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ENERGETIC VARIATIONAL APPROACH IN COMPLEX FLUIDS :

MAXIMUM DISSIPATION PRINCIPLE
∗

Y. HYON † , D. Y. KWAK‡ , AND C. LIU§

Abstract. We discuss the general energetic variational approaches for hydrodynamic systems of
complex fluids. In these energetic variational approaches, the least action principle (LAP) with action
functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the
maximum/minimum dissipation principle (MDP), i.e., Onsager’s principle, gives the dissipative parts
(dissipative force) of the systems. When we combine the two systems derived from the two different
principles, we obtain a whole coupled nonlinear system of equations satisfying the dissipative energy
laws. We will discuss the important roles of MDP in designing numerical method for computations
of hydrodynamic system in complex fluids. We will reformulate the dissipation in energy equation
in terms of a rate in time by using an appropriate evolution equations, then the MDP is employed
in the reformulated dissipation to obtain the dissipative force for the hydrodynamic system. The
systems are consistent with the Hamiltonian parts which are derived from LAP. This procedure
allows the usage of lower order element (a continuous C0 finite element) in numerical method to
solve the system rather than high order elements, and at the same time preserves the dissipative
energy law. We also verify this method through some numerical experiments in simulating the free
interface motion in the mixture of two different fluids.

Key words. Energetic variational approach, dissipation energy law, least action principle,
maximum dissipation principle, Navier-Stokes equation, phase field equations.

AMS subject classifications. 76A05, 76M99, 65C30

1. Introduction. The energetic variational approaches of hydrodynamic sys-
tems in complex fluids are the direct consequence of the second law of thermodynam-
ics. The complex fluids in our interests are the fluids with micro-structures (molecular
configurations), for instance, viscoelastic polymer models such as Hookean model, fi-
nite extensible nonlinear elastic (FENE) dumbbell models, rod like liquid crystal mod-
els, and multi-phase fluids [1, 2, 3, 7, 8, 14, 19, 25, 31, 32]. The interaction/coupling
between different scales or phases, plays a crucial role in understanding complex fluids.
The interaction in polymeric fluids [2, 3, 8, 14, 25] can be described by the macro-
scopic deformation to the microscopic structure through kinematic transport and the
macroscopic elastic stresses induced by the molecular configurations in microscopic
level. A competition in multi-phase fluids [1, 19, 31, 32] can be described by the
macroscopic kinetic energy and the internal “elastic” energy through the kinematic
transport. The complex fluids thus are basically described by multiscale-multiphysics
model.

We illustrate the energetic variational approach for one of complex fluid model
using the least action principle (LAP) [15] and the maximum/minimum dissipation
principle (MDP) [22, 23, 24] to understand complex fluids. In computational view-
point the MDP shows a way to achieve an efficient method for numerical computations.
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The energetic variation is based on the following energy dissipation law for the whole
coupled system:

dEtotal

dt
= −△

where Etotal is the total energy of system and △ is the dissipation [22, 23, 24]. The
LAP, which is also referred as the Hamiltonian principle, or principle of virtual work,
gives us the Hamiltonian (reversible) part of the system related to the conservative
force. At the same time, the MDP gives the dissipative (irreversible) part of the system
related to the dissipative force. The LAP, MDP can be written in the following form,
respectively:

δEtotal = fc · δ~x, δ△ = fd · δ~u (1.1)

where fc is a conservative force, fd is a dissipative force, ~x is a position variable, and
~u is velocity field variable.

b b

~x( ~X, t)
Ω0

~X

Ωt

~x

Fig. 1.1. The flow map from the reference domain, Ω0 to the current domain, Ωt.

Here we introduce the basic mechanic background between the reference domain
and the current domain at time t. The connection between these domains is the flow
map. That makes it possible to do the variation with respect to domain. Let Ω0 be
the reference domain, and Ωt be the domain at time t with variables ~X and ~x in these
domains, respectively. Then we can obtain the flow map (trajectory) from Ω0 to Ωt

such as

~xt( ~X, t) = ~u(~x( ~X, t), t), ~x( ~X, 0) = ~X.

The deformation tensor (strain) of the flow map is given by

F (~x( ~X, t), t) =
∂~x( ~X, t)

∂ ~X

and satisfies the following transport equation:

Ft + ~u · ∇F = ∇~uF. (1.2)

All evolutions/dynamics are based on the above relations of flow map between the
reference domain, Ω0 and the domain at time t, Ωt. The deformation tensor F carries
all the information of microstructures, patterns, and configurations.
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We give an outline of this paper. In the next section, we discuss the energetic
variational approaches with LAP and MDP for incompressible Navier-Stokes equa-
tion. In section 3, we present two-phase flow model with diffusive interface approach
in complex fluids for LAP and MDP. In applying MDP, we first manipulate the dis-
sipation in the energy through Allen-Cahn equation. And then we derive a system
of equations for the two-phase flow problem satisfying the modified energy equation.
In section 4, we perform numerical experiments to verify the system obtained by the
energetic variational approaches and discuss its numerical results. In the last section,
we give a conclusion on this work.

2. Energetic Variation in Simple Fluids. In this section we consider a sim-
ple fluid model, and derive a system of equations using the energetic variational
approaches with LAP and MDP. A simple fluid here means the fluid described by the
incompressible Navier-Stokes equations [13, 30] which is given by

ρ(~ut + ~u · ∇~u) + ∇p = µ∆~u

∇ · ~u = 0 (2.1)

ρt + ∇ · (ρ~u) = 0

with a suitable boundary and initial conditions. Here, ~u is velocity field, ρ is the
mass, p is the hydrostatic pressure, and µ is the viscosity. Then we easily obtain the
following energy equation corresponding to the incompressible Navier-Stokes equation
(2.1):

d

dt

∫

1

2
ρ|~u|2 dx = −

∫

µ|∇~u|2 d~x. (2.2)

The energy law (2.2) can be derived directly through the system (2.1). On the other
hand, according to the energetic variation approaches, we can derive the equation
(2.1) from the energy equation (2.2). In (2.2) we see that the total energy Etotal and
the dissipation △ for (2.1) are

Etotal =

∫

1

2
ρ|~u|2 d~x, △ =

∫

µ|∇~u|2 d~x, (2.3)

respectively.
We can then define the action functional A for the incompressible Navier-Stokes

equation with the kinetic energy,

A =

∫ T

0

∫

Ωt

1

2
ρ|~u|2 d~xdt. (2.4)

Here we pull back the current domain, Ωt, to the reference one, Ω0, through the flow
map, ~x( ~X, t). Then the action functional is

A(~x) =

∫ T

0

∫

Ω0

1

2
ρ0( ~X)|~xt|2 detF d ~Xdt (2.5)

where ρ0( ~X) = ρ( ~X, t)|t=0 is the initial mass. Then the variation with respect to ~x

(LAP), δA(~x)
δ~x

= 0, gives the Hamiltonian (energy conserved) part under the incom-
pressibility condition, i.e., det(F ) = 1. The resulting equation is the Euler equation
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which has the total energy conservation,

~ut + ~u · ∇~u = −∇p
(2.6)

∇ · ~u = 0.

Next, we apply the MDP (variation with respect to function) for the dissipation
in (2.3), δ△

δ~u

∣

∣

ε=0
= 0, then we obtain the Stokes equation,

µ∆~u = ∇p̃
(2.7)

∇ · ~u = 0

where p̃ is a Lagrange multiplier for ∇ · ~u = 0.
Therefore, we have obtained the conservative part and dissipative one in incom-

pressible Navier-Stokes equation (2.1) by the energetic variational approaches, LAP
and MDP, respectively.

3. Energetic Variation in Complex Fluids. We consider a complex fluids to
show the derivation of its system of equations using LAP and MDP from the energy
viewpoint. There are several kinds of well-known complex fluids [7, 8, 10, 14, 25],
for instance, viscoelastic material fluids with multiscale interactions, liquid crystals
which is in the intermediate state between liquid and solid, magneto-hydrodynamical
fluids, electro-rheological (ER) fluids, and fluid-fluid mixture models. The interac-
tion/coupling between scales, or fluids, is complicated, but an essential feature of com-
plex fluids. The hydrodynamic systems of complex fluids are all determined through
the competition between kinetic energy and various internal elastic energies. In the
meantime, the competitions are also reflected in the dissipations. Here we will use the
free interface motion as an example to illustrate the underlying variational structure
of these complicated systems.

We consider an immiscible two-phase flow model in complex fluids [19, 31, 32].
Let φ be a phase function φ(~x, t) = ±1 in the incompressible fluids, and Γt = {x :
φ(~x, t) = 0} be the interface of mixture. If we consider the immiscibility of fluids,

then it gives the kinematic condition on Γt, which is ~V · ~n = (~u · ~n)~n where ~V is the
velocity of the interface Γt, and ~u is the fluid velocity. In the Eulerian description, it
implies the pure transport of φ.

φt + ~u · ∇φ = 0. (3.1)

The following well-known energy, Ginzburg-Landau mixing energy, represents a
competition between two fluids with their (hydro-) philic and (hydro-) phobic prop-
erties:

W (φ,∇φ) =
1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2.

We easily see that the mixing energy functional E = λ
∫

W d~x where λ is a constant
coefficient of the mixing energy is proportional to the area of the interface, Γt, and
the equilibrium profile of interface is tanh-like function as η → 0.

The total energy is defined by the combination of the kinetic energy and the
internal energy as follows:

Etotal =

∫

Ωt

{

1

2
|~u|2 + λW (φ,∇φ)

}

d~x. (3.2)
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The action functional A in terms of the flow map from the total energy (3.2) is

A(~x) =

∫ T

0

∫

Ω0

{

1

2
|~xt|2 − λ

(

1

2
|F−1∇ ~X

φ|2 + F (φ0)

)

detF

}

d ~Xdt. (3.3)

Notice that the term, |∇φ|2, carries all information of the configuration which is de-
termined by the deformation, F .

Remark 3.1. The expression in (3.3) includes all the kinematic transport prop-
erty of the internal variable “φ”. With different kinematic transport relations, we
will obtain different action functionals, even though the energies may have the same
expression in the Eulerian coordinate. This is important for dynamics for materials
like liquid crystals [17, 29].

Then the LAP leads us to the following Hamiltonian system:

~ut + ~u · ∇~u + ∇p = −λ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I) (3.4)

∇ · ~u = 0 (3.5)

φt + ~u · ∇φ = 0. (3.6)

Remark 3.2. The above system (3.4) – (3.6) converges to (at least formally) the
“sharp interface model” and its energy equation is

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)}

d~x = 0. (3.7)

It shows that the total energy of the system is conserved. The system is a Hamilto-
nian system. The force, the right hand side of (3.4) is a conservative force with no
dissipation of system.

Now, we consider the diffusive interface approach for immiscible two-phase flow
model. The diffusive interface method is imposed by an additional dissipation term
(relaxation) in the transport equation (3.6). Then we have the Allen-Cahn equation
[5],

φt + ~u · ∇φ = γ

(

∆φ − 1

η2

(

φ2 − 1
)

φ

)

. (3.8)

We also want to include the dissipation in flow field caused by the flow viscosity, µ.
The dissipation in the diffusive interface approach is given by

△ =

∫

(

µ|∇~u|2 + λγ

∣

∣

∣

∣

∆φ − 1

η2
(φ2 − 1)φ

∣

∣

∣

∣

2
)

d~x. (3.9)

The phase dissipation which is the second term in (3.9) is not in the form of the
quadratic of the “rate” functions [22, 23, 24]. Using the equation (3.8) we can ma-
nipulate the dissipation (3.9) in terms of a rate in time.

△ =

∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x. (3.10)
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Then the variational principle (MDP), which is known as Onsarger’s principle

[22, 23, 24], δ△
δ~u

∣

∣

∣

ε=0
= 0 with incompressibility of flow, ∇ · ~u = 0, is employed to

obtain a dissipative force.

δ△
δ~u

∣

∣

∣

∣

ε=0

= 2

∫
{

µ(∇~u + ε∇~v) : ∇~v +
λ

γ
(φt + (~u + ε~v) · ∇φ)~v · ∇φ

}

d~x

∣

∣

∣

∣

ε=0

= 2

∫
{

µ∇~u : ∇~v +
λ

γ
(φt + ~u · ∇φ)∇φ · ~v

}

d~x (3.11)

= −2

∫
{

µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ

}

· ~v d~x = 0.

From the above resulting equation in (3.11) we obtain the following system with
dissipative force:

µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ = ∇p̃ (3.12)

∇ · ~u = 0 (3.13)

φt + ~u · ∇φ = γ(∆φ − f ′(φ)). (3.14)

The system (3.12)–(3.14) satisfies the following energy law:

d

dt

∫

λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)

d~x = −
∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x. (3.15)

Combine the systems, (3.4)–(3.6) and (3.12)–(3.14) obtained by LAP and MDP,
respectively, we have the following system for the two-phase flow model:

~ut + ~u · ∇~u + ∇p = µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ (3.16)

∇ · ~u = 0 (3.17)

φt + ~u · ∇φ = γ

(

∆φ − 1

η2
(φ2 − 1)φ

)

. (3.18)

The most amazing fact from the above derivation is the dissipation force from MDP
in (3.12). The dissipative term, −λ

γ
(φt + ~u · ∇φ)∇φ in (3.12), is exactly same as the

conservative term, ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I) from LAP in (3.4).
Moreover, as η → 0, this is exactly the surface tension force on the interface [31].

This system (3.16)–(3.18) satisfies the dissipative energy law.

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)}

d~x

(3.19)

= −
∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x.

This procedure using the energetic variation, especially, MDP sometimes gives advan-
tage in designing numerical algorithms. If the dissipative force in (3.16) is substituted
by the conservative force in (3.4), then the following equation is obtained

~ut + ~u · ∇~u + ∇p = µ∆~u − λ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I). (3.16′)
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Moreover, the system (3.16′), (3.17), (3.18), satisfies the following energy law:

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + f(φ)

)}

d~x=−
∫

(

µ|∇~u|2 + λγ|∆φ − f ′(φ)|2
)

d~x (3.20)

where f(φ) = 1
4η2 (φ2 − 1)2. Since in derivation of the energy (3.20), the equation

(3.18) is multiplied by ∆φ − 1
η2 (φ2 − 1)φ, a numerical algorithm to solve (3.16′),

(3.17), (3.18), requires a high order approximation for the phase field solution to pre-
serving the energy (3.20). On the other hand, to derive the energy (3.19) we multiply
φt + ~u · ∇φ, thus, in solving the system (3.16)–(3.18) a numerical algorithm can be
implemented in a low order approximation for φ to preserve the energy (3.19).

Remark 3.3. It may be strange that in the equation (3.16)–(3.18) the surface
tension can be viewed as a dissipative force. In fact, this is due to the relaxation of
the φ equation. To see this let’s look at the simple viscoelastic fluids. For instance,
we consider a incompressible viscoelastic complex fluid model with the elastic energy,
W (F ) = |F |2 [18]. Then the energy equation is given by

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x = −
∫

µ|∇~u|2 d~x. (3.21)

The following system of equations satisfies the energy law (3.21):

~ut + ~u · ∇~u + ∇p = µ∆~u + ∇ ·
(

WF F−T
)

(3.22)

∇ · ~u = 0 (3.23)

Ft + ~u · ∇F = ∇~uF (3.24)

with det(F ) = 1. The dissipation in (3.21) does not include the rate functions in
terms of F . The force WF F−T is only a conservative force. The MDP can be applied
only on ~u variable to obtain the viscosity term, ∆~u. If we add an artificial term ∆F

like in viscosity method for hyperbolic system into (3.24) without further discussion
of the physical meaning on this artificial “viscosity” term (as an approximation of the
original equation (3.24)), then the resulting equation is

Ft + ~u · ∇F = ∇~uF + ε2∆F. (3.24′)

Now, we can apply the MDP for the system (3.22),(3.23), (3.24′).
Moreover, the system (3.22), (3.23), (3.24′), satisfies the following energy equa-

tion:

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x = −
∫

(

µ|∇~u|2 + ε2|∇F |2
)

d~x. (3.25)

The extra dissipation on F in (3.25) can be written from (3.24′) in terms of a “rate”
function, using the Riesz transformation, R which is defined by

R[g](~x) = cn

∫

(~x − ~y)

|~x − ~y|n g(~y) d~y

where n > 2 is the space dimension, and cn is a constant depended on n [28]. Then
the resulting energy equation is

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x= −
∫

(

µ|∇~u|2 + ε2
R[Ft + ~u · ∇F −∇~uF ]2

)

d~x.(3.26)
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and WF F−T can also be derived from MDP.
In the next section, we present numerical experiments, and discuss its results as a

verification for the system (3.16)–(3.18) driven by the energetic variational approach.

4. Numerical Simulations. The numerical experiments for two-phase flow
problem modeled by diffusive interface approach are carried out with finite element
methods [4, 6, 11] for the system (3.16)–(3.18). We discuss the numerical results and
algorithms to solve the system. We here emphasize again that if the system (3.16′),
(3.17), (3.18), is employed to solve two-phase flow problem then the finite element
space for the phase field solution, φ, has to have at least H2-regularity to preserve
the dissipative energy law (3.20), for instance, P2 finite element space, or biquadratic
element space [20, 21]. Here Pk means the space of polynomials up to order k. But it
causes an expensive computational costs. On the other hand, the energy law (3.19)
for the system (3.16)–(3.18) allows us to employ a lower order finite element space for
the phase solution, for instance, P1 element.

The finite element spaces and mesh generations are implemented by the Free-
Fem++ [12]. In discretization, the superscript, n, means the time step, and the
subscript, h, is for the finite dimensional variable or space. The following finite element
spaces are used for simulations:

~uh ∈ Vh = (P1 ⊕ bubble)2 (4.1)

ph ∈ Wh = P1 (4.2)

φh ∈ Qh = P1 (4.3)

for the finite dimensional solution pair (~uh, ph, φh) rather than high order element,
for instance, P2 for φh.

The computational domain is the unit square. The initial velocity field is ~u0 = 0,
and the initial phases are given by

φ0 = tanh

(

d1(x, y)√
2η

)

+ tanh

(

d2(x, y)√
2η

)

− 1.0, (4.4)

where d1, d2 are the distance functions from the circle centered at (0.38, 0.5) radius
r = 0.11 and at (0.62, 0.5) radius r = 0.11, respectively. The explicit forms of d1 and
d2 are given as follows:

d1(x, y) =
√

(x − 0.38)2 + (y − 0.5)2 − 0.11,

d2(x, y) =
√

(x − 0.62)2 + (y − 0.5)2 − 0.11.

We can easily see the fact that the initial value (4.4) is an approximation of the
following phase field:

φ0 =

{

−1, inside region of circles

1, outside region of circles.
(4.5)

Remark 4.1. Since the system (3.16)–(3.18) is highly nonlinear system consist-
ing of the incompressible Navier-Stokes equation with the stress term and Allen-Cahn
equation, there exist many finite element approximation schemes, for instance, the
characteristic Galerkin finite element method gives an approximation for the convec-
tion term in Navier-Stokes equation.

~ut + (~u · ∇)~u ≈ ~un+1
h − ~un

h(~x − ~un
h∆t)

∆t
(4.6)
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gives a quadratic convergence order [5, 9, 26]. Also one can use the stabilized semi-
implicit scheme for Allen-Cahn equation (3.18) [19]. But the approximation (4.6)
for the convection term sometimes breaks the dissipative energy law. In fact, when
we used this approximation in the numerical examples of Figure (4.1) and (4.3) we
observed that the dissipative law of the total energy is violated during the simulations,
especially in the beginning of the time.

To preserve the finite dimensional dissipative energy law an explicit-implicit sec-
ond order temporal discretization algorithm is employed for numerical experiments
[16, 17]. The variational formulation for the solution (~un+1

h , pn+1
h , φn+1

h ) using the
explicit-implicit scheme as follows:

(~̃un+1
h,t , ~vh) +

((

3~un
h − ~un−1

h

2
· ∇
)

~u
n+1

2

h , ~vh

)

+

(

1

2

(

∇ · 3~un
h − ~un−1

h

2

)

~u
n+1

2

h , ~vh

)

−(p
n+1

2

h ,∇ · ~vh) = −(µ∇~u
n+1

2

h ,∇~vh) − λ

γ

(

φ̃n+1
h,t ∇

(

3φn
h − φn−1

h

2

)

, ~vh

)

(4.7)

−λ

γ

(

~u
n+1

2

h ,∇
(

3φn
h − φn−1

h

2

))(

∇
(

3φn
h − φn−1

h

2

)

, ~vh

)

for all ~vh ∈ Vh,

(∇ · ~u
n+1

2

h , wh) = 0 for all wh ∈ Wh, (4.8)

(φ̃n+1
h,t , qh) +

(

~u
n+1

2

h ,

(

3φn
h − φn−1

h

2

)

qh

)

(4.9)
= −γ

(

∇φ
n+1

2

h ,∇qh

)

− γ

η2
(fh(φn

h , φn+1
h ), qh) for all qh ∈ Qh

where

fh(φn
h , φn+1

h ) =

{

(|φn+1
h |2 − 1) + (|φn

h |2 − 1)

2

}

φ
n+1

2

h ,

~̃un+1
h,t =

~un+1
h − ~un

h

∆t
, ~u

n+1

2

h =
~un+1

h + ~un
h

2
, φ̃n+1

h,t =
φn+1

h − φn
h

∆t
, φ

n+1

2

h =
φn+1

h + φn
h

2
,

(·, ·) is the inner product operator, and ∆t is the time step for simulations. Here we
employ the penalty method for Navier-Stokes equation [30, 11, 4]. Then the equation
(4.8) is substituted by

(∇ · ~u
n+1

2

h , wh) + ε(p
n+1

2

h , wh) = 0 for all wh ∈ Wh (4.8′)

where ε is a positive small constant, 0 < ε << 1. In numerical simulations, we usually
take ε = 10−6. Then the variational problem, (4.7), (4.8′), (4.9), satisfies the following
finite dimensional dissipative energy law:
[
∫
{

1

2
|~un+1

h |2 + λ

(

1

2
|∇φn+1

h |2 +
1

4η2
|φn+1

h

2 − 1|2
)}

d~x

]

h,t
(4.10)

= −
∫

{

µ|∇~un+1
h |2 + ε|φ

n+1

2

h |2 +
λ

γ

∣

∣

∣

∣

φ̃n+1
h,t + (~u

n+1

2

h · ∇)

(

3φn
h − φn−1

h

2

)∣

∣

∣

∣

2
}

d~x.

One can find a detail discussion on explicit-implicit second order temporal discretiza-
tion algorithm and other numerical schemes, and a similar system [16, 17, 20, 21].
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Fig. 4.1. The time evolution results (merging effect) of phase field and velocity field from
left to right and top to bottom (t = 0.0, 0.1, 0.2, 0.4, 0.7, 1.0 and ∆t = 0.001).

We want to point that it is difficult/challeging to obtain the optimal order er-
ror estimate of the variational problem (4.7), (4.8′), (4.9). In [16, 17], the authors
only present the convergence estimate for the explicit-implicit scheme in fixed point
nonlinear iteration under the certain condition.

The numerical results of time evolution for the phase field and the velocity field in
variational problem (4.7), (4.8′), (4.9) are presented in Figure 4.1 through the contour
plots at time, t = 0.0, 0.1, 0.2, 0.4, 0.7, 1.0, and the total energy and the kinetic energy
in Figure 4.2. These numerical results are demonstrating that the lower order finite
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Fig. 4.2. The total energy dissipation (left) and the kinetic energy (right) of merging
phenomena in two-phase interface model.

element space for phase field satisfactorily works to catch the merging phenomena of
two-phase flow model with the system (3.16)–(3.18). The left picture in Figure 4.2
shows the total energy dissipation. The elastic internal energy is dominant in the
simulation, that is, the kinetic energy is very small quantity. The right picture in
Figure 4.2 shows the evolution of kinetic energy. In the beginning time the kinetic
energy is increasing until time t = 0.1 and then decreasing because the flow fields
effect induced by the motion by mean-curvature is strong in the beginning time. As
the interface becomes smooth, the motion by mean-curvature decreases. After the
merging region of interface becomes flat, the kinetic energy almost does not change
until time, t = 0.9 and then rapidly vanishes.

The next simulation is set by the following initial conditions:

~u0 = 0, φ0 = tanh

(

d1(x, y)√
2η

)

+ tanh

(

d2(x, y)√
2η

)

− 1.0 (4.11)

with

d1(x, y) =
√

(x − 0.38)2 + (y − 0.38)2 − 0.22,

d2(x, y) =
√

(x − 0.70)2 + (y − 0.70)2 − 0.08.

The results of interface evolution with the flow field induced by surface tension
of the interface are presented in Figure 4.3, and its total energy and kinetic energy
in Figure 4.4. In Figure 4.3 the results also works very well to catch the behavior of
interfaces. The interface in shape of small circle is dissipated faster than that of large
circle. In the simulation, the mixing energy dissipation shows a dominant behavior
similar to the previous merging effect. We also observe that at the vanishing time,
around t = 0.25, of the small interface, the total energy is rapidly decreasing because
its interface is vanishing, dramatically.

5. Conclusion. We employed the energetic variation approaches in hydrody-
namic system of complex fluids to derive the hydrodynamic forces, conservative force,
dissipative force. The Hamiltonian part (the hydrodynamic conservative force) of
system is derived by LAP from the energy, and the dissipative part by MDP. One
important thing in MDP (Onsager’s principle) in the energetic variational approaches
is whether the dissipation functional includes the “rate” functions in time t of all
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Fig. 4.3. The time evolution results of phase field and velocity field from left to right and
top to bottom (t = 0.0, 0.2, 0.4, 2.0 and ∆t = 0.001).

“variables”. If this is the case, then the conservative force in hydrodynamic system is
consistent with the dissipative force. As presented in this paper, this procedure, MDP
plays an important role in designing numerical algorithms to solve the hydrodynamic
complex fluid problem. Through MDP, a system of equations can be reformulated
to employ a numerical algorithm with lower order element to solve a complex fluid
problem, and still preserve the dissipation energy law.

Finally, we want to point out that the system derived by MDP does give rise to
a different challenge in numerical analysis. An additional time derivative term and
convection terms in hydrodynamic force have appeared in the system of equations.
It is important (difficult) to obtain an error estimate of optimal order for the finite
element method. One of our next objectives in this area is to find other discretization
schemes to solve the system and prove the optimal order of convergence.
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