrium.

2.3 Gradient flow (dynamics of fastest descent)

The energetic variational approaches have many different forms in practices and
applications. Next look at the familiar example of gradient flow (dynamics of fastest
descent):

γ
δF(ϕ)

δϕ
+ ϕt = 0, (6)

where F is a general energy functional in terms of ϕ, γ is the dissipation rate which
determines the evolution approaching the equilibrium. Such a system has been used in
many applications both in physics and in mathematics, in particular, it is commonly
used in both analysis and numerics to achieve the minimum of a given energy functional.

It is clear that (6) satisfies the following energy dissipation law (by Chain rule and
integration by parts, if needed):

d

dt
F = −

ˆ
1

γ
|ϕt|2 dx.

On the other hand, one can put this in the general framework of energetic variational
approaches. Notice that there is no kinetic energy in this system, indicating the nature
of being the long-time near equilibrium dynamics.

In the case of F =
´
W (ϕ, ∇ϕ) dx, the variation leads to the following two varia-

tional derivatives:
δF
δϕ

= −∇ · ∂W
∂∇ϕ

+
∂W

∂ϕ
,

δD
δϕt

=
1

γ
ϕt.

which after substitution in (4) yield equation (6).

Remark 3 To derive implicit Euler’s time discretization scheme [8], one may consider
minimization of the following functional:

min
ϕn+1

given ϕn

ˆ
1

γ

|ϕn+1 − ϕn|2

2∆t
+W

(
ϕn+1, ∇ϕn+1

)
dx.

By introducing time discretization one can avoid the two different variations and only
take the variation with respect to ϕn+1. However, the scheme often fails in the case
of γ dependent on ϕ, since it is unclear whether to take it explicit or implicit: explicit
may cause stability issues, implicit will lead to a highly nonlinear system.
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3 Basic Mechanics
Before moving on to more complicated and realistic applications, it is important

first to introduce some basic terminologies and concepts in continuum mechanics [60,
36]. In particular, in this section the relation between Eulerian (space reference) and
Lagrangian (material reference) coordinates [120] are explored, and the variational
techniques in terms of deformable medium are described. Here the boundary conditions
are not in the focus of attention. However they may and should also be derived through
the variational procedure with various specific boundary energy terms and dissipative
terms.

3.1 Flow map and deformation gradient

For a given velocity field u (x, t), one can define the corresponding flow map (tra-
jectory) x (X, t) as

xt = u, x (X, 0) = X. (7)

In other words, x (X, t) describes the position of a particle moving with velocity u
and initial position X. Here x are the Eulerian coordinates, and X - the Lagrangian
coordinates or initial configuration (see fig. 2). Since the flow map should satisfy (7),

Figure 2: A schematic illustration of a
flow map x (X, t). For t fixed x maps
Ω0

X to Ωt
x. For X fixed x (X, t) is the

trajectory of X.

its recovery is possible only if u (x, t) has certain
regularity properties, for instance, being Lipschitz
in x [36].

In order to describe the evolution of structures
or patterns (configurations), it is clear that one
needs to consider the matrix of partial derivatives,
the Jacobian matrix, the deformation gradient (or
deformation tensor) [62]:

F (X, t) =
∂x (X, t)

∂X
.

Then by chain rule:

∂Fij
∂t

=
∂

∂t

(
∂xi
∂Xj

)
=

∂

∂Xj

(
∂xi
∂t

)
=

∂

∂Xj

ui (x (X, t) , t) ,

which in Eulerian coordinates will take the form as:

F̃t + (u · ∇x) F̃ =
∂F

∂t
=

∂

∂X
u (x (X, t) , t) = (∇xu) F̃ .

Here F̃ (x (X, t) , t) = F (X, t). In Eulerian coordinates, F̃ satisfies the following
important identity:

F̃t + (u · ∇x) F̃ = (∇xu) F̃ . (8)

Remark 4 The form of (8) is directly related to the equation of vorticity w = curlu
in inviscid incompressible fluids [95]: in two-dimensional cases the solution of wt +
(u · ∇)w = 0 is expressed along the trajectory as w (x (X, t) , t) = w0 (X); in three-
dimensional case wt+(u · ∇)w− (w · ∇)u = 0 the solution becomes w (x (X, t) , t) =
Fw0 (X). It is clear that the stretch term is the direct consequence of the deformation
F , although F itself is absent from the original fluid equations.
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Remark 5 Incompressibility condition is actually a restriction on deformation detF =
1. By using Jacobi’s formula,

0 = ∂t detF = detF tr
(
F−1∂tF

)
= 1 · tr

(
∂X

∂x

∂u

∂X

)
= tr (∇xu) = ∇x · u,

which yields the usual incompressibility condition in conventional descriptions of fluids.
Notice that the nonlinear constraint in Lagrangian coordinates becomes a linear one in
Eulerian coordinates.

Remark 6 F also determines the kinematic relations of transport of various physical
quantities. The following formulations of kinematic relations describing transport of
scalar quantities are expressed in Eulerian and Lagrangian coordinates as:

ϕt + (u · ∇)ϕ = 0 is equivalent to ϕ (x (X, t) , t) = ϕ (X, 0) , (9)

ϕt +∇ · (ϕu) = 0 is equivalent to ϕ (x (X, t) , t) =
ϕ (X, 0)

detF
. (10)

3.2 Newtonian fluids and Navier-Stokes equations

Next the classic Newtonian fluids [36] are examined and the Navier-Stokes equations
is derived from the energetic variational approaches. Consider fluid with density ρ and
velocity field u. It satisfies the local mass conservation law:

ρt +∇ · (ρu) = 0. (11)

For fluids, one should consider the free energy depending only on the density ρ (the
single most important characterization of the material being a fluid), which implies the
following energy dissipation law:

d

dt

ˆ
ρ |u|2

2
+ ω (ρ) dx = −

ˆ
2η

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+

(
ζ − 2

3
η

)
|∇ · u|2 dx. (12)

Then K =
´ ρ|u|2

2
dx, F =

´
ω (ρ) dx, D =

´
η
∣∣∣∇u+(∇u)T

2

∣∣∣2 +
(

1
2
ζ − 1

3
η
)
|∇ · u|2 dx. The

last being the viscosity contribution [77], the relative friction between particles of the
fluids. The constants η and ζ are called coefficients of viscosity (ζ is second viscosity).

Since the rate in the dissipation is u = xt, one will have to take the variation with
respect to the flow map x in the Lagrangian coordinates (LAP). Combining (11) and
(10) for the density ρ, results in:

δ
´ T

0
Kdt = δ

´ T
0

´
1
2
ρ0(X)
detF

|xt (X, t)|2 detFdXdt = δ
´ T

0

´
1
2
ρ0(X) |xt (X, t)|2 dXdt

=
´ T

0

´
ρ0xt · δxtdXdt = −

´ T
0

´
ρ0xtt · δxdXdt

=
´ T

0

´ [
−ρ d

dt
u (x (X, t) , t) · δx

]
dxdt

=
´ T

0

´
[−ρ (ut + (u · ∇)u) · δx] dxdt,

δ
´ T

0
Fdt = δ

´ T
0

´
ω
(

ρ0
detF

)
detFdXdt

=
´ T

0

´ [
−ωρ

(
ρ0

detF

)
ρ0

detF
+ ω

(
ρ0

detF

)]
detF tr

(
F−1 ∂δx

∂X

)
dXdt

=
´ T

0

´
[−ωρ (ρ) ρ+ ω (ρ)]∇x · δx dxdt

=
´ T

0

´
∇ [ωρ (ρ) ρ− ω (ρ)] · δx dxdt.
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This gives the following force terms expressed in the strong PDE form:

δK
δx

= −ρ (ut + (u · ∇)u) ,
δF
δx

= ∇ [ωρ (ρ) ρ− ω (ρ)] ,

The second one gives exactly the gradient of the thermodynamic pressure. In the
absence of the dissipation, one results in the compressible Euler equations [119]:

ρt +∇ · (ρu) = 0,

ρ (ut + (u · ∇)u) +∇p (ρ) = 0,

p (ρ) = ωρ (ρ) ρ− ω (ρ) .

(13)

By taking variation of the dissipation (MDP), one gets

δD
δxt

=
δD
δu

= −η∆u−
(
ζ +

1

3
η

)
∇ [∇ · u] .

Combining all this into the force balance (4) yields the compressible Navier-Stokes
equations [77]:

ρt +∇ · (ρu) = 0,

ρ (ut + (u · ∇)u) +∇p (ρ) = η∆u +
(
ζ + 1

3
η
)
∇ [∇ · u] ,

p (ρ) = ωρ (ρ) ρ− ω (ρ) .

(14)

Remark 7 The flow with pressure depending solely on density is sometimes called
barotropic [36]. The choice of function ω (ρ) results in different specific equations of
states for the pressure p (ρ) as follows:

1. Taking the free energy density ω (ρ) = aργ, one can formally obtain the model for
isentropic flow with pressure p = a(γ − 1)ργ.

2. In case of ideal gas, when internal energy does not depend on density or velocity
(and thus does not affect the dynamics of isothermal fluid), the free energy density
contains only the contribution of Gibbs entropy ω (ρ) = aρ ln ρ, which yields the
linear in ρ pressure as p = aρ.

3.3 Elasticity and viscoelasticity

Next under consideration are the models for elastic solids. In elasticity modeling,
free energy density depends on the full deformation gradient F [60], not just the de-
terminant (as that for Navier-Stokes energy for the fluids, W (F ) = ω

(
ρ0

detF

)
detF ).

Consequently one needs a reference configuration to conveniently articulate the idea
of the deformation with respect to some initial state. Hence, it is common to use
Lagrangian coordinates in such models. The energy conservation law in Lagrangian
coordinates of a conventional elastic solid is:

d

dt

ˆ (
ρ0 (X) |xt|2

2
+W (F )

)
dX = 0.

It is clear that one can take K =
´ ρ0(X)|xt|2

2
dX, F =

´
W (F ) dX, D = 0 in the

energetic variational framework.
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The Least action principle, the variation with respect to x (X, t), results in the
following force terms:

δK
δx

=
δ

δx

ˆ
ρ0 (X)

|xt (X, t)|2

2
dX = −ρ0 (X)xtt (X, t) , (15)

δF
δx

=
δ

δx

ˆ
W (F ) dX = −∇X ·WF (F ) . (16)

Hence, the force balance (3) yields the elasticity equation (usually as a hyperbolic type
wave equation):

ρ0 (X)xtt (X, t) = ∇X ·WF (F ) , (17)

whereWF is called Piola-Kirchhoff tensor and represents elastic stress in the Lagrangian
frame of reference [60, 120].

In the case of linear isotropic elasticity,W (F ) = 1
2
λ
(
|F |2 − 3

)
= 1

2
λ
(
tr
(
FF T

)
− 3
)
,

one gets WF = λF = λ∇Xx, which yields the linear elasticity equation (wave equa-
tion):

ρ0xtt = λ∆x,

where λ here is the Hookean constant, and constant 3 is subtracted to null the energy
of the non-deformed material. This model is closely related to neo-Hookean materi-
als, where may free energy also depend on detF [33]. In [60] free energy for linear
elastodynamics depends on symmetric part of deformation gradient F + F T .

Remark 8 In case of incompressible elasticity, in order to enforce the nonlinear con-
straint detF = 1, one can introduce the Lagrange multiplier ϕ and one-parameter fam-
ily of volume preserving diffeomorphisms xε, which satisfies the conditions det ∂xε

∂X
=

1, x0 = 0, dxε

dε

∣∣
ε=0

= δx. Then the variation of

I (xε) =

ˆ T

0

[
K −F −

ˆ
ϕ (X, t)

(
det

∂xε

∂X
− 1

)
dX

]
dt,

yields the following incompressible elasticity equation:{
ρ0 (X)xtt (X, t) = ∇X ·

(
WF (F ) + ϕF−T

)
,

detF = 1.
(18)

Note that even for linear isotropic elasticity with Piola-Kirchhoff tensor WF = λF this
equation still has a nonlinear term and the nonlinear constraint.

Remark 9 One can also express the elasticity system in Eulerian coordinates. For this
one needs to use the deformation tensor F̃ (x (X, t) , t) = F (X, t), the deformation
tensor, and the system has the form of conservation laws:

ρt +∇ · (ρu) = 0,

ρ (ut + (u · ∇)u) = ∇ ·
(
WF (F̃)F̃T

det F̃

)
F̃t + (u · ∇x) F̃ = (∇xu) F̃ .

(19)

The term
WF (F̃)F̃T

det F̃
is a Cauchy stress for this system [60, 120]. For the case of linear

isotropic elasticity with WF = F and incompressibility condition detF = 1 it reduces
to the left Cauchy-Green tensor B = FF T [120].
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Remark 10 For incompressible viscoelasticity system, one may use the kinetic energy
in Eulerian coordinates as K =

´ ρ|u|2
2
dx. The elasticity requires the free energy to

depend on the deformation F̃ , so F =
´
W
(
F̃
)
dx. The entropy production (the

dissipation) are that from viscosity D = 1
2

´
η |∇u|2 dx. Again, the incompressibility

condition detF = 1 in Lagrangian coordinates is transformed into ∇·u = 0 in Eulerian
coordinates (see remark 5). The total energy dissipation law takes the form:

d

dt

ˆ (
ρ |u|2

2
+W

(
F̃
))

dx = −
ˆ

2η

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

dx. (20)

Combining results from remarks 8 and 9 yields δK
δx

= −ρ (ut + (u · ∇)u) , δF
δx

= −∇ ·[
WF

(
F̃
)
F̃ T
]
, variation of dissipation gives δD

δx
= −η∆u, and Lagrange multiplier

accounting for incompressibility adds the pressure term ∇p to the force balance. Hence,
the system for incompressible viscoelasticity may be written as follows [85, 92]:

ρt +∇ · (ρu) = 0,

ρ (ut + (u · ∇)u) +∇p = ∇ ·
(
WF

(
F̃
)
F̃ T
)

+ η∆u,

∇ · u = 0,

F̃t + (u · ∇x) F̃ = (∇xu) F̃ .

(21)

3.4 Other approaches to elastic fluids

Macroscopic elastic fluids can be realized from many different mechanisms [98], such
as those in micro-macro model for polymeric fluid [14, 44] and liquid crystal materials
[127].

Figure 3: A schematic illustration of
a physical continuum Ωx and configura-
tion space R3

q.

Micro-Macro Model for polymeric fluids.
Although the macroscopic continuum mechanics
approach dominated the development of rheology in
the past, details of the fluid microstructures, are of-
ten not explicitly taken into account. The hydrody-
namical and rheological properties of complex fluids
depend intimately on their molecular conformation
and configurations [64, 121]. The pure macroscopic
descriptions are often not adequate and sufficient
to capture the multiscale-multiphysics properties
of the materials [14]. The micro-macro or kinetic
theory provides an effective “vehicle” to deliver the
microscopic information needed in the macroscopic
momentum transport [113, 12, 44, 15].

Here the polymeric fluids are used as an example
to demonstrate such micro-macro approaches [44,
15]. The micromechanical models for polymeric liquids usually consist of beads joined
by springs or rods [85] (see fig. 3). In the simplest case, a molecule configuration can be
described by its end-to-end vector q. Taking into account the elastic effect together with
the thermofluctuation, the probability distribution function [6] f (x, q, t) of molecular



12 Variational Modeling And Complex Fluids

orientation q should satisfy the conservation law

ft +∇x · (uf) +∇q · (Vf) = 0,

where u (x, t) is macroscopic background velocity, and V (x, q, t) is microscopic ve-
locity in the configuration space. For simplicity one may consider the situations when
∇ · u = 0, the macroscopic flow field being incompressible. For each microscopic q,
Ψ (|q|) is the spring energy. Then the free energy includes both the entropy and internal
energy terms averaged (integrated):

˜
γ2f ln f + Ψf dqdx.

Remark 11 Consider the probability distribution function (PDF) f (q, t) satisfying
the conservation law ft +∇q · (Vf) = 0. Then performing the variation of the energy
dissipation law d

dt

´
γ2f ln f + Ψf dq = −

´
1
D
f |V|2 dq with respect to the flow map

generated by V, one gets the convection-diffusion (the Fokker-Planck) equation ft =
D∇q · (γ2∇qf + f∇qΨ) .

Using the proposed free energy, the energy dissipation law may be postulated as:

d

dt

ˆ [
1

2
ρ |u|2 + λ

ˆ
γ2f ln f + Ψfdq

]
dx

= −
ˆ 2η

∣∣∣∣∣∇xu + (∇xu)T

2

∣∣∣∣∣
2

+

ˆ
λ

D
f |V − (∇xu)q|2 dq

 dx,
where the term (∇xu)q accounts for the deformations on microscopic level due to the
macroscopic flow. The dissipation on the micro-level is due to relative friction of the
particles to the macroscopic flow field. It comes from the configuration space part of
convective derivative with configuration space obeying q = FQ, and Q being initial
(Lagrangian) configuration. It captures the effect of the macroscopic flow field on the
microscopic configurations. Taking full material derivative, one gets:

d

dt
f (x (X, t) , F (X, t)Q, t) =ft + (u · ∇x) f + ((∇xu)q) · ∇qf

=ft + (u · ∇x) f +∇q · ((∇xu)qf) .

Performing the variation on macro and micro level separately, results into the system
which include the kinematic constraints (conservation of mass, incompressibility), as
well as force balance laws in both microscopic and macroscopic spaces [85]:

ρt +∇x · (ρu) = 0,

ρ (ut + (u · ∇x)u) +∇xp = ∇x · σ,
σ = η

(
∇xu + (∇xu)T

)
− λ
´

(∇qΨ⊗ q) fdq,

∇x · u = 0,

ft + u · ∇xf +∇q · ((∇xu)qf) = D∇q · [γ2∇qf + f∇qΨ] .

(22)

Notation For vectors a and b the product a ⊗ b is the matrix with an element
(a⊗ b)ij = aibj.

The elastic stressM =
´

(∇qΨ⊗ q) fdq incorporates the effects of the microscopic
configurations into the macroscopic flow by averaging (integrating) in q. In the simplest
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Hookean spring case, Ψ = 1
2
|q|2, if one takes the second moment of f , which is the

elastic stressM , as a dependent variable, the system is closed inM and the well-known
Oldroyd-B equations constitutive will be recovered, which has been extensively studied
[52, 58, 59, 30, 86, 35]. In general, one may hope that the closure equations will help to
solve or approximate f . However, since the energy law becomes inadequate to provide
any closed system for M after this momentum closure procedure, the well-posedness
of both the original problem and the closure problem are still not complete except for
the local existence [7, 108]. In [85], the well-posedness of the dumbbell system in the
near equilibrium situations was investigated.

It was noticed that the commonly used methods for treating the transport equa-
tions, such as the velocity average method [42, 41, 43], can not be (directly) applied
here. We observe that the left hand side of the energy law forbids the presence of the
concentration of the singularities when passed to the limits [43, 48]. It is the oscillation
of f that needs to be controlled and new analytical tools have to be developed for these
multi-scaled transport-parabolic systems.

For more general cases, such as the Finite Extensible Nonlinear Elasticity (FENE)
models, there are no finite moment closure systems. Hence, it is important to develop
a method to treat such a multi-scale system. See [65, 66, 67] and their references for
specific closure methods developed for FENE systems.

Nematic Liquid crystals. Liquid crystals and liquid crystalline polymers constitute
a class of complex fluids with anisotropic viscoelastic features due to the orientation
of the molecules and their configurations [38]. Not only such materials have seen
many applications, the relatively well developed theories also give the models for other
complex fluids.

Let the orientation of particles in nematic liquid crystal be given by the normed
director d (x, t). One can derive the (simplified) Ericksen-Leslie system [79] for small
molecule nematic liquid crystal flows by considering the energy dissipation law [83,
modified viscous dissipation]:

d

dt

ˆ
Ω

[
1

2
ρ |u|2 +

λ

2
|∇d|2 + λG(d)

]
dx

= −
ˆ

Ω

2η

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+
λ

γ
|dt + (u · ∇)d|2

 dx.

The last term in the dissipation |dt+(u ·∇)d|2 postulates kinematic assumption on the
transport of the director d. For the treatment of more general kinematic assumptions
see [116, 132] and their references.

The competition between kinetic and elastic energy produces the specific properties
of the system, such as the existence, stability and regularity of the hydrostatic configu-
rations [84]. The elastic energy determines the microstructure formation, as well as the
defect configurations, and at the same time interacts with the fluid [83, 87, 26, 27]. Such
energy laws are important for designing the accurate numerical algorithms [45, 91, 93],
especially when the solutions involve singularities.

Using the energetic variational approaches, that is, taking independent variations
with respect to the flow map generated by incompressible macroscopic velocity u and
with respect to microscopic director d, one can obtain the following Ericksen-Leslie
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system: 
ρ (ut + (u · ∇)u) +∇p = ∇ · σ,
σ = η

(
∇u + (∇u)T

)
− λ(∇d�∇d),

dt + (u · ∇)d = γ(∆d−G′(d)),

∇ · u = 0,

(23)

where the induced elastic stress (∇d � ∇d)ij =
∑n

k=1(∇idk)(∇jdk). In [132], the
authors employed the energetic variational derivation of the system for more general
elastic energy and energy dissipation functionals.

In liquid crystal flows, there are topological defects due to the constraints on the
order parameter and the prescribed boundary conditions [84]. The dynamics of such
defects are also governed by elastic effects coupled with the flow. In many cases, there
are also flow-induced defects [28]. Usually the number of such defects is very large.
The presence of defects can dramatically change the effective properties of the liquid
crystal materials. When the effects of fluctuations are taken into account, the defect
configuration can melt and the defects will lose their positional order. The material
becomes a “defect liquid”, similar to those studied in superconductivity [49, 81, 80, 71].
One approach involves deriving the regularity of the velocity that is independent of
the director field, and employing the machinery developed in [82, 80, 71]. The fact
that the defects will induce flow (back flow) indicates the close coupling between flow
and director orientation in these systems. This makes it difficult to derive the explicit
dynamics of defects from the momentum equations. Some partial results in case of the
velocity being smoother than the Leray solutions have been achieved [84]. The difficulty
lies in the convergence of the elastic stress term. See more details and references in the
chapter “Equations For Viscoelastic fluids”.

3.5 Generalized Diffusions

Diffusion is one of the most familiar and studied systems for more than a hundred
years [50, 104, 39]. The conventional description involves the conservation law ft = ∇·J
and the Fick’s Law stating that J is proportional to ∇f . In this section the energetic
variational structures for diffusion dynamics of a conserved quantity f (x, t) (may be
concentration, or probability distribution) is going to be explored.

Diffusion of a conserved quantity f (x, t), can be, above all, viewed as a transport:

ft +∇ · (fu) = 0, (24)

with the energy dissipation law

d

dt

ˆ
ω (f) dx = −

ˆ
f |u|2 dx. (25)

In the energetic variational framework outlined in the previous section, this energy
law corresponds to the kinetic energy K = 0, the free energy F =

´
Ω
ω (f) dx (similar

to that of fluid), and energy dissipation D = 1
2

´
Ω
f |u|2 dx, which corresponds to

Darcy’s law (the friction relative to the resting media) in fluid dynamics. Performing
a variation with respect to the flow map x (X, t) generated by u (LAP) yields the
following conservative force: δF

δx
= ∇ (ωf (f) f − ω (f)). The MDP, variation with

respect to u, gives δD
δu

= fu, and balance of forces (4) results in:

fu +∇ (ωf (f) f − ω (f)) = 0,
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which combined with (24) results in a generalized diffusion equation

ft = ∆ [ωf (f) f − ω (f)] . (26)

Remark 12 Different models can be obtained by taking various free energy densities.
1. Taking ω (f) = λf ln f , gives ωff − ω = λf , which results in the linear diffusion

equation:
ft = λ∆f.

2. For more complicated free energy density ω (f) = λ
γ−1

fγ, γ > 1, when particle
interactions are involved, one gets ωff − ω = λfγ, which results in the porous
medium equation [123, 10]:

ft = λ∆fγ.

Inhomogeneous diffusions. For diffusion involving spatial inhomogeneities, one
can introduce the corresponding energy law:

d

dt

ˆ
Ω

f ln (a (x) f) dx = −
ˆ

Ω

f

a (x) b (x)
|u|2 dx.

Then the variation yields the following:
δF
δx

=
1

a (x)
f∇a (x) +∇f, δD

δu
=

f

a (x) b (x)
u.

Hence, balance of forces (4) combined with (24) results in linear diffusion equation with
variable coefficients:

ft = ∇ · [b (x)∇ (a (x) f)] .

Notice, that the coefficient a (x) from free energy will affect the equilibrium. In par-
ticular, if a (x) is not constant, a constant f will no longer be a solution. The other
inhomogeneous term b (x) corresponds to the mobility coefficient, which determines
the rate of the dynamics approaching the equilibrium.
Remark 13 If terms a · b = 1, the equation takes form of ft = ∆f +∇ · [∇ ln a (x) f ],
the usual convection-diffusion equation.

Remark 14 Diffusion equation can be interpreted by the Brownian motion [54]. Con-
sider random process

dx = a (x) dt+ σ (x) dB,

where B is standard Brownian motion. Writing a Taylor expansion of probability dis-
tribution function f (x, t) one may obtain the following PDEs:

a) Ito calculus provides ft +∇ · (af) = 1
2
∆ (σ2f),

b) The derivation using Stratonovich integral yields ft +∇ · (af) = 1
2
∇ · [σ∇ (σf)],

c) Lastly one can derive PDE with self adjoint diffusion term ft +∇ · (af) = 1
2
∇ ·

[σ2∇f ].
If following fluctuation-dissipation theorem [39, 75], one restricts the convection coeffi-
cient a = −1

2
σ2∇ψ, and assumes that f satisfies conservation law (24), the equations

above may be obtained from variation of the following energy laws:
a) d

dt

´ [
f ln

(
1
2
σ2f
)

+ ψf
]
dx = −

´
f

σ2/2
|u|2 dx,

b) d
dt

´
[f ln (σf) + ψf ] dx = −

´
f

σ2/2
|u|2 dx,

c) d
dt

´
[f ln f + ψf ] dx = −

´
f

σ2/2
|u|2 dx.
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Nonlocal Diffusions. Many systems involve nonlocal interactions between parti-
cles. Such effects include Coulomb electric interactions, size effects, Lennard-Jones
potential and other nonlocal relations (see for instance [69, 23, 124] and their refer-
ences).

Consider the energy dissipation law with the nonlocal free energy:

d

dt

[ˆ
λf ln f dx +

¨
H (x− y) f (y) f (x) dydx

]
= −
ˆ
η(f) |u|2 dx, (27)

where λf ln f is the entropy, and
˜
H (x− y) f (y) f (x) dydx is the internal energy

in the Helmholtz free energy (with λ being constant). Then balance of forces (4) reads
as

η(f)u + λ∇f +

(
∇
ˆ
H (x− y) f (y) dy

)
f = 0,

which in the case η(f) = f combined with (24) results in the nonlocal diffusion equation
as:

ft = λ∆f +∇ ·
(
f∇
ˆ
H (x− y) f (y) dy

)
. (28)

Remark 15 The transport of charged particles is described by a known Poisson-Nernst-
Planck (PNP) system [112, 111, 131, 133, 13, 126, 135]. The dynamics takes account
of diffusion and convection as well as electrostatics. The system may be written in
terms of n and p - densities of negative and positive ions respectively. Then the energy
dissipation law takes form [133]

d

dt

ˆ {
kT (n log n+ p log p) +

ε

2
|∇φ|2

}
dx

= −
ˆ
kT

(
n

Dn

|un|2 +
p

Dp

|up|2
)
dx, (29)

where Dn, Dp are diffusion constants, Dn/(kT ), Dp/(kT ) are mobility constants. No-
tice that the free energy has both the electric energy (which is nonlocal, as will be shown
below) and the entropy (contributing to the diffusion of charge density). φ is the elec-
trostatic potential satisfying the Poisson equation:

−ε∆φ = −zne n+ zpe p,

where ε is the dielectric constant, and zn, zp are valences of the ions. Also each density
satisfies the conservation law nt + ∇ · [unn] = 0, pt + ∇ · [upp] = 0. To perform the
variation, one should resolve the Poisson equation:

φ =
1

ε

ˆ
G (x− y) (zne n− zpe p) (y, t) dy,

where G is a Green’s function [51]. Substituting this to the energy law (29), one gets the
dissipation law with the nonlocal electric energy term. After combining the variation
with respect to the two independent flow maps generated by un and up with conservation
laws for the densities one gets the PNP system:

nt = ∇ ·
[
Dn∇n− zneDnkT n∇φ

]
,

pt = ∇ ·
[
Dp∇p+ zpe

Dp
kT
p∇φ

]
,

−ε∆φ = −zne n+ zpe p.

(30)
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Remark 16 One may notice that the nonlocal effects can be realized even in the model
with only the local fee energy, but with different dissipation contributing the nonlocal
term. To get such an effect, instead of Darcy’s type dissipation density f |u|2 in (27),
one may consider the entropy production (energy dissipation) taking the form similar
to the viscosity in fluid dynamics, i.e.

D =
1

2

ˆ
η |∇u|2 dx.

Then (with K = 0, F =
´

Ω
ω (f) dx) the force balance equation (4) will yield the

Poisson equation for u:

∇p = η∆u, p = ωf (f) f − ω (f) .

Solving for u in terms of p, one can (formally) get

u =
1

η
∇
ˆ
G (x− y) p (f) (y, t) dy,

where G is a Green’s function. Substituted to (24) this gives a nonlocal diffusion equa-
tion:

ft +∇ ·
(
f

η
∇
ˆ
G (x− y) p (f) (y, t) dy

)
= 0. (31)

This corresponds to λ = 0, p = f and H = G/η in (28), while being derived from
totally different physics (energy laws).

4 Complex fluid mixtures: diffusive interface models

4.1 Surface tension and the sharp interface formulation

Figure 4: A schematic illustration of
domain Ω with two fluids separated by
free interface Γt.

Interface problems arising in mixtures of differ-
ent fluids, solids and gases have attracted attention
for more than two centuries. Many surface proper-
ties, such as capillarity, are associated with the sur-
face tension through special boundary conditions
[74, 73]. The classical approach to this problem
usually considers the interface to be a free surface
that evolves in time with the fluid velocity [61].

Consider domain Ω with two incompressible flu-
ids occupying subdomains Ω1 and Ω2 (see fig. 4),
and Γt = Ω1 ∩ Ω2 free interface between the two
fluids. Classical approach to this problem yields
incompressible Navier-Stokes equation in each sub-
domain:{

ρi (u
i
t + (ui · ∇)ui) +∇pi = ηi∆ui,

∇ · ui = 0,
in Ωi.

(32)
Define Cauchy stress tensor τi by the following relation [120]:

ηi∆ui −∇p = ∇ · τi with τi = ηi

(
∇ui +

(
∇ui

)T)− piI.
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Then the position of the interface at each individual time is determined by the immis-
cibility condition

ui · ν = Vn, (33)

and the Young-Laplace stress free (force balance) condition (see, for instance, [9]):

[τ ] · ν = −σHν,

where [τ ] is the jump of the stress across the interface Γt, with ν its normal, H the
mean curvature of the surface, and σ the surface tension constant. Also we assume
no-slip condition both on the boundary and on the interface

ui = 0 on ∂Ω, [u] = 0 on Γt.

Since, ˆ
Γt

Vn · [τ ] · νdSx =

ˆ
Γt

−σHVn · νdSx = − d

dt
σ areaΓt,

multiplying first equation in (32) by ui and integrating over Ωi for i = 1, 2 one can get
the energy dissipation law:

d

dt

[∑
i=1,2

ˆ
Ωi

1

2
ρ
∣∣ui∣∣ dx + σ areaΓt

]
= −

∑
i=1,2

ˆ
Ωi

2ηi

∣∣∣∣∣∇ui + (∇ui)T

2

∣∣∣∣∣
2

dx. (34)

4.2 Diffusive interface approximations (phase field methods)

To regularize the transition between two phases here the statistical point of view
(or phase field approach) is employed, which treats the interface as a continuous, but
steep, change of properties (density, viscosity etc) of the two fluids. Within a “thin”
transition region, the fluid is mixed and has to store certain amount of “mixing energy”.
Such an approach coincides with the usual phase field models in the theory of phase
transition [25, 24, 99, 96, 128, 118]. These models will allow the the topological change
of the interface [94], and have many advantages when simulating front motions [29].
Recently many researchers have employed the phase field approach for various fluid
models [72, 63, 97, 4, 16, 92, 18, 19, 70, 31, 32, 105, 89].

Suppose that the interface Γt has thickness O(ε). Then consider phase field satis-
fying

ϕ (x) =

{
1, in Ω1

−1, in Ω2,

which takes values in (−1, 1) on the diffusive interface. ϕ may not necessarily be an
obvious physical quantity (like concentration or volume fraction), but just a labeling
function representing the smooth transition between phases.

Following [25], here the mixing energy is introduced as a functional of ϕ to approx-
imate the interface term in the energy (34)

λ

σ
W (ϕ) =

λ

σ

ˆ
1

2
|∇ϕ|2 +

1

ε2
G (ϕ) dx ≈ areaΓt, (35)
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where G is a so-called double-well potential (e.g. G (ϕ) = 1
4

(ϕ2 − 1)
2), ε is a parameter

responsible for the “width” of the interface, and λ/σ depends on G (ϕ) and ε (for given
example λ = 3ε

2
√

2
σ, see [134]). The gradient term in this energy is diffusive (“philic”,

represents weakly non-local interactions between the components that prefers complete
mixing), while the second term is Ginzburg-Landau potential (repulsion potential,
“phobic”, prefers total separation of the phases). The competition between the two
effects defines the profile of ϕ across the interface.

Remark 17 The study of the physics of biological membranes of vesicles such as cells
and liposomes may involve more complicated forms of surface bending energy. One
example of such elastic energy [46] may takes form:

E =

ˆ
Γ

k(H − c0)2 dS, (36)

where H = (k1 + k2)/2 is the mean curvature of the membrane surface, with k1 and
k2 as the principle curvatures, k is the bending rigidity, and c0 is the spontaneous
curvature that describes the asymmetry effect of the membrane or its environment.
The equilibrium configuration of the vesicle membrane is determined by minimizing the
above elastic bending energy with prescribed volume and surface area constraints. To
approximate this energy by phase field, one can write

Eε(ϕ) =
3
√

2k

16ε

ˆ
Ω

(
ε∆ϕ+

(
1

ε
ϕ+ c0

√
2

)
(1− ϕ2)

)2

dx; (37)

the volume of the region enclosed by the membrane will be determined by (V = (|Ω| +
A(ϕ))/2): A(ϕ) =

´
Ω
ϕdx, and the surface area of the membrane is determined by

(up to a constant), Bε(ϕ) =
´

Ω
ε
2
|∇ϕ|2 + 1

4ε
(ϕ2 − 1)2 dx. The original spontaneous

curvature c0 is defined only on the surface Γ (it may vary on the surface, representing
a heterogeneity of the membrane). We extend c0 to the whole domain Ω in a way that,
in a neighborhood of Γ, c0 is constant in the direction normal to Γ. The equilibrium
configuration is obtained by minimizing the above elastic bending energy Eε(ϕ) with the
constraints that A(ϕ) and Bε(ϕ) are constants. See [46] for convergence of Eε(ϕ) to E
as ε→ 0.

More complicated form of elastic bending energy is a part of the Helfrich model,
which has been studied extensively in the literature in recent years (see [34, 103, 114,
115] and additional references in [47]). This is also related to the classical Willmore
problem in differential geometry [130].

Now, taking u to be incompressible background velocity (e.g. volume-averaged
[1]), not the velocity of either of fluids, the following kinetic and Helmholtz free energy
follows:

K =

ˆ
ρ (ϕ) |u|2

2
dx, F = λW (ϕ) . (38)

In addition, on macroscopic level it is sensible impose immiscibility condition (9),
which is equivalent to (33). Whilst using this approximation, one can introduce ad-
ditional microscopic dissipative term for regularization purposes (introducing energy
dissipation on the diffusive interface). If one takes microscopic dynamics to be that of
gradient flow (and introducing appropriate dissipation D), variation produces Allen-
Cahn/Navier-Stokes system. While to get the phase field to satisfy conservation law,
one can introduce “Darcy’s like” dissipation (proportional to relative drag) and deduce
Cahn-Hilliard/Navier-Stokes system.
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Allen-Cahn/Navier-Stokes systems. Here the following energy dissipation law
is considered [68, modified viscous dissipation]:

d

dt
(K + F) = −

ˆ
Ω

2η (ϕ)

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+
1

γ
|ϕt + (u · ∇)ϕ|2

 dx, (39)

where K and F are taken from (38). There are two quantities of interest in this model:
u and ϕ, so the variation will be performed for each of them separately.

First, we look at the microscopic dynamics on the interface given by Allen-Cahn
equation [3]. It can be seen as gradient flow with convection in micro-scale variable ϕ:

ϕt + (u · ∇)ϕ = −γ δ (K + F)

δϕ

To get this equation from energy dissipation law (39) as force balance for variable ϕ,
one may to notice that variation of kinetic energy

´
1
2
ρ |u|2 dx gives inertial force only

when performed with respect to the flow map generated by u. So performing variation
with respect to ϕ the total energy K + F should be treated altogether as Helmholtz
free energy. So the variation goes as

δϕ
´ T

0
K + Fdt =

´ T
0

´
Ω

[
ρ′(ϕ)|u|2

2
δϕ+ λ

(
∇ϕ · ∇δϕ+ 1

ε2
G′ (ϕ) δϕ

)]
dxdt

=
´ T

0

´
Ω

[
ρ′(ϕ)|u|2

2
+ λ

(
−∆ϕ+ 1

ε2
G′ (ϕ)

)]
δϕdxdt

+
´ T

0

´
∂Ω

(∇ϕ · ν) δϕ dSxdt.

Notation Here we have two quantities of interest: ϕ and u. So one has to adapt the
variational notation to multiple variations of the same functional. Thus, here

δϕ

ˆ T

0

Kdt = lim
h→0

´ T
0
K (ϕ+ hδϕ, x)−K (ϕ, x) dt,

δx

ˆ T

0

Kdt = lim
h→0

´ T
0
K (ϕ, x + hδx)−K (ϕ, x) dt,

and similarly for other functionals.

Then the force balance (4) can be rewritten as δK
δϕ

+ δF
δϕ

+ δD
δϕt

= 0, which reads as
follows {

ρ′(ϕ)|u|2
2

+ λ
[
−∆ϕ+ 1

ε2
G′ (ϕ)

]
+ 1

γ
(ϕt + (u · ∇)ϕ) = 0, x ∈ Ω,

∇ϕ · ν = 0, x ∈ ∂Ω.

Now, considering macro-scale background flow u, yields the variation with respect
to flow map x (X, t). When writing macroscopic force balance, to account for “sep-
aration of scales”, one should consider microscopic variable ϕ to be transported with
the flow, i.e satisfy equation (9), so one has to include only viscous part of dissipation

Dη =
´

Ω
η (ϕ)

∣∣∣∇u+(∇u)T

2

∣∣∣2 dx in the variation. Performing the variation (subject to the
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assumption detF = 1, or equivalently ∇ · u = 0), yields

δx
´ T

0
Kdt = δx

´ T
0

´
Ω

1
2
ρ (ϕ0 (X)) |xt (X, t)|2 dXdt

=
´ T

0

´
Ω

[−ρ (ϕ) (ut + (u · ∇)u) · δx] dxdt,

δx
´ T

0
Fdt = δx

´ T
0

´
Ω
λ
[

1
2
|F−1∇X (ϕ0)|2 + 1

ε2
G (ϕ0)

]
dXdt

=
´ T

0

´
Ω
λ [∇ · (∇ϕ⊗∇ϕ)] · δx dxdt−

´ T
0

´
∂Ω
λ (∇ϕ · ν)∇ϕ · δx dSxdt,

δuDη =
´

Ω
η
((
∇u+(∇u)T

2

)
:
(
∇δu + (∇δu)T

))
dx

=
´

Ω
−∇ ·

[
η
(
∇u + (∇u)T

)]
· δu dx

+
´
∂Ω
η
(
∇δu + (∇δu)T

)
: (δu⊗ ν) dSx.

Notation For two matrices A and B the scalar product A : B =
∑
i,j

Ai,jBi,j.

Remark 18 When taking the variation of kinetic energy K one can perform integra-
tion by parts (in t) after changing the coordinates back to Eulerian. Then the variation
would result in δK

δx
= − (ρ (ϕ)u)t − (u · ∇) (ρ (ϕ)u).

Hence, force balance may be written as δK
δx

= δF
δx

+ δDη
δu

, which yields

ρ (ϕ) (ut + (u · ∇)u)+∇p = ∇·
[
η
(
∇u + (∇u)T

)]
−λ∇·(∇ϕ⊗∇ϕ) , x ∈ Ω, (40)

and on the boundary the condition u = 0 is taken, which yields δu = 0, so takes care
the boundary term.

Altogether this results in the Allen-Cahn/Navier-Stokes system [90]:

ϕt + (u · ∇)ϕ = γλ
[
∆ϕ− 1

ε2
G′ (ϕ)

]
− γ

2
ρ′ (ϕ) |u|2 , x ∈ Ω,

ρ (ϕ) (ut + (u · ∇)u) +∇p = ∇ ·
[
η
(
∇u + (∇u)T

)]
−λ∇ · (∇ϕ⊗∇ϕ) , x ∈ Ω,

∇ · u = 0, x ∈ Ω,

u = 0, ∇ϕ · ν = 0, x ∈ ∂Ω.

(41)

Remark 19 In order to get the system without the γ
2
ρ′ (ϕ) |u|2 term in the first equa-

tion, one can use 1
2

[ρ (ϕ) (ut + (u · ∇)u) + (ρ (ϕ)u)t + (u · ∇) (ρ (ϕ)u)] as a convec-
tive term in the second equation.

Cahn-Hilliard/Navier-Stokes systems. Now assume that phase field satisfies con-
servation law:

ϕt +∇ · (ϕV) = 0, (42)

and energy law [21]

d

dt
(K + F) = −

ˆ
Ω

2η (ϕ)

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+ ϕ2
〈
M−1 (ϕ) (V − u), (V − u)

〉 dx.
(43)
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On macro scale the variation is identical to the gradient flow case, so gives equation
(40). To perform variation on microscopic interfacial scale one should define flow map
xϕ (X, t) as ∂txϕ = V, xϕ (X, 0) = X. We treat the macroscopic flow velocity u is
fully independent from xϕ. And, as in gradient flow case, kinetic energy K is treated
as a part of free energy. Using (10), one gets

δxϕ
´ T

0
Kdt = δ

´ T
0

´
Ω

1
2
ρ

(
ϕ0(X)

det
∂xϕ
∂X

)
|u|2 det ∂xϕ

∂X
dXdt

=
´ T

0

´
Ω

1
2
∇xϕ [ρ′ (ϕ)ϕ− ρ (ϕ)] |u|2 · δxϕ dxdt

=
´ T

0

´
Ω
ϕ∇

[
1
2
ρ′ (ϕ) |u|2

]
· δxϕ dxdt,

δxϕ
´ T

0
Fdt = δ

´ T
0

´
Ω
λ

[
1
2

∣∣∣∣F−1∇X

(
ϕ0(X)

det
∂xϕ
∂X

)∣∣∣∣2 + 1
ε2
G

(
ϕ0(X)

det
∂xϕ
∂X

)]
dXdt

=
´ T

0

´
Ω
λϕ∇

[
−∆ϕ+ 1

ε2
G′ (ϕ)

]
· δxϕ dxdt

+
´ T

0

´
∂Ω
λ (−∇ · (ϕ δxϕ)) (∇ϕ · ν)

+λ
(

1
2
|∇ϕ|2 + ϕ∆ϕ+ 1

ε2
[G (ϕ)− ϕG′ (ϕ)]

)
(δxϕ · ν) dSxdt,

δVD =
´

Ω
ϕ2M−1 (ϕ) (V − u) · δV dx.

Thus, the force balance ϕ2M−1 (ϕ) (V − u)+ϕ∇
[
−λ∆ϕ+ λ 1

ε2
G′ (ϕ) + 1

2
ρ′ (ϕ) |u|2

]
=

0, combined with (42) leads to Cahn-Hilliard equation

ϕt + (u · ∇)ϕ = ∇ · [M (ϕ)∇µ] , µ = −λ∆ϕ+ λ
1

ε2
G′ (ϕ) +

1

2
ρ′ (ϕ) |u|2 .

Force balance on the boundary gives ∇ϕ · ν = 0, V · ν = 0 (second condition yields
δxϕ ·ν = 0). Notice, that µ = δK

δϕ
+ δF

δϕ
is the same variational gradient as in Allen-Cahn

equation. All combined with boundary conditions leads to Cahn-Hilliard/Navier-Stokes
system: 

ϕt + (u · ∇)ϕ = ∇ · [M (ϕ)∇µ] , x ∈ Ω,

µ = −λ∆ϕ+ λ 1
ε2
G′ (ϕ) + 1

2
ρ′ (ϕ) |u|2 ,

ρ (ϕ) (ut + (u · ∇)u) +∇p = ∇ ·
[
η
(
∇u + (∇u)T

)]
−λ∇ · (∇ϕ⊗∇ϕ) , x ∈ Ω,

∇ · u = 0, x ∈ Ω,

u = 0, ∇ϕ · ν = 0, M (ϕ)∇µ · ν = 0, x ∈ ∂Ω.

(44)

Remark 20 For the system (44) the phase field effective velocity V is defined up to a
term Ṽ with ∇ ·

(
ϕṼ
)

= 0, which results in non-uniqueness of the energy law (43).

To eliminate this drawback one may employ the operator R· = (−∆)1/2∇·, and with
M = 1 consider the following energy dissipation law:

d

dt
(K + F) = −

ˆ
Ω

2η (ϕ)

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+ |R · (ϕV− ϕu)|2
 dx.

Performing the variational procedure on this energy law, one would still get system
(44).
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Remark 21 To formally derive conservative Allen-Cahn/Navier-Stokes sys-
tem, consider energy law (39) constraint by conservation law (42), which may be
rewritten as

d

dt
(K + F) = −

ˆ
Ω

2η (ϕ)

∣∣∣∣∣∇u + (∇u)T

2

∣∣∣∣∣
2

+
1

γ
|∇ · (ϕV − ϕu)|2

 dx. (45)

Once again, macroscopic force balance yields Navier-Stokes equation (40), whilst mi-
croscopic force balance reads as

ϕ∇
[
−1

γ
∇ · (ϕV − ϕu)− λ∆ϕ+ λ

1

ε2
G′ (ϕ) +

1

2
ρ′ (ϕ) |u|2

]
= 0,

or
−∇ · (ϕV) + (u · ∇)ϕ = −γ

[
−λ∆ϕ+ λ

1

ε2
G′ (ϕ) +

1

2
ρ′ (ϕ) |u|2

]
+ C.

Integrating this equation over Ω and using boundary conditions u = 0, ∇ϕ · ν =
0, V · ν = 0, yields C = 1

|Ω|γ
´

Ω
λ 1
ε2
G′ (ϕ) + 1

2
ρ′ (ϕ) |u|2 dx, which altogether give

nonlocal Allen-Cahn/Navier-Stokes system:

ϕt + (u · ∇)ϕ = γ
[
−µ+ 1

|Ω|

´
Ω
µ dx

]
, x ∈ Ω,

µ = −λ∆ϕ+ λ 1
ε2
G′ (ϕ) + 1

2
ρ′ (ϕ) |u|2 ,

ρ (ϕ) (ut + (u · ∇)u) +∇p = ∇ ·
[
η
(
∇u + (∇u)T

)]
−λ∇ · (∇ϕ⊗∇ϕ) , x ∈ Ω,

∇ · u = 0, x ∈ Ω,

u = 0, ∇ϕ · ν = 0, x ∈ ∂Ω.

(46)

4.3 Boundary conditions in the diffusive interface models

Authors of [106] have shown that the model with energy dissipation at the solid
boundary surface better matches molecular dynamics experiments, and avoids discrep-
ancy of the contact line dynamics. More precisely, standard boundary conditions do not
allow contact line to move along the boundary, while molecular dynamics experiments
show, that near complete slip occurs in vicinity of contact line near the boundary.

Hence, one may consider the following expression for energy dissipation (including
bulk terms already mentioned above):

D = 1
2

´
Ω

(
2η (ϕ)

∣∣∣∇u+(∇u)T

2

∣∣∣2 + ϕ2 〈M−1 (ϕ) (V − u), (V − u)〉
)
dx

+1
2

´
∂Ω

(
β |uτ |2 + 3ε

2
√

2
σ
γ
|ϕt + (uτ · ∇τ )ϕ|2

)
dSx,

where subscript τ denotes components tangential to the boundary (e.g. uτ = u −
(u · ν) ν). The force balance after combining LAP and MDP results into the dynamic
boundary conditions on ϕ and generalized Navier boundary conditions on u:

ϕt + (uτ · ∇τ )ϕ+ γ∂νϕ = 0, 〈M (ϕ)∇µ, ν〉 = 0,

β (uτ ) + η (ϕ) ∂ν (uτ )− σ 3ε
2
√

2
∂νϕ∇τϕ = 0,

u · ν = 0, x ∈ ∂Ω, t > 0.
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The inhomogeneous viscosity η (ϕ) and mobilityM (ϕ) may produce specific boundary
properties in the sharp interface limit, such as Navier slip boundary conditions [22].

Remark 22 In generalized Navier boundary conditions the term σ 3ε
2
√

2
∂νϕ∂τϕ is the

so-called uncompensated Young stress. See [106] for expression in terms of contact
angle and physical interpretation.

Remark 23 The case above considers the equilibrium contact angle [37, 110] to be
π/2. For more general contact angle θc in [106] authors suggest boundary conditions

ϕt + uτ · ∇τϕ+ γ∂νϕ = 0, 〈M (ϕ)∇µ, ν〉 = 0,

β (uτ ) + η (ϕ) ∂ν (uτ )− λL (ϕ)∇τϕ = 0,

u · ν = 0, x ∈ ∂Ω, t > 0,

L (ϕ) = ∂νϕ+ ∂γfs (ϕ) /∂ϕ,

where γfs =
Cfs

2
cos θc sin (πϕ/2) is an additional interfacial free energy density. The

free energy considered in this case should be

F = λ

(
W (ϕ) +

ˆ
∂Ω

γfsdSx

)
.

5 Conclusion
The general energetic variational framework, with its energy dissipation laws, as

well as the corresponding variational forms (weak forms), give a self-consistent coupled
system. It focuses on the coupling and competition of various parts of the mechanism,
such as the energetics vs. kinematics, macroscopic (fields) vs. microscopic (configu-
rations), conservative forces vs. dissipative forces. It is a natural framework to study
the multiscale and multiphysics problems. Moreover, such derivations are also very
important in the analysis as well as the designing of numerical schemes in simulations.

There are 2 essential underlying hypothesis in the framework presented in this
chapter. First, as described in section 2.1, the procedure is only applicable to isothermal
processes. For examples of non-isothermal complex fluid models one may refer to [53,
88] and their references. Secondly, the dissipation D is limited to be quadratic in “rate”,
which is equivalent to the linear response theory in non-equilibrium thermodynamics
[39, 75]. On one hand, this limitation is strong, and it does not allow considerations
of some models, including Ostwald-de Waele type (power-law) fluids [76, 40, 109].
However, it is important to note that strong nonlinearities can be introduced through
coefficients not dependent on the “rate” (e.g. density dependent viscosity). Also, some
non-Newtonian structure of the fluid may be introduced through additional parameters
(e.g. incompressible viscoelasticity system (21)).

This chapter only demonstrate the underlying variational structures for several
complex fluid models. With the common energetic variational themes, each system
possesses its own unique properties, hence difficulties and challenges. The viscoelastic
fluids with its elastic mechanism (the transport of the deformation tensor), the mixtures
with the interface evolutions (hence the dynamics of singularities), the diffusion with
the complicated free energy and also the dissipative terms. All these are the motivation
and challenges for researchers in both theoretical fields and in many interdisciplinary
applications.
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Energetic variational approaches have been successfully incorporated in many other
important application not listed in this chapter, such as multi-component flows with
more than 2 phases [22, 21, 20], fracture mechanics [17, 129] and more. Contributions of
the boundary effects, such as slip (Navier) boundary conditions [105, 106], capacitors
and surface chemistry [125], can also be incorporated in the variational framework.
However, these boundary effects will bring in high gradients in the system, hence
difficulties both in analysis and numerics.

For some of the models in this chapter analysis results are presented in other chap-
ters. Despite the constant efforts by many researchers, there are still many open prob-
lems in the area of complex fluids, as we can see in many other chapters. In particular,
we want to point out the following areas for further research:

• For both Micro-macro system (22) and Oldroyd-B equations, that may be re-
covered from it, besides the difficulties of Navier-Stokes subsystem, the global
existence of Leray-Hopf solutions and stability are mostly open;

• For phase-field models in section 4 further investigations may include: limit
when interface thickness ε goes to zero, various dynamic boundary conditions
and boundary effects, and various long time stabilities.

• The understanding and reformulation of various weak forms of the system, with
suitable test functions that are consistent with the energetic variational frame-
work, such as the approaches of optimal transport for various diffusion equations.
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