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Complex Fluids

Macroscopic fluids with microscopic configuration/structure

Competition between the kinetic energy and the internal
“elastic” energy

Intrinsically multiscale-multiphysics model, or multicomponent
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Complex Fluids : Examples

Viscoelastic Fluids (Polymeric Materials, Liquid Crystal,... )

Electrorheological (ER) Fluids (Ion Dynamics(Electrolyte Solutions) in

Biology, Semiconductor,... )

Magnetohydrodynamical (MHD) Fluids

Multi-phase Flows (Fluid-Fluid Mixture)
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Complex Fluids

The analysis of complex fluids is intrinsically difficult.

Numerical computations are highly demanded to understand the
complex fluids.

The starting point of energetic variational approaches: Energy
dissipation law for the whole coupled system,

d

dt
E

total = −△

where E
total is the total energy, △ is the dissipation of the

system.
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Energetic Variational Approaches: Flow Map

b b

~x(~X , t)
Ω0

~X

Ωt

~x

Figure: The flow map from the reference domain, Ω0 to the current domain, Ωt .

Basic Mechanics

Flow Map (Trajectory) : ~xt(~X , t) = ~u(~x(~X , t), t), ~x(~X , 0) = ~X .

The deformation tensor (strain) of the flow map :

F (~x(~X , t), t) = ∂~x(~X ,t)

∂~X
satisfying

Ft + ~u · ∇F = ∇~uF . (1)
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Energetic Variational Approaches

Least Action Principle (Hamiltons Principle; Principle of Virtual
Work) : the reversible part of the system, conservative force (fc)

δA = fc · δ~x

where A is the action functional defined from the energy.

Maximum Dissipation Principle1 (Onsager’s Principle) : the
irreversible part of the system, the dissipative force (fd )

1

2
δ△ = fd · δ~u.

Force Balance Law through the energy law

1
L. Onsager, Reciprocal Relations in Irreversible Processes I, Phys. Rev. 37(1931), pp.405–426, Reciprocal Relations in

Irreversible Processes II, Phys. Rev. 38(1931), pp. 2265–2279, L. Onsager, and S. Machlup, Fluctuations and Irreversible

Processes, Phys. Rev. 91(1953), pp. 1505–1512.
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Energetic Variational Approaches : Simple Fluid

Simple Fluid : the fluid described by the incompressible Navier-Stokes
equations

ρ(~ut + ~u · ∇~u) +∇p = µ∆~u, (momentum conservation)

∇ · ~u = 0, (incompressibility) (2)

ρt +∇ · (ρ~u) = 0. (mass conservation)

where ρ is mass, ~u is velocity field, p is pressure, and µ is the viscosity.

The energy equation for incompressible Navier-Stokes equation:

d

dt

∫

1

2
ρ|~u|2 d~x = −

∫

µ|∇~u|2 d~x . (3)
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Energetic Variational Approaches : Simple Fluid

The total energy, the dissipation :

E total =

∫

1

2
ρ|~u|2 d~x , △ =

∫

µ|∇~u|2 d~x , (4)
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Energetic Variational Approaches : Simple Fluid

Define Action Functional, A, for Least Action Principle (LAP)

A =

∫ T

0

∫

Ωt

1

2
ρ|~u|2 d~xdt. (5)

Pull back the current domain, Ωt , to the reference one, Ω0, through
the flow map, ~x(~X , t)

A(~x) =

∫ T

0

∫

Ω0

1

2

ρ0(~X )

det F
|~xt |2 detF d ~Xdt (6)

where ρ0(~X ) = ρ(~X , t)|t=0 is the initial mass. Then δA(~x)
δ~x

= 0 gives
the Hamiltonian (energy conserved) part under the incompressibility
condition, ∇ · ~u = 0, i.e., det(F ) = 1.

The resulting equation is the Euler equation : the total energy
conservation

ρ(~ut + ~u · ∇~u) = −∇p
(7)

∇ · ~u = 0.
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Energetic Variational Approaches : Simple Fluid

Applying Maximum Dissipation Principle (MDP) for the dissipation
in the form of the quadratic of the “rate” functions,

1

2

δ△
δ~u

∣

∣

ε=0
=

∫

(∇~u + ε∇~v) · ∇~v d~x
∣

∣

ε=0
= 0,

then we obtain the Stokes equation,

µ∆~u = ∇p̃,
(8)

∇ · ~u = 0.

Combine (7) and (8) then we have the incompressible Navier-Stokes
equation (2)

11 / 38



Energetic Variational Approaches : Framework

1 Define an appropriate energy equation for describing the physical
phenomenon.

2 Applying energetic variational approaches, LAP, MDP.

3 Combine the conservative part from LAP and the dissipative part
from MDP through the force balance to satisfy the energy law.(The
system of PDE is uniquely determined.)

4 Numerical Computations, developing numerical methods, existence,
uniqueness of solutions
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow2:

Let φ be a phase function φ(~x , t) = ±1 in the incompressible fluids

Let Γt = {x : φ(~x , t) = 0} be the interface of mixture

In the Eulerian description, the immiscibility of fluids implies the pure
transport of φ.

φt + ~u · ∇φ = 0. (9)

2
C. Liu, and J. Shen, A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a

Fourier-Spectral Method, Physica D, 179(2003), pp.211–228.

13 / 38



Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow:

Ginzburg-Landau mixing energy, represents a competition between two
fluids with their (hydro-) philic and (hydro-) phobic properties:

W (φ,∇φ) =
1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2.

The equilibrium profile of interface is tanh-like function as η → 0.

The total energy is defined by the combination of the kinetic energy
and the internal energy as follows:

E total =

∫

Ωt

{

1

2
|~u|2 + λW (φ,∇φ)

}

d~x. (10)

where λ is the contribution coefficient of the mixing energy to the total
energy.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow:

The action functional A from the total energy (10):

A =

∫ T

0

∫

Ωt

{

1

2
|~xt |2 − λW (φ,∇φ)

}

d~xdt. (11)

The action functional A in terms of the flow map:

A(~x) =

∫ T

0

∫

Ω0

{

1

2
|~xt |2 − λ

(

1

2
|F−1∇~X

φ|2 + f (φ0)

)

detF

}

d ~Xdt.

(12)

where f (φ0) =
1

4η2
|φ2

0 − 1|2.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow without Dissipation:

the LAP leads us to the following Hamiltonian system:

~ut + ~u · ∇~u +∇p̃ = −λ∇ · (∇φ ⊗∇φ) (13)

∇ · ~u = 0 (14)

φt + ~u · ∇φ = 0. (15)

The above system (18) – (20) converges to the “sharp interface
model” and its energy equation is

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2

)}

d~x = 0. (16)

: the total energy conservation, a Hamiltonian system, a conservative
force with no dissipation of system.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow:

Consider the following dissipation with the viscosity of fluids and the
dissipation within the diffusive interface:

△ =

∫

(

µ|∇~u|2 + λγ

∣

∣

∣

∣

∆φ− 1

η2
(φ2 − 1)φ

∣

∣

∣

∣

2
)

d~x. (17)

where γ is the relation time. Since the dissipation of the diffusive
interface is not a rate square, the maximum dissipation principle gives
only the viscosity term, µ∆~u.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow:

The system with dissipation:

~ut + ~u · ∇~u +∇p̃ = µ∆~u − λ∇ · (∇φ⊗∇φ) (18)

∇ · ~u = 0 (19)

φt + ~u · ∇φ = γ

(

∆φ− 1

η2

(

φ2 − 1
)

φ

)

. (20)

The dissipative energy law is

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2

)}

d~x

(21)

= −
∫

(

µ|∇~u|2 + λγ

∣

∣

∣

∣

∆φ − 1

η2
(φ2 − 1)φ

∣

∣

∣

∣

2
)

d~x.

In numerical computation applying finite element methods one might
need at least H2 finite element space to satisfying the energy law.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow with Dissipation:

Reducing the computational cost in numerical experiment through the
Maximum dissipation principle.

Manipulate the dissipation (17) in terms of a rate

△ =

∫
(

µ|∇~u|2 + λ

γ
|φt + ~u · ∇φ|2

)

d~x . (22)

Onsarger’s principle (MDP) with incompressibility of flow, ∇ · ~u = 0
implies

1

2

δ△
δ~u

∣

∣

∣

∣

ε=0

= −
∫
{

µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ

}

· ~v d~x = 0. (23)
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow:

The resulting system obtained by LAP and MDP with the manipulation
on the dissipation is

~ut + ~u · ∇~u +∇p = µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ (24)

∇ · ~u = 0 (25)

φt + ~u · ∇φ = γ

(

∆φ− 1

η2
(φ2 − 1)φ

)

. (26)

The dissipative energy law:

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2

)}

d~x

(27)

= −
∫
(

µ|∇~u|2 + λ

γ
|φt + ~u · ∇φ|2

)

d~x .
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Energetic Variational Approaches : Complex Fluid

Remark:

The dissipative force term in (24),

−λ

γ
(φt + ~u · ∇φ)∇φ

is exactly same as the conservative force in (18),

∇ · (∇φ⊗∇φ −W (φ,∇φ)I )

As η → 0, this is exactly the surface tension force on the interface3

3
X.F. Yang, J.J. Feng, C. Liu, and J. Shen, Numerical Simulations of Jet Pinching-off and Drop Formation Using An

Energetic Variational Phase-Field Method, J. Comput. Phys., 218(2006), pp.417–428.
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Energetic Variational Approaches : Complex Fluid

Immiscible Two-phase Flow (continue):

Computational Viewpoints:

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2

)}

d~x

(28)

= −
∫
(

µ|∇~u|2 + λ

γ
|φt + ~u · ∇φ|2

)

d~x .

: Lower Order Approximation in Numerical Simulations

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + 1

4η2
(φ2 − 1)2

)}

d~x

(29)

= −
∫
(

µ|∇~u|2 + λγ|∆φ − 1

η2
(φ2 − 1)φ|2

)

d~x .

: High Order Approximation in Numerical Simulations
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Energetic Variational Approaches : Complex Fluid

Another Example: an incompressible viscoelastic complex fluid
model4 with the elastic energy, W (F ) = 1

2 |F |2

The energy law:

d

dt

∫
(

1

2
|~u|2 + 1

2
|F |2

)

d~x = −
∫

µ|∇~u|2 d~x. (30)

The system of equations satisfies the energy law (30):

~ut + ~u · ∇~u +∇p = µ∆~u +∇ ·
(

WFF
−T
)

(31)

∇ · ~u = 0 (32)

Ft + ~u · ∇F = ∇~uF (33)

: WFF
−T is conservative force.

4
F.H. Lin, C. Liu, and P. Zhang, On Hydrodynamics of Viscoelastic Fluids, Comm. Pure Appl. Math., LVIII(2005), pp.

1–35
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Energetic Variational Approaches : Complex Fluid

Another Example (continue): Add an artificial term ∆F into (33)

Ft + ~u · ∇F = ∇~uF + ε2∆F . (34)

The energy law of the system (31), (32), (34):

d

dt

∫
(

1

2
|~u|2 + 1

2
|F |2

)

d~x = −
∫

(

µ|∇~u|2 + ε2|∇F |2
)

d~x . (35)

Apply MDP: the resulting energy equation is

d

dt

∫
(

1

2
|~u|2 + 1

2
|F |2

)

d~x

(36)

= −
∫

(

µ|∇~u|2 + ε2R[Ft + ~u · ∇F −∇~uF ]2
)

d~x .

WFF
−T can also be derived from MDP.
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Numerical Simulations

Finite Element Space :

~uh ∈ Vh = (P1 ⊕ bubble)2 (37)

ph ∈ Wh = P1 (38)

φh ∈ Qh = P1 (39)

for the finite dimensional solution pair (~uh, ph, φh).
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Numerical Simulations

Numerical Method : The explicit-implicit scheme5

(~̃un+1
h,t , ~vh) +

((

3~unh − ~un−1
h

2
· ∇
)

~u
n+1
2

h , ~vh

)

+

(

1

2

(

∇ · 3~u
n
h − ~un−1

h

2

)

~u
n+1
2

h , ~vh

)

−(p
n+1
2

h ,∇ · ~vh) = −(µ∇~u
n+1
2

h ,∇~vh)−
λ

γ

(

φ̃n+1
h,t ∇

(

3φn
h − φn−1

h

2

)

, ~vh

)

(40)

−λ

γ

(

~u
n+1
2

h ,∇
(

3φn
h − φn−1

h

2

))(

∇
(

3φn
h − φn−1

h

2

)

, ~vh

)

for all ~vh ∈ Vh,

(

∇ · ~u
n+1
2

h ,wh

)

+ ε
(

p
n+1
2

h ,wh

)

= 0 for all wh ∈ Wh, (41)

(φ̃n+1
h,t , qh) +

(

~u
n+1
2

h ,

(

3φn
h − φn−1

h

2

)

qh

)

(42)
= −γ

(

∇φ
n+1
2

h ,∇qh

)

− γ

η2
(fh(φ

n
h, φ

n+1
h ), qh) for all qh ∈ Qh

5
P. Lin, and C. Liu, Simulation of Singularity Dynamics in Liquid Crystal Flows: a C0 Finite Element Approach, J.

Comput. Phys., 215(1) (2006), 348–362. .
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Numerical Simulations

where

fh(φ
n
h, φ

n+1
h ) =

{

(|φn+1
h |2 − 1) + (|φn

h|2 − 1)

2

}

φ
n+1
2

h ,

~̃un+1
h,t =

~un+1
h − ~unh
∆t

, ~u
n+1
2

h =
~un+1
h + ~unh

2
, φ̃n+1

h,t =
φn+1
h − φn

h

∆t
, φ

n+1
2

h =
φn+1
h + φn

h

2
,

(·, ·) is the inner product operator, and ∆t is the time step for simulations and ε

is a small positive constant, 0 < ε << 1.

The scheme satisfies the energy dissipation law:

[
∫
{

1

2
|~un+1

h |2 + λ

(

1

2
|∇φn+1

h |2 + 1

4η2
|φn+1

h

2 − 1|2
)}

d~x

]

h,t

=

(43)

−
∫

{

µ|∇~un+1
h |2 + ε|φ

n+1
2

h |2 + λ

γ

∣

∣

∣

∣

φ̃n+1
h,t + (~u

n+1
2

h · ∇)

(

3φn
h − φn−1

h

2

)∣

∣

∣

∣

2
}

d~x .
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Numerical Simulations

Simulation 1 - Initial Data :

~u0 = ~0, φ0 = tanh

(

d1(x , y)

η
√
2

)

+ tanh

(

d2(x , y)

η
√
2

)

− 1.0 (44)

with

d1(x , y) =
√

(x − 0.38)2 + (y − 0.5)2 − 0.11,

d2(x , y) =
√

(x − 0.62)2 + (y − 0.5)2 − 0.11,

µ = 1.0, η = 0.01, λ = 0.01.
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Numerical Simulations

Simulation 1.- Initial Data, φ0 :

Figure: Initial Phase Field for Simulation.
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Numerical Simulations

Plot of Interfaces and Flow Fields at Time =0
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Figure: The time evolution results (merging effect) of phase field and velocity
field from left to right and top to bottom (t = 0.0, 0.1, 0.2, 0.4, 0.7, 1.0 and
∆t = 0.001). 30 / 38



Numerical Simulations
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Figure: The total energy dissipation (left) and the kinetic energy (right) of
merging phenomena in two-phase interface model.

31 / 38



Numerical Simulations

Simulation 2 - Initial Data :

~u0 = ~0, φ0 = tanh

(

d1(x , y)

η
√
2

)

+ tanh

(

d2(x , y)

η
√
2

)

− 1.0 (45)

with

d1(x , y) =
√

(x − 0.38)2 + (y − 0.38)2 − 0.22,

d2(x , y) =
√

(x − 0.70)2 + (y − 0.70)2 − 0.08,

µ = 1.0, η = 0.01, λ = 0.01.

32 / 38



Numerical Simulations

Simulation 2.- Initial Data, φ0 :

Figure: Initial Phase Field for Simulation.
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Numerical Simulations

Plot of Interfaces and Flow Fields at Time =0
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Figure: The time evolution results of phase field and velocity field from left to
right and top to bottom (t = 0.0, 0.2, 0.4, 2.0 and ∆t = 0.001).
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Numerical Simulations
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Figure: The total energy dissipation (left) and the kinetic energy (right) of
vanishing phenomena in two-phase interface model.
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Remarks

LAP : Conservative Force

MDP : Dissipative Force

MDP : Whether the dissipation functional includes the “rate”
functions in time t of all “variables”

The conservative force in hydrodynamic system is consistent with the
dissipative force

MDP plays an important role in designing numerical algorithms to
solve the hydrodynamic complex fluid problem

Difficulty : The optimal order of convergence for the finite element
space
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Thank You!
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