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Abstract. We discuss the general energetic variational approaches for hydrodynamic systems of
complex fluids. In these energetic variational approaches, the least action principle (LAP) with action
functional gives the Hamiltonian parts (conservative force) of the hydrodynamic systems, and the
maximum/minimum dissipation principle (MDP), i.e., Onsager’s principle, gives the dissipative parts
(dissipative force) of the systems. When we combine the two systems derived from the two different
principles, we obtain a whole coupled nonlinear system of equations satisfying the dissipative energy
laws. We will discuss the important roles of MDP in designing numerical method for computations
of hydrodynamic system in complex fluids. We will reformulate the dissipation in energy equation
in terms of a rate in time by using an appropriate evolution equations, then the MDP is employed
in the reformulated dissipation to obtain the dissipative force for the hydrodynamic system. The
systems are consistent with the Hamiltonian parts which are derived from LAP. This procedure
allows the usage of lower order element (a continuous C0 finite element) in numerical method to
solve the system rather than high order elements, and at the same time preserves the dissipative
energy law. We also verify this method through some numerical experiments in simulating the free
interface motion in the mixture of two different fluids.
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1. Introduction. The energetic variational approaches of hydrodynamic sys-
tems in complex fluids are the direct consequence of the second law of thermodynam-
ics. The complex fluids in our interests are the fluids with micro-structures (molecular
configurations), for instance, viscoelastic polymer models such as Hookean model, fi-
nite extensible nonlinear elastic (FENE) dumbbell models, rod like liquid crystal mod-
els, and multi-phase fluids [1, 2, 3, 7, 8, 14, 19, 25, 31, 32]. The interaction/coupling
between different scales or phases, plays a crucial role in understanding complex fluids.
The interaction in polymeric fluids [2, 3, 8, 14, 25] can be described by the macro-
scopic deformation to the microscopic structure through kinematic transport and the
macroscopic elastic stresses induced by the molecular configurations in microscopic
level. A competition in multi-phase fluids [1, 19, 31, 32] can be described by the
macroscopic kinetic energy and the internal “elastic” energy through the kinematic
transport. The complex fluids thus are basically described by multiscale-multiphysics
model.

We illustrate the energetic variational approach for one of complex fluid model
using the least action principle (LAP) [15] and the maximum/minimum dissipation
principle (MDP) [22, 23, 24] to understand complex fluids. The energetic variational
approaches have been employed to obtain reasonable model equations. However, a new
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coupled system of equations can be derived by the energetic variational approaches.
The MDP, namely, Onsager’s principle, plays a crucial role in the derivation of the
new coupled system. The advantage of such system is to allow us to use an efficient
numerical scheme. The energetic variation is based on the following energy dissipation
law for the whole coupled system:

dEtotal

dt
= −△

where Etotal is the total energy of system and △ is the dissipation [22, 23, 24]. The
LAP, which is also referred as the Hamiltonian principle, or principle of virtual work,
gives us the Hamiltonian (reversible) part of the system related to the conservative
force. At the same time, the MDP gives the dissipative (irreversible) part of the system
related to the dissipative force. The LAP, MDP can be written in the following form,
respectively:

δEtotal = fc · δ~x, δ△ = fd · δ~u (1.1)

where fc is a conservative force, fd is a dissipative force, ~x is a position variable, and
~u is velocity field variable.

b b

~x( ~X, t)
Ω0

~X

Ωt

~x

Fig. 1.1. The flow map from the reference domain, Ω0 to the current domain, Ωt.

Here we introduce the basic mechanics background between the reference domain
and the current domain at time t. The connection between these domains is the flow
map. That makes it possible to do the variation with respect to domain. Let Ω0 be
the reference domain, and Ωt be the domain at time t with variables ~X and ~x in these
domains, respectively. Then we can obtain the flow map (trajectory) from Ω0 to Ωt

such as

~xt( ~X, t) = ~u(~x( ~X, 0), t), ~x( ~X, 0) = ~X.

The deformation tensor (strain) of the flow map is given by

F (~x( ~X, t), t) =
∂~x( ~X, t)

∂ ~X

and satisfies the following transport equation:

Ft + ~u · ∇F = ∇~uF. (1.2)
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All evolutions/dynamics are based on the above relations of flow map between the
reference domain, Ω0 and the domain at time t, Ωt. The deformation tensor F carries
all the information of microstructures, patterns, and configurations.

We give an outline of this paper. In the next section, we discuss the energetic
variational approaches with LAP and MDP for incompressible Navier-Stokes equa-
tion. In section 3, we present two-phase flow model with diffusive interface approach
in complex fluids for LAP and MDP. In applying MDP, we first manipulate the dis-
sipation in the energy through Allen-Cahn equation. And then we derive a system
of equations for the two-phase flow problem satisfying the modified energy equation.
In section 4, we perform numerical experiments to verify the system obtained by the
energetic variational approaches and discuss its numerical results. In the last section,
we give a conclusion on this work.

2. Energetic Variations in Simple Fluids. In this section we consider a
simple fluid model, and derive a system of equations using the energetic variational
approaches with LAP and MDP. A simple fluid here means the fluid described by the
incompressible Navier-Stokes equations [13, 30] which is given by

ρ(~ut + ~u · ∇~u) + ∇p = µ∆~u

∇ · ~u = 0 (2.1)

ρt + ∇ · (ρ~u) = 0

with a suitable boundary and initial conditions. Here, ~u is velocity field, ρ is the
mass, p is the hydrostatic pressure, and µ is the viscosity. Then we easily obtain the
following energy equation corresponding to the incompressible Navier-Stokes equation
(2.1):

d

dt

∫

1

2
ρ|~u|2 d~x = −

∫

µ|∇~u|2 d~x. (2.2)

The energy law (2.2) can be derived directly through the system (2.1). On the other
hand, according to the energetic variation approaches, we can derive the equation
(2.1) from the energy equation (2.2). In (2.2) we see that the total energy Etotal and
the dissipation △ for (2.1) are

Etotal =

∫

1

2
ρ|~u|2 d~x, △ =

∫

µ|∇~u|2 d~x, (2.3)

respectively.

We can then define the action functional A for the incompressible Navier-Stokes
equation with the kinetic energy,

A =

∫ T

0

∫

Ωt

1

2
ρ|~u|2 d~xdt. (2.4)

Here we pull back the current domain, Ωt, to the reference one, Ω0, through the flow
map, ~x( ~X, t). Then the action functional is

A(~x) =

∫ T

0

∫

Ω0

1

2
ρ0( ~X)|~xt|2 d ~Xdt (2.5)
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where ρ0( ~X) = ρ( ~X, t)|t=0 is the initial mass. Then the variation with respect to ~x

(LAP), δA(~x)
δ~x

= 0, gives the Hamiltonian (energy conserved) part under the incom-
pressibility condition, i.e., det(F ) = 1. The resulting equation is the Euler equation
which has the total energy conservation,

~ut + ~u · ∇~u = −∇p
(2.6)

∇ · ~u = 0.

Next, we apply the MDP (variation with respect to function) for the dissipation
in (2.3), δ△

δ~u

∣

∣

ε=0
= 0, then we obtain the Stokes equation,

µ∆~u = ∇p̃
(2.7)

∇ · ~u = 0

where p̃ is a Lagrange multiplier for ∇ · ~u = 0.
Therefore, we have obtained the conservative part and dissipative one in incom-

pressible Navier-Stokes equation (2.1) by the energetic variational approaches, LAP
and MDP, respectively.

3. Energetic Variational Approaches in Complex Fluids. We consider a
complex fluids and show that the system of equations are derived from the energy
viewpoint using LAP and MDP.

There are several kinds of well-known complex fluids [7, 8, 10, 14, 25], for instance,
viscoelastic material fluids with multiscale interactions, liquid crystals which is in the
intermediate state between liquid and solid, magneto-hydrodynamical fluids, electro-
rheological (ER) fluids, and fluid-fluid mixture models. The interaction/coupling
between scales, or fluids, is complicated, but all have an essential feature of complex
fluids. The hydrodynamic systems of complex fluids are all determined through the
competition between kinetic energy and various internal elastic energies. In the mean-
time, the competitions are also reflected in the dissipations. Here we will use the free
interface motion as an example to illustrate the underlying variational structure of
these complicated systems.

We consider an immiscible two-phase flow model in complex fluids [19, 31, 32].
Let φ be a phase function such that φ(~x, t) = ±1 in the incompressible fluids, and
Γt = {x : φ(~x, t) = 0} be the interface of mixture. If we consider the immiscibility of

fluids, then it gives the kinematic condition on Γt, which is ~V ·~n = (~u ·~n)~n where ~V is
the velocity of the interface Γt, and ~u is the fluid velocity. In the Eulerian description,
it implies the pure transport of φ, that is, the phase function φ satisfies

φt + ~u · ∇φ = 0. (3.1)

The following well-known energy, Ginzburg-Landau mixing energy, represents a
competition between two fluids with their (hydro-) philic and (hydro-) phobic prop-
erties:

W (φ,∇φ) =
1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2.

We easily see that the mixing energy functional E = λ
∫

W d~x where λ is a constant
coefficient of the mixing energy is proportional to the area of the interface, Γt, and
the equilibrium profile of interface is tanh-like function as η → 0.

4

Discrete and Continuous Dynamical Systems  (DCDS-A) 
2010  26 (4: April) p. 1291 - 1304 
http://www.ima.umn.edu as IMA Preprint Series #2228. 
 



The total energy is defined by the combination of the kinetic energy and the
internal energy as follows:

Etotal =

∫

Ωt

{

1

2
|~u|2 + λW (φ,∇φ)

}

d~x. (3.2)

The action functional A in terms of the flow map from the total energy (3.2) is

A(~x)=

∫ T

0

∫

Ω0

{

1

2
|~xt|2−λ

(

1

2
|F−1∇ ~X

Fφ0|2+
1

4η2
|(Fφ0)

2−1|2
)}

detF d ~Xdt. (3.3)

Notice that the term, |∇φ|2, carries all information of the configuration which is de-
termined by the deformation, F .

Remark 3.1. The expression in (3.3) includes all the kinematic transport prop-
erty of the internal variable “φ”. With different kinematic transport relations, we
will obtain different action functionals, even though the energies may have the same
expression in the Eulerian coordinate. This is important for dynamics for materials
like liquid crystals [17, 29].

Then the LAP leads us to the following Hamiltonian system:

~ut + ~u · ∇~u + ∇p = −λ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I) (3.4)

∇ · ~u = 0 (3.5)

φt + ~u · ∇φ = 0. (3.6)

Remark 3.2. The above system (3.4) – (3.6) converges to (at least formally) the
“sharp interface model” and its energy equation is

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)}

d~x = 0. (3.7)

It shows that the total energy of the system is conserved. The system is a Hamilto-
nian system. The force, the right hand side of (3.4) is a conservative force with no
dissipation of system.

Now, we consider the diffusive interface approach for immiscible two-phase flow
model. The diffusive interface method is imposed by an additional dissipation term
(relaxation) in the transport equation (3.6). Then we have the Allen-Cahn equation
[5],

φt + ~u · ∇φ = γ

(

∆φ − 1

η2

(

φ2 − 1
)

φ

)

. (3.8)

We also want to include the dissipation in flow field caused by the flow viscosity, µ.
The dissipation in the diffusive interface approach is given by

△ =

∫

(

µ|∇~u|2 + λγ

∣

∣

∣

∣

∆φ − 1

η2
(φ2 − 1)φ

∣

∣

∣

∣

2
)

d~x. (3.9)
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The phase dissipation which is the second term in (3.9) is not in the form of the
quadratic of the “rate” functions [22, 23, 24]. Using the equation (3.8) we can ma-
nipulate the dissipation (3.9) in terms of a rate in time.

△ =

∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x. (3.10)

Then the variational principle (MDP), which is known as Onsarger’s principle

[22, 23, 24], δ△
δ~u

∣

∣

∣

ε=0
= 0 with incompressibility of flow, ∇ · ~u = 0, is employed to

obtain a dissipative force.

δ△
δ~u

∣

∣

∣

∣

ε=0

= 2

∫
{

µ(∇~u + ε∇~v) : ∇~v +
λ

γ
(φt + (~u + ε~v) · ∇φ)~v · ∇φ

}

d~x

∣

∣

∣

∣

ε=0

= 2

∫
{

µ∇~u : ∇~v +
λ

γ
(φt + ~u · ∇φ)∇φ · ~v

}

d~x (3.11)

= −2

∫
{

µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ

}

· ~v d~x = 0.

From the above resulting equation in (3.11) we obtain the following system with
dissipative force:

µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ = ∇p̃ (3.12)

∇ · ~u = 0 (3.13)

φt + ~u · ∇φ = γ

(

∆φ − 1

η2
(φ2 − 1)φ

)

. (3.14)

The system (3.12)–(3.14) satisfies the following energy law:

d

dt

∫

λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)

d~x = −
∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x. (3.15)

Combine the systems, (3.4)–(3.6) and (3.12)–(3.14) obtained by LAP and MDP,
respectively, we have the following system for the two-phase flow model:

~ut + ~u · ∇~u + ∇p = µ∆~u − λ

γ
(φt + ~u · ∇φ)∇φ (3.16)

∇ · ~u = 0 (3.17)

φt + ~u · ∇φ = γ

(

∆φ − 1

η2
(φ2 − 1)φ

)

. (3.18)

The most amazing fact from the above derivation is the dissipation force from MDP
in (3.12). The dissipative term, −λ

γ
(φt + ~u · ∇φ)∇φ in (3.12), is exactly same as the

conservative term, ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I) from LAP in (3.4).
Moreover, as η → 0, this is exactly the surface tension force on the interface [31].

This system (3.16)–(3.18) satisfies the dissipative energy law.

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 +

1

4η2
(φ2 − 1)2

)}

d~x

(3.19)

= −
∫
(

µ|∇~u|2 +
λ

γ
|φt + ~u · ∇φ|2

)

d~x.
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This procedure using the energetic variation, especially, MDP sometimes gives advan-
tage in designing numerical algorithms. If the dissipative force in (3.16) is substituted
by the conservative force in (3.4), then the following equation is obtained

~ut + ~u · ∇~u + ∇p = µ∆~u − λ∇ · (∇φ ⊗∇φ − W (φ,∇φ)I). (3.16′)

Moreover, the system (3.16′), (3.17), (3.18), satisfies the following energy law:

d

dt

∫
{

1

2
|~u|2 + λ

(

1

2
|∇φ|2 + f(φ)

)}

d~x=−
∫

(

µ|∇~u|2 + λγ|∆φ − f ′(φ)|2
)

d~x (3.20)

where f(φ) = 1
4η2 (φ2 − 1)2. Since in derivation of the energy (3.20), the equation

(3.18) is multiplied by ∆φ − 1
η2 (φ2 − 1)φ, a numerical algorithm to solve (3.16′),

(3.17), (3.18), requires a high order approximation for the phase field solution to pre-
serving the energy (3.20). On the other hand, to derive the energy (3.19) we multiply
φt + ~u · ∇φ, thus, in solving the system (3.16)–(3.18) a numerical algorithm can be
implemented in a low order approximation for φ to preserve the energy (3.19).

Remark 3.3. It may be strange that in the equation (3.16)–(3.18) the surface
tension can be viewed as a dissipative force. In fact, this is due to the relaxation of
the φ equation. To see this let’s look at the simple viscoelastic fluids. For instance,
we consider an incompressible viscoelastic complex fluid model with the elastic energy,
W (F ) = |F |2 [18]. Then the energy equation is given by

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x = −
∫

µ|∇~u|2 d~x. (3.21)

The following system of equations satisfies the energy law (3.21):

~ut + ~u · ∇~u + ∇p = µ∆~u + ∇ ·
(

WF F−T
)

(3.22)

∇ · ~u = 0 (3.23)

Ft + ~u · ∇F = ∇~uF (3.24)

with det(F ) = 1. The dissipation in (3.21) does not include the rate functions in
terms of F . The force WF F−T is only a conservative force. The MDP can be applied
only on ~u variable to obtain the viscosity term, ∆~u. If we add an artificial term ∆F

like in viscosity method for hyperbolic system into (3.24) without further discussion
of the physical meaning on this artificial “viscosity” term (as an approximation of the
original equation (3.24)), then the resulting equation is

Ft + ~u · ∇F = ∇~uF + ε2∆F. (3.24′)

Now, we can apply the MDP for the system (3.22),(3.23), (3.24′).
Moreover, the system (3.22), (3.23), (3.24′), satisfies the following energy equa-

tion:

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x = −
∫

(

µ|∇~u|2 + ε2|∇F |2
)

d~x. (3.25)

The extra dissipation on F in (3.25) can be written from (3.24′) in terms of a “rate”
function, using the Riesz transformation, R which is defined by

R[g](~x) = cn

∫

(~x − ~y)

|~x − ~y|n g(~y) d~y
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where n > 2 is the space dimension, and cn is a constant depended on n [28]. Then
the resulting energy equation is

d

dt

∫
(

1

2
|~u|2 +

1

2
|F |2

)

d~x= −
∫

(

µ|∇~u|2 + ε2
R[Ft + ~u · ∇F −∇~uF ]2

)

d~x.(3.26)

and WF F−T can also be derived from MDP.
In the next section, we present numerical experiments, and discuss its results as a

verification for the system (3.16)–(3.18) driven by the energetic variational approach.

4. Numerical Simulations. The numerical experiments for two-phase flow
problem (3.16)–(3.18) modeled by diffusive interface approach are carried out us-
ing finite element methods [4, 6, 11]. We discuss algorithms to solve the problem
(3.16)–(3.18) and its numerical results. We here emphasize again that if the system
(3.16′), (3.17), (3.18), is employed to solve two-phase flow problem then the finite
element space for the phase field φ, has to have at least H2-regularity, for instance,
P2 finite element space, usually, or at least biquadratic element space, to preserve the
dissipative energy law (3.20) [20, 21]. Here Pk means the space of polynomials up to
order k. But high order (k > 1) finite element spaces incur expensive computational
costs. Meanwhile, the energy law (3.19) for the system (3.16)–(3.18) allows us to em-
ploy a lower order finite element space, for instance, P1 element for the phase solution
φ.

In numerical simulations the finite element spaces and mesh generations are im-
plemented by the FreeFem++ [12]. In discretization, the superscript n means the
time step, and the subscript h is used for the discrete space variable. The following
finite element spaces for the finite dimensional solution pair (~uh, ph, φh) are used to
solve (3.16)–(3.18):

~uh ∈ Vh = (P1 ⊕ bubble)2 (4.1)

ph ∈ Wh = P1 (4.2)

φh ∈ Qh = P1, (4.3)

where the bubble function is the basis function which is zero at all nodal points and
has an nonzero interior degree of freedom at center point in each element.

The computational domain is the unit square. The initial velocity field is ~u0 = 0,
and the initial phase φ0 is given by

φ0(x, y) = tanh

(

d1(x, y)√
2η

)

+ tanh

(

d2(x, y)√
2η

)

− 1.0, (4.4)

where d1, d2 are the distance functions from the circle centered at (0.38, 0.5) radius
r = 0.11 and at (0.62, 0.5) radius r = 0.11, respectively. The explicit forms of d1 and
d2 are given as follows:

d1(x, y) =
√

(x − 0.38)2 + (y − 0.5)2 − 0.11,

d2(x, y) =
√

(x − 0.62)2 + (y − 0.5)2 − 0.11.

We can easily see the fact that the initial value (4.4) is an approximation of the
following phase field:

φ0 =

{

−1, inside region of circles

1, outside region of circles.
(4.5)
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Remark 4.1. Since the system (3.16)–(3.18) is a highly nonlinear system of
equations consisting of incompressible Navier-Stokes equation with the stress term and
Allen-Cahn equation, there are quite a few approximation schemes to solve the system,
for instance, the characteristic Galerkin finite element method for the approximation
of the convection term in Navier-Stokes equation gives

~ut + (~u · ∇)~u ≈ ~un+1
h − ~un

h(~x − ~un
h∆t)

∆t
. (4.6)

This approximation scheme gives a quadratic convergence order [5, 9, 26]. Also one
might consider the stabilized semi-implicit scheme for Allen-Cahn equation (3.18) [19].
But the approximation (4.6) for the convection term sometimes breaks the dissipative
energy law. In fact, when we used the approximation (4.6) for the numerical experi-
ments, we observed that the dissipative law of the total energy is violated during the
simulations, especially, in the beginning stage of the time.

To preserve the finite dimensional dissipative energy law analogous to (3.19) an
explicit-implicit second order temporal discretization algorithm is employed for nu-
merical experiments [16, 17]. The variational formulation for the solution (~un+1

h , pn+1
h ,

φn+1
h ) using the explicit-implicit scheme is given as follows:

(~̃un+1
h,t , ~vh) +

((

3~un
h − ~un−1

h

2
· ∇
)

~u
n+1

2

h , ~vh

)

+

(

1

2

(

∇ · 3~un
h − ~un−1

h

2

)

~u
n+1

2

h , ~vh

)

−(p
n+1

2

h ,∇ · ~vh) = −(µ∇~u
n+1

2

h ,∇~vh) − λ

γ

(

φ̃n+1
h,t ∇

(

3φn
h − φn−1

h

2

)

, ~vh

)

(4.7)

−λ

γ

(

~u
n+1

2

h ,∇
(

3φn
h − φn−1

h

2

))(

∇
(

3φn
h − φn−1

h

2

)

, ~vh

)

for all ~vh ∈ Vh,

(∇ · ~u
n+1

2

h , wh) = 0 for all wh ∈ Wh, (4.8)

(φ̃n+1
h,t , qh) +

(

~u
n+1

2

h ,

(

3φn
h − φn−1

h

2

)

qh

)

(4.9)
= −γ

(

∇φ
n+1

2

h ,∇qh

)

− γ

η2
(fh(φn

h , φn+1
h ), qh) for all qh ∈ Qh

where

fh(φn
h , φn+1

h ) =

{

(|φn+1
h |2 − 1) + (|φn

h |2 − 1)

2

}

φ
n+1

2

h ,

~̃un+1
h,t =

~un+1
h − ~un

h

∆t
, ~u

n+1

2

h =
~un+1

h + ~un
h

2
, φ̃n+1

h,t =
φn+1

h − φn
h

∆t
, φ

n+1

2

h =
φn+1

h + φn
h

2
,

(·, ·) is the inner product operator, and ∆t is the time step for simulations. Here we
employ the penalty method for Navier-Stokes equation [30, 11, 4]. Then the equation
(4.8) is replaced by

(

∇ · ~u
n+1

2

h , wh

)

+ ε
(

p
n+1

2

h , wh

)

= 0 for all wh ∈ Wh (4.8′)

where ε is a small positive constant, 0 < ε << 1. In numerical simulations, we usually
take ε = 10−6. Then the variational problem, (4.7), (4.8′), (4.9) satisfies the following
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finite dimensional dissipative energy law:

[
∫
{

1

2
|~un+1

h |2 + λ

(

1

2
|∇φn+1

h |2 +
1

4η2
|φn+1

h

2 − 1|2
)}

d~x

]

h,t
(4.10)

= −
∫

{

µ|∇~un+1
h |2 + ε|φ

n+1

2

h |2 +
λ

γ

∣

∣

∣

∣

φ̃n+1
h,t +

(

~u
n+1

2

h · ∇
)

(

3φn
h − φn−1

h

2

)∣

∣

∣

∣

2
}

d~x.

One can find a detailed discussion on explicit-implicit second order temporal dis-
cretization algorithm and other numerical schemes for the liquid crystal problems in
[16, 17, 20, 21].

We want to point out that it is difficult/challeging to obtain the optimal order
error estimate of the variational problem (4.7), (4.8′), (4.9). In [16, 17] related to
the explicit-implicit scheme, the authors present the convergence estimate for the
explicit-implicit scheme in fixed point nonlinear iteration under the certain condition.

Throughout the numerical experiments, the Ginzburg-Landau energy coefficient λ

is set by 10−4, the dissipation coefficient γ by 10−2, and the thickness η of the diffusive
interface region by 10−2. The resulting linear system was solved by the direct solver
using Crout decomposition, which is efficiently implemented by FreeFem++ package
[12]. The numerical results of time evolution for the phase field (contour) and the
velocity field (vector) in variational problem (4.7), (4.8′), (4.9) are presented in Figure
4.1 through the contour plots at time, t = 0.0, 0.1, 0.2, 0.4, 0.7, 1.0, and the total
energy (left) and the kinetic energy (right) in Figure 4.2. These numerical results
demonstrate that the lower order finite element space for phase field satisfactorily
works to catch the merging phenomena of two-phase flow model with the system
(3.16)–(3.18). The left picture in Figure 4.2 shows the total energy dissipation. The
elastic internal energy is dominant throughout the simulation, that is, the kinetic
energy is very small. The right picture in Figure 4.2 shows the evolution of kinetic
energy. The kinetic energy is increasing until time t = 0.1 and then it is decreasing
because the flow fields effect induced by the motion by mean-curvature is stronger in
the beginning than in other time, that is, the motion by mean-curvature decreases as
the interface becomes smooth. After the merging region of interface becomes flat, the
kinetic energy increases very slightly until t = 0.9 and then rapidly vanishes.

The next simulation is set by the following initial conditions:

~u0 = 0, φ0 = tanh

(

d1(x, y)√
2η

)

+ tanh

(

d2(x, y)√
2η

)

− 1.0 (4.11)

with

d1(x, y) =
√

(x − 0.38)2 + (y − 0.38)2 − 0.22,

d2(x, y) =
√

(x − 0.70)2 + (y − 0.70)2 − 0.08.

The results of interface evolution with the flow field induced by surface tension
of the interface are presented in Figure 4.3, and its total energy (left) and kinetic
energy (right) in Figure 4.4. Figure 4.3 also shows the behavior of interfaces. The
interface in the shape of small circle is dissipated faster than that of large circle. In
the simulation, the mixing energy dissipation shows a dominant behavior similar to
the previous merging effect case. We also observe that at the vanishing time, around
t = 0.25 of the small interface, the total energy is rapidly decreasing because its
interface is vanishing, dramatically.
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Phases and Velocity Field at Time =0
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Fig. 4.1. The time evolution results (merging effect) of phase field and velocity field from
left to right and top to bottom (t = 0.0, 0.1, 0.2, 0.4, 0.7, 1.0 and ∆t = 0.001).

5. Conclusion. We employed the energetic variational approaches in hydrody-
namic system of complex fluids to derive the hydrodynamic forces, conservative force,
dissipative force. The Hamiltonian part (the hydrodynamic conservative force) of sys-
tem is derived from the energy law by LAP, and the dissipative part by MDP. One
important thing in MDP (Onsager’s principle) in the energetic variational approaches
is whether the dissipation functional includes the “rate” functions in time t of all
“variables”. If this is the case, then the conservative force in hydrodynamic system is
consistent with the dissipative force. As presented in this paper, this procedure, MDP
plays an important role in designing numerical algorithms to solve the hydrodynamic
complex fluid problem. Through MDP, a system of equations can be reformulated
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Fig. 4.2. The total energy dissipation (left) and the kinetic energy (right) of merging
phenomena in two-phase interface model.
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Fig. 4.3. The time evolution results of phase field and velocity field from left to right and
top to bottom (t = 0.0, 0.2, 0.4, 2.0 and ∆t = 0.001).

to employ a numerical algorithm with lower order element to solve a complex fluid
problem, and still preserve the dissipation energy law.

Finally, we want to point out that the system derived by MDP does give rise to
a different challenge in numerical analysis. An additional time derivative term and
convection terms in hydrodynamic force have appeared in the system of equations.
It is important (difficult) to obtain an error estimate of optimal order for the finite
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Fig. 4.4. The total energy dissipation (left) and the kinetic energy (right) of vanishing
phenomena in two-phase interface model.

element method. One of our next objectives in this area is to find other discretization
schemes to solve the system and prove the optimal order of convergence.
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