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1 PREFACE

Complex fluids such as polymeric solutions, liquid crystal solutions, pul-
monary surfactant solutions, electro-rheological fluids, magneto-rheological
fluids and blood suspensions exhibit many intricate rheological and hydrody-
namic features that are very important to biological and industrial processes.
Applications include the treatment of airway closure disease by surfactant
injection; polymer additive to jets in inkjet printers, fuel injection, fire ex-
tinguishers; magneto-rheological damping of structural vibrations etc. The
segregation, migration and aggregation of the particles and the stretching,
coiling and entanglement of the molecules in the complex fluids that endows
them with the unique rheological and hydrodynamic properties required for
specific biological, physiological and industrial needs. One good example is
the migration of blood cells in arteries towards the center axis (the Fahreus-
Lynquist effect). This segregation leaves a low viscosity plasma marginal
layer that helps reduces the overall resistance to blood flow. This com-
plex physiological rheology has important implications in blood pressure,
clotting, plaque formation and other cardiovascular diseases. An impor-
tant goal of the large and multi-disciplinary field of fluid mechanics is to
derive continuum partial differential equations (field equations) to describe
the rheology of these various fluids and to solve these equations to explain
and predict their macroscopic behavior.

The most common origin and manifestation of anomalous phenomena
in complex fluids are different “elastic” effects. They can be the elasticity
of deformable particles, elastic repulsion between charged liquid crystals,
polarized colloids or multi-component phases, elasticity due to microstruc-
tures, or bulk elasticity endowed by polymer molecules in viscoelastic com-
plex fluids. The physical properties are purely determined by the inter-
play of entropic and structural intermolecular elastic forces and interfacial
interactions. These elastic effects can be represented in terms of certain
internal variables, for example, the orientational order parameter in liquid
crystals (related to their microstructures), the distribution density func-
tion in the dumb-bell model for polymeric materials, the magnetic field in
magneto-hydrodynamic fluids, the volume fraction in mixture of different
materials etc. The different rheological and hydrodynamic properties can
be attributed to the special coupling between the transport of the internal
variable and the induced elastic stress. In our energetic formulation, this
represents a competition between the kinetic energy and the elastic energy.
We look at the following system (a simplified Ericksen-Leslie system mod-
eling the flow of nematic liquid crystals) as an example for such complex
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fluids:

ut + (u · ∇)u+∇p− ν∆u+ λ∇ · (∇d�∇d) = 0, (1.1)
dt + (u · ∇)d− γ(∆d− f(d)) = 0, (1.2)

with ∇ · u = 0, where u represents the flow velocity, p the pressure, d repre-
sents the normed director, f(d) = F ′(d) where F (d) is the bulk part of the
elastic energy. It is the coupling between the transport of d (material deriva-
tive here) and the induced elastic stress (∇d�∇d)ij =

∑n
k=1(∇idk)(∇jdk)

that yields the following energy law, which presents the dissipative nature
of the system:

1
2
d

dt

∫
Ω

(|u|2 + λ|∇d|2 + 2λF (d))dx = −
∫

Ω
(ν|∇u|2 + λγ|∆d− f(d)|2)dx.

(1.3)
On the other hand, the force balance (momentum) equation can be derived
by the Least Action Principle, using the total energy functional and the way
the internal variable d is transported. The competition between kinetic and
elastic energy also produces the specific properties of the system, such as the
stability and regularity of the hydrostatic configurations. When applied to
micro-particles or molecules, the elastic energy determines the microstruc-
tures formation and how they interact with the fluid. The understanding of
such underlying structures is also crucial in designing the accurate numeri-
cal algorithms in order to simulate the system, especially when the solutions
involve singularities.

Most complex fluid behavior results from the multi-scale properties of the
fluid material at the micro-structure scales. Hence, understanding complex
fluid rheology and hydrodynamics must necessarily begin at the molecu-
lar and particulate level. The Fokker-Planck, Ginzburg-Landau or Liouville
type statistical equations describing the nanoscale molecular dynamics or the
microscale particulate dynamics are used to obtain rheological constitutive
equations through least action principles, as have been done for viscoelastic
polymeric fluids and liquid crystal solutions. The systems will satisfy the
energy law (Second Law of Thermodynamics). The resulting partial differ-
ential equation system will involve multiple scales. In order to obtain the
effective continuum equations at the macroscopic scale, mean field theories
are often invoked to obtain closure in such field theoretic approaches. When
these constitutive equations are inserted back into the Cauchy equation for
force balance, the desired partial differential equation results.

The Navier-Stokes equation is the simplest of these, and fortunately, it
does obey an energy law. On the other hand, the dumbbell model equa-
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tion for polymeric materials loses the energy law after closure, even for the
simplest Hookean case. Recently, more and more studies show that this clas-
sical approach is inadequate due to several deficiencies. Pertinent physics at
the particulate and molecular level remains elusive for many complex fluids.
For example, blood cell segregation shown in figure 1 has been attributed to
particle deformation, inertia, asymmetry and a host of other origins. Even
when the physics are known, some microscale phenomena remain unexplored
due to mathematical and/or numerical difficulties. For example, defects in
the liquid crystal have been shown to produce bulk flow due to the elastic
pressure gradient they generate. The resulting flow can also destroy the
defects and hence change the bulk rheology.

In this lecture note, we intend to introduce some of the mathematical
tools, modeling, analysis and numerics, that are useful in studying these
important and complicated materials. The brief description of the contents
will suffice to show that this note is in no sense a systematic study of the
broad area of complex fluids. Many important topics are not touched at all
here. We hope this will just serve as an introduction and some reference for
the students who will become interested in these fascinating subjects.

2 Calculus of Variations

We begin the short course by reviewing some basic mathematical tools in
the theory of calculus of variations. All the materials can be found in the
following references [33, 34, 90].

• L. C. Evans. Partial Differential Equations. AMS, 1998.

• L. C. Evans. Weak Convergence Methods for Nonlinear Partial Dif-
ferential Equations. AMS, 1990.

• M. Struwe. Variational Methods. Spring-Verleg, 1990.

2.1 Euler-Lagrange equations.

For a given a Banach space A and a functional

E : A −→ D, (2.1)

the Euler-Lagrange equation is defined as:

DE(u) = 0, (2.2)
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where DE : A→ A∗ is the Frechet derivative defined by

d

dε
|ε=0E(u+ εv) = (DE(u), v) = 0. (2.3)

Example. For a functional W (u,∇u), the corresponding Euler-Lagrange
equation will be

−∇ · ∂W
∂∇u

+
∂W

∂u
= 0, (2.4)

which in the weak form will be

(
∂W

∂∇u
, nablav) + (

∂W

∂u
, v) = 0, (2.5)

for any test function v.

2.2 Direct methods

The following basic concepts are crucial for the direct method of calculus of
variation:

• Lower semicontinuous: {u ∈ A|W (u) > a} is open in A.

• Sequentially weak lower semicontinuous: If un → u weakly in A, then

W (u) ≤ lim inf
n→∞

W (un). (2.6)

• Coercivity: If |un|A →∞, then W (u)→∞.

With these concepts, we can state the following theorem.

Theorem 1 If A is a reflxive Banach space. W is a nonnegative functional
and is both coercive and lower semiconinuous, then W attains its infinimun
in A.

Proof. See Evan’s or Struwe’s book.
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2.3 Convexity

Given a functional W (x, u,∇u), it is convex if W∇iu∇ju(x, u,∇u) is non-
negative when u is a minimizer.

Theorem 2 If W is bounded below, convex in ∇u. Then W is weakly lower
semicontinuous.

Proposition 1 If W is coercive and convex, then there exists at least one
minimizer.

Theorem 3 (Uniqueness) If W is strictly convex, then the minimizer is
unique.

Example. Given u ∈W 1,q(Ω) and

|W (x, z, p) ≤ c(|p|q + |z|q + 1) (2.7)

|∇pW |, |∇zW | ≤ c(|p|q−1 + |z|q−1 + 1), (2.8)

the weak solution of Euler-Lagrange equation is

• The minimizer satisfies the Euler-Lagrange equation.

• Coercivity: W (x, z, p) ≥ α|p|q − β.

• Convexity in p gives the existence of minimizer.

2.4 Dynamics

The gradient flow (fastest decent): In the case when only the long time
behavior of the solution are important, the gradient flow will determine the
properties of the solution. Moreover, the gradient flow also gives a method
to achieve the stationary solution of the Euler-Lagrange equations.

ut = −γ δW
δu

, (2.9)

where γ represents the relaxation time. The solution of the above equation
(with either Dirichlet or natural boundary conditions) satisfies the following
dissipative law:

d

dt

∫
Ω
W dx = −1

γ

∫
Ω
|ut|2 dx. (2.10)
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Remark 1 (Long time behavior) For time t→∞. From Fubini’s Theorem,
there exists a subsequence ti such that ut(·, ti)→ 0 and

δW

δu
→ 0, (2.11)

hence u(·, ti) approaches to a stationary solution.

Damped wave equation.

εutt + ut = −γ δW
δu

, (2.12)

The energy law becomes

d

dt

∫
Ω
γW +

ε

2
|ut|2 dx = −

∫
Ω
|ut|2 dx. (2.13)

It is from this energy law that we can see the long time behavior of the
solution are determined by the gradient flow.

2.5 Hamilton’s Principle

Hamilton’s Principle, which is also referred to as Principle of virtual work or
the Least Action Principle, are the most fundamental principle in mechanics.
In fact, it gives the momentum equations — the force balance equations.

The material presented here can be founded in the following classical
references [3, 1, 74]:

• V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-
Verlag, 1978.

• R. Abraham and J. E. Marsden. Fundations of Mechanics. Springer-
Verlag, 1978.

• J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Sym-
metry. Springer-Verlag, 1999.
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2.5.1 Flow map and deformation tensor

The evolution of all materials involves the following basic mechanical con-
cepts:

• Lagrangian coordinate (original labelling): X.

Eulerian coordinate (observer’s coordinate): x.

• Flow map (trajectory): x(X, t) such that

xt = u(x(X, t), t), x(X, 0) = X, (2.14)

where u(x, t is the velocity field.

Remark 2 If u is Lip in x then the flow map is uniquely determined.

• Deformation: Fij(X, t) = ∂xi
∂Xj

.

Without ambiguity, we can define F (x(X, t), t) = F (X, t). The simple
application of the Chain Rule gives the following important transport
equation of F :

Ft + u · ∇F = ∇uF. (2.15)

• Each of the following equivalent statements will represent the incom-
pressibility of the material.

1. detF = 1;

2. div u = 0 (from the identity δdetF = detF tr (F−1δF ).

3. ∇ · Ft + (u · ∇)(∇ · F ) = 0.

2.5.2 Variation of the domain v.s. variation of the function

Given an energy functional W (φ,∇φ), depending on some variable φ, in
order to find the critical point, we can employ each of the following two
methods:

• Euler-Lagrange equation (variation with respect to φ): δW
δφ = 0, which

is expressed in the weak form as
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(
∂W

∂∇φ
,∇ψ) + (

∂W

∂φ
, ψ) = 0, (2.16)

for any test function ψ.

We note that the usual energy estimates are derived by setting ψ = φ.

• Variation with respect to domain: δW
δx = 0, and the result can be

expressed in the weak form as

(
∂W

∂∇φ
⊗∇φ−WI,∇y) = 0, (2.17)

for any test function y.

The formal equivalency of the two procedure is reflected in the following
theorem.

Theorem 4 Given an energy functional W (φ,∇φ), all solutions of the Euler-
Lagrangian equation:

−∇ · ∂W
∂∇φ

+
∂W

∇φ
= 0

also satisfy the equation

∇ · ( ∂W
∂∇φ

⊗∇φ−WI) = 0.

The proof of the theorem is the consequences of direct computations.
From this theorem, we can immediately make the following remarks:

• Pohozaev inequality: set y = x (same as multiply Euler-Lagrange
equation by x · ∇φ). This extra inequality is very important in the
study of semilinear elliptic equations [90, 34].

• The variation of the domain require more regularity than that of the
normal weak solutions of the Euler-Lagrange equations. This is in
connection of the stationary weak solution for harmonic maps [86].
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2.5.3 Least action principle

The force balance equation (momentum conservation law) is the state such
that the flow map minimizes the action functional:

A(x) =
∫ T

0

∫
Ω0

(
1
2
ρ|u|2 −W (φ(x))detF dXdt. (2.18)

Here W (φ is the elastic internal energy, q
2ρ|u|

2 is the kinetic energy.

2.6 Constraint problems

Most physical problems involve finding the minimizers (critical points) in
a constraint class of functions. The method of Lagrange multiplier is the
basic tool for such a problem. However, this brings some extra difficulties
and we will illustrate this using the following examples.

2.6.1 Harmonic maps

This is a simpl, but most classical example that can illustrate the role of
constraint in the calculus of variations and the difficulties associated with it
[86, 85, 5, 9, 44, 61].

For any function u : Ω → B1(0) with target space the unit sphere, we
want to find the minimize the following Dirichlet energy:

W (u) =
∫

Ω

1
2
|∇u|2 dx, (2.19)

with Dirichlet boundary condition:

u|∂Ω = u0. (2.20)

The Euler-Lagrange equation will be:

−∆u = λ(x)u, (2.21)

where the Lagrange multiplier λ(x) = |∇u|2 (with the help of the identity
∆uu = ∆ |u|

2

2 −|∇u|
2). Notice the difficulty of high nonlinearity on the right

hand side of the equation. Moreover, the right hand side does posses the
property of being a form of total derivation (like a Jacobian). Using this,
Helein obtained the regularity in 2-dimensional cases [90].
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2.6.2 Liquid crystals

For the uniaxial nematic liquid crystal materials, the bulk energy density in
Ericksen’s model are assumed to depend on the orientation vector (optical
director) n, with |n| = 1, and the orientational order s ∈ [−1

2 , 1]. Again we
do not consider the effects due to surface energies, applied fields etc. The
energy is given by

0 ≤ w(s, n,∇s,∇n) ≡ w0(s) + w2(s, n,∇s,∇n). (2.22)

Here the behavior of w0(s) is the bulk part of the energy.
The case s = 1 corresponding to the property that each molecules is

perfectly aligned, and the case s = −1
2 means all molecules are lie in a plane

perpendicular to the optical axis. Both situations are physically unrealistic
and therefore we can have

w0(−1
2

) = w0(1) = +∞. (2.23)

The term w2 takes the form:

2w2 = k1| div n|2 + k2|n · curl n|2 + k3|n ∧ curl n|2 (2.24)

+(k2 + k4)[tr (∇n)2 − (div n)2] + L1|∇s|2 + L2(∇s · n)2 (2.25)

+L3(∇s · n)div n+ L4∇s · (∇n)n. (2.26)

where k′s and L′s are functions of s as well as the temperature θ.
With the help of the following identity

div (f [(∇n)n− (div n)n]) = f [tr (∇n)2 − (div n)2]
+∇f · [(∇n)n− ( div n)n]

(2.27)

2W2 = K1( div n)2 +K2|n · curl n|2 +K3|n ∧ curl n|2
+(K2 +K4)[tr (∇n)2 − ( div n)2]
+K5|∇s− (∇s · n)n− ν(∇n)n|2
+K6(∇s · n− σ div n)2

(2.28)

where
K1 = K1 − σ2K6 = K1 −

L2
3

4(L1+L2)

K3 = K3 − ν2K5 = K3 −
L2

4
4L1

K5 = L1, K6 = L1 + L2

ν = − L4
2L1

, σ = − L3
2(L1+L2) .

(2.29)
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The size of various constants are characterized below.

K1 > 0, K2 > |K4|, K3 > 0,
K5 > 0, K6 > 0, for s 6= 0.
σ, ν ∼= 0(s), K1,K2,K3,K4

∼= 0(s2)
K6
∼= 0(s)

(2.30)

The simplest form of the bulk energy density is

w0(s) + k|∇s|2 + s2|∇n|2 (2.31)

Here one has K1 = K3 = s2 , K4 = L2 = L3 = L4 = 0, and L1 = k. We
shall see later this form of energy functional is closely related to the energy
functional of maps from a domain in R3 to a circular cone in RI 4 or RI 3,1 the
Minkowski space (cf. also [L3]).

The classical Oseen-Frank model can be derived from the Ericksen’s
model by imposing the additional constraint on the orientational order, s =
s∗.

We note that the simplest form of such energy densities is 2w = |∇n|2.
This corresponds to the case k1 = k2 = k3 = 1 and k4 = q = 0. The
corresponding mathematical problem is to study harmonic maps from a
domain to S2 or RP 2.

Strong Anchoring Condition. When the surface of a container of liquid
crystals is specially treated, the orientation of the liquid crystals molecules
near the surface of container will aligned with the treatment and hence can
be specified. This is usually referred to as the strong anchoring condition.
Mathematically we can describe it as following Dirichlet boundary value
problem.

2.6.3 Methods of penalty

We will just look at the harmonic problem. In order to avoid the nonlinearity
in the problem, we will introduce the following approximate problem [18, 91]:

min
u∈H1(R3)

∫
Ω

1
2
|∇u|2 +

1
4ε2

(|u|2 − 1)2 dx. (2.32)

The above functional is also called the Ginzburg-Landau functional,
which arises from the theory of superconductivity [23, 6, 26].
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We can see, as ε → 0, u will convergent to a unit vector. The Euler-
Lagrange equation of the approximate problem is:

−∆u+
1
ε2

(|u|2 − 1)u = 0. (2.33)

For each fixed ε, the solution is smooth. As ε approaches zero, the
solution of the Ginzburg-Landau equation will convergence (weakly) to a
solution of the harmonic map [91].

Finally, we will discuss a new type of relaxation that was discussed with
M. Chipot and D. Kinderlehrer [19].

We will study the following minimization problem under relaxed con-
straint:

min
u∈Aε

E(u), (2.34)

where Aε = {v ∈ H1(Ω), v|∂Ω = g(x),
∫

Ω(|u|2 − 1)2 dx ≤ ε2}. Notice, the
relaxation is in the constraint, rather in the energy functional itself.

Lemma 1 If uε is a minimizer of the problem (2.34), then∫
Ω

(|uε|2 − 1)2 dx = ε2. (2.35)

Proof We will prove this lemma is by contradiction. If the statement is
false, that is, ∫

Ω
(|uε|2 − 1)2 dx < ε2, (2.36)

Then for variations δφ of small δ, we have uε+δφ ∈ Aε. Hence we have that
uε will satisfies the Euler-Lagrange equation

−∆uε = 0, (2.37)

with boundary condition g(x). So we get uε = û which is independent to
ε.
∫

Ω(|uε|2 − 1)2 dx =
∫

Ω(|û|2 − 1)2 dx > ε for ε sufficiently small, we get
contradiction.

The following lemma is obvious from the definitions.

Lemma 2
min
u∈Aε

E(u) ≤ min
|u|=1

E(u) = M (2.38)

where M is a constant independent to ε.
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Proof Notice here we have min|u|=1E(u) = minu∈A0 E(u) and lemma fol-
lows immediately.

From the lemma we see that if uε is the minimizer of the problem (2.34)
for each ε, the they all satisfy the following equations:

−∆uε = λε(|uε|2 − 1)uε, (2.39)

with boundary condition
uε|∂Ω = g(x), (2.40)

and the uniform bound ∫
Ω
|∇uε|2 dx ≤M. (2.41)

Pass to the limit of ε→ 0, we have (up to a subsequence) that uε → u∗

weakly in H1(Ω), strongly in L2(Ω) and almost everywhere in Ω.
One takes the cross product of the equation (2.39) by uε to get

∇ · (∇uε × uε) = 0, (2.42)

Pass to the limit in the weak formulation, we can get that

∇ · (∇u∗ × u∗) = 0. (2.43)

On the other hand, since we have∫
Ω

(|uε|2 − 1)2 dx→ 0, (2.44)

By Fatou’s lemma,
|u∗| = 1. (2.45)

We will have the following main theorem:

Theorem 5 u∗ satisfies the harmonic map equation:

−∆u∗ = |∇u∗|2u∗, (2.46)

Proof To prove the theorem, we use (2.43) and get that:

∆u∗ × u∗ = ∇ · (∇u∗ × u∗) = 0. (2.47)
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This mean that ∆u∗ is parallel to u∗. In a weak form, we see that, for any
v ∈ Hq0(Ω), v − (v · u∗)u∗ is perpendicular to u∗. Then (2.47) is equivalent
to ∫

Ω
∇u∗∇(v − (v · u∗)u∗) dx = 0.

The left hand side is equal to∫
Ω
∇u∗∇v − |∇u∗|2v · u∗ −∇(v · u∗)u∗ · ∇u∗ dx.

The last term is equal to 0 since u∗ is unit length.∫
Ω
∇u∗∇v − |∇u∗|2v · u∗ dx = 0.

which is exactly the weak form of (2.46).
The cross product method in proving the convergence of the sequence

was well know in the studying of the harmonic maps with target space being
a sphere [91].

Finally, the following lemma gives more detailed information of the La-
grange multiplier λε in the equation (2.39).

Lemma 3 Suppose that Ω is strictly star-shaped with respect to 0 and the
boundary ∂Ω is C1. If λε is the Lagrange multiplier as in (2.39), then

M1 ≤ −λεε2 ≤M2, (2.48)

where Mi are the constants independent of ε.

Proof We use the Pohozaev type of argument. Let Ωh, 0 ≤ h ≤ h0, be the
star-shaped domain that are closed to the original domain. h is the distance
between the boundaries. The existence of these neighbouring domains can
be adjustified by the smoothness of the domain. We multiplier the equation
(2.39) by (x · ∇)uε and integrate over the domain Ωh:

−
∫

Ωh

(∆uε) · (x · ∇)uε dx =
∫

Ωh

λε(|uε|2 − 1)uε · (x · ∇)uε dx. (2.49)

The right hand side is equal to:∫
Ωh

λε(|uε|2 − 1)uε · (x · ∇)uε dx =
λε
4

∫
Ωh

(x · ∇)(|uε|2 − 1)2 dx (2.50)

=
dλε
4

∫
Ωh

(|uε|2 − 1)2 dx =
dλε
4
ε2.
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The last equality uses the integration by parts and the constraint (2.35).
On the other hand, the left hand side is equal to:

−
∫

Ωh

(∆uε) · (x · ∇)uε dx (2.51)

=
(2− d)

2

∫
Ωh

|∇uε|2 dx−
1
2

∫
∂Ωh

|∇uεν |2(x · ν) dx

+
∫
∂Ωh

(x · τ)uετ (x · ν)uεν dx

>
(2− d)

2
M − 1

2

∫
∂Ωh

|∇uεν |2(x · ν) dx,

+
∫
∂Ωh

(x · τ)uετ (x · ν)uεν dx

for n ≥ 2.
Now, we can integrate in the normal direction. We get that

M1(h0) ≤ −λεε2 ≤M2(h0), (2.52)

Notice that we have used the Cauchy’s inequality and the property of strict
star-shapeness of the domain.

The last theorem show that the Euler-Lagrange multiplier λε is of or-
der O( 1

ε2
). The constant h0, hence the size of Mi, is determined by the

smoothness of the boundary ∂Ω.

3 Navier-Stokes equation

There are many references on the theory of Navier-Stokes equations [20, 94,
53, 72]. We will just list out some of them here:

• P. Constantin and C.Foias, Navier-Stokes equation. University of
Chicago Press, 1988.

• R. Temam, Navier-Stokes equation, theory and application. AMS
Chelsea Publishing, 1984.

• A. Majda and A. Bertozzi, Vorticity and incompressible flow. Cam-
bridge University Press, 2002.
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• L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Pergamon Press,
1987.

• G. K. Bachelor An inroduction to Fluid Mechanics. Cambridge Uni-
versity Press, 1967.

3.1 Newtonian Fluids

The hydrodynamical systems for Newtonian fluids include the following
equations:

Balance of mass:
ρt +∇ · (ρu) = 0. (3.1)

If ρ = ρ0 is a constant, then ∇ · u = 0. Notice, however that the reverse
is not true.

Momentum equation (force balance equation).

ρ(ut + u · ∇u) +∇p = µ∆u. (3.2)

This equation can be derived from the least action principle. Introduc-
tion of the viscosity through: postulating the dissipative term in energy law;
or introduce random perturbation in the variation process (Peskin’s work
[79]).

Finally, the energy law:

d

dt

∫
Ω

1
2
ρ|u|2 dx = −

∫
Ω
µ|∇u|2 dx. (3.3)

Notice in the incompressible fluids, with nabla · u = 0, the energy equa-
tion is not an independent equation. It can be derived from the conservation
of mass and the conservation of momentum equations.

In the case that the initial term can be neglected, the system will be
the Stokes equation, which is a linear equation in velocity. For the inviscid
fluids, the system becomes the Euler equation.

All the system will be equipped with proper Initial and Boundary con-
ditions.
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3.1.1 Existence of global weak solution

The way to show the global existence of weak solutions (consistent with the
energy laws), which is called the Larey-Hopf solution, is through the usual
Galerkin scheme.

The goal of the Galerkin scheme is using the separation of variables
method to approximate the original the problem (an infinite dimensional
evolution problem) by finite dimensional ODE systems.

We first define the functional space:

V = {u ∈ H1(Ω) : div u = 0} (3.4)

H = {u ∈ L2(Ω) : div u = 0}.

Also, V ′ is the dual space of V . We have V is a subset of H which is a
subset of V ′.

The Stokes operator A is defined as a map from H onto the space

D(A) = {u ∈ H, ∆u ∈ H}, (3.5)

such that for any given f , u = A−1(f) satisfies the following Stokes problem:

−∆u+∇p = 0, ∇ · u = 0. (3.6)

The operator A is positive, selfadjoint. Since the inverse of A is a linear
continuous map from H to D(A) and it is compact. A can be viewed as a
selfadjoint operator in H and its eigenfunction φi form a basis of H.

Theorem 6 For any f ∈ L2(0, T, V ′) and the initial condition u0 ∈ H

given, there exists a weak solution u to the Navier-Stokes equation such that

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). (3.7)

Moreover, the solution is unique when the dimension is 2.

Sketch of the proof. We look at the approximation of the solution u in
the finite dimensional subspace spanned by the eigenfunction of the Stokes
operator A. For any given integer n,

un =
n∑
i=1

gin(t)φi. (3.8)
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The function um satisfies the system:

(un, v)t + µ((un, v))− (umum,∇v) = (f, v), (3.9)

un(0) = Pnu0,

where Pn is the orthogonal projection in H onto span{φi} and the test
function v is any function in this space.

The above system is equivalent to a ODE system of the coefficients gin.
The ODE system always has a local solution. Moreover, we still have the
following a priori estimate:

d

dt

1
2
|un|2 + µ|∇un|2 = (f, un). (3.10)

Hence,

sup |un|2 +
∫ T

0
µ|∇un|2 dt ≤M, (3.11)

where M is a constant depending on the initial condition and f . From this,
frist, we can see that the ODE solution exists all the time. Secondly we
can extract a subsequence (still denote as un) which convergence weakly in
the space u ∈ L2(0, T ;V )∩L∞(0, T ;H). Finally, Aubin-Lions’s compactness
theorem shows that the weak limit is a solution of the original Navier-Stokes
equation.

3.1.2 Existence of classical solution

Theorem 7 For give f ∈ L∞(0, T ;H) and u0 ∈ V . In 2 dimensional case,
there exists a unique global solution

u ∈ L2(0, T ;D(A) ∩ L∞(0, T ;V ). (3.12)

However, such a solution exists when µ is large or u0 is small.

Sketch of the proof. We will prove the theorem using the higher order
energy estimates. For this we multiply the equation by Au and integrate by
parts, we have

1
2
d

dt
|∇u|2 + µ|Au|2 + (uu,Au) = (f,Au). (3.13)
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The right hand side can be bounded as

(f,AU) ≤ µ

4
|Au|2 +

1
µ
|f |2.

The trilinear term can be estimated by

(uu,Au) ≤ |u|24|Au|.

Using Ladyzhenskaya’s inequalities to interpolate the L4 norm by the L2

and H1 norms.
In 2-D, we have

|u|24 ≤ |u|2|∇u|2

and in 3-D
|u|24 ≤ |u|

1/2
2 |∇u|

3/2
2

Hence we can show that in 2-D, we have the global classical solution. In
3-D, we can use the situation that either µ is large or u0 is small to get that
|∇u|2 is in fact monotone in time.

3.1.3 Regularity

Theorem 8 If a solution u ∈ Lp(0, T ;Lq(Ω)) is a solution of Navier-Stokes
equation and 2/p+ 3/q ≤ 1, then the solution is a unique classical solution.

3.1.4 Partial regularity

Theorem 9 There exists a weak solution of theNavier-Stokes equation such
that the 1 dimensional Hausdorff measure of the singularity set is zero.

4 Viscoelastic Materials

All complex fluids have distinguished viscoelastic properties.. The following
references [7, 41, 54, 78, 82, 87] cover some of the most important area of
the studies, both in mathematics and engineering/physics.

• R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric
Liquids, Volume 1: Fluid Mechanics. Weiley Interscience, New York,
1987.
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• M. E. Gurtin. An Introduction to Continuum Mechanics, volume 158
of Mathematics in Science and Engineering. Academic Press, 1981.

• R. G. Larson. The Structure and Rheology of Complex Fluids. Oxford,
1995.

• R. G. Owens and T. N. Phillips. Computational Rheology. Imperial
College Press, London, 2002.

• M. Renardy, W. J. Hrusa, and J. A. Nohel. Mathematical Problems in
Viscoelasticity, volume 35 of Pitman Monographs and Surveys in Pure
and Applied Mathematics. Longman Scientific & Technical, Harlow,
1987.

• W. R. Schowalter. Mechanics of Non-Newtonian Fluids. Pergamon
Press, 1978.

4.1 Flow map and deformation tensor

In the context of hydrodynamics, the basic variable are the flow map (par-
ticle trajectory) x(X, t). X is the original labeling (Lagrangian coordinate)
of the particle. It is also referred to as material coordinate. x is the cur-
rent (Eulerian) coordinate and referred to as reference coordinate. For a
given velocity field v(x, t) the flow map is defined by the following ordinary
differential equation:

xt(X, t) = v(x(X, t), t), x(X, 0) = X. (4.1)

The deformation tensor F (X, t) is defined as

F (X, t) =
∂x

∂X
. (4.2)

When look in the Eulerian coordinate, we can define F̃ (x, t) such that
F̃ (x(X, t), t) = F (X, t). With no ambiguity, we will not distinguish these
two notations in this paper. Applying the chain rule, we see that F (x, t)
satisfies the following transport equation [70, 41, 54]:

Ft + v · ∇F = ∇vF, (4.3)
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which stands for Fij t + vk∇kFij = ∇kviFkj . This is a direct consequence of
the chain rule. Here we point out that in this paper, we use the notation
Fij = ∂xi

∂Xj
and (∇v)ij = ∂vi

∂xj
. This is different from notations in other papers

by a transpose, for instance [54].
The incompressibility is represented as

detF = 1. (4.4)

By the identity of the variation of the determinant of a tensor

δdetF = detF tr (F−1δF ), (4.5)

we see that ∇ · v = 0. Moreover, we assume that the density ρ = ρ0 to be a
constant. This will replace the conservation of mass equation:

ρt +∇ · (ρv) = 0. (4.6)

Finally, in this case, if we denote (∇·F )j = (∇iFij), we have [70, 41, 54]

(∇iFij)t + vk∇k(∇iFij) +∇ivk(∇kFij) = ∇kvi(∇iFkj) +∇i∇kviFkj .

Using the incompressibility and switch the indices i and k of the first term
on the right hand side, we have:

(∇ · F )t + v · ∇(∇ · F ) = 0. (4.7)

4.2 Force Balance and Oldroyd-B systems

For general viscoelastic fluid, we start from the following conservation of
momentum equation:

ρ(vt + v · ∇v) = ∇ · τ, (4.8)

where τ is total stress. In Newtonian flow, we have the constitutive equation
τ = −pI + µD, where p is the pressure, µ the viscosity and D = ∇v+∇T v

2 is
the strain rate.

There have been many attempts to capture different non-Newtonian phe-
nomena of the materials, such as those of Ericksen-Rivlin [88, 87] or high-
grade fluid [48], Ladyzhenskaya where τ is nonlinear in the strain rate D [52]
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and by Necas’s group where viscosity depending on both D and p [45, 73].
All these models only involve instantaneous constitutive relation between
the stress and strain.

For the nonlocal (in time) constitutive equations, there are the Maxwell
model τt + γτ = µD, the transport model τt + v · ∇τ + γτ = µD, and the
Oldroyd (upper convective) models

τt + v · ∇τ −∇vτ − τ∇vT + γτ = µD, (4.9)

The constant γ in the above models represents the time scale for the
elastic relaxation. It is associate to the Debra number De = µ

γ , which indi-
cates the relation between the characteristic flow time and the characteristic
elastic time scales [7].

There are other types of Oldroyd models. Those are associated with the
different ways the stress tensor is transported. For instance, the Johnson-
Segaman model is just the linear combination of the upper convictive and
the lower convective Oldroyd models.

We can also look at the following modified Oldroyd model:

τ = −pI + µD + τ1, (4.10)

and the elastic stress τ1 satisfies the transport equation:

τ1t + v · ∇τ1 −∇vτ1 − τ1∇vT + γτ1 = δI, (4.11)

The equation (4.11) can be related to the modified Oldroyd model (4.9)
by simply change of variable as τ1 = τ − ηI, where η = µ/2 [78].

The tensor C = FF T is usually called the Cauchy-Green strain tensor
and B = C−1 is the finger tensor [54, 41, 78]. In particular, the equation
(4.11) is equivalent to

(F−1τ1F
−T )t + v · ∇(F−1τ1F

−T ) = −γ(F−1τ1F
−T ) + δF−1F−T ,

Hence, we can implicitly write the solution in the form :

τ1(x, t) = exp{−γt}F (x, t)τ1(x, 0)F T (x, t) (4.12)

+δ
∫ t

−∞
exp{−γ(t− s)}F (x, t)F−1(x, s)F−T (x, s)F T (x, t) ds.
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From here, it is obvious that τ1 is positive definite. In fact, in this case, we
can define the induced deformation tensor F1 =

√
τ1.

Lemma 4 If a tensor τ satisfies the equation:

τt + v · ∇τ −∇vτ − τ∇vT = 0, (4.13)

and the initial condition τ(x, 0) = τ0(x) is positive definite, then

τ(x, t) = Fτ0F
T . (4.14)

Moreover, the induced deformation tensor F1 =
√
τ satisfies the same equa-

tion as (4.3):
(F )t + v · ∇F = ∇vF.

We remark that the above result, together with the results in [70] will
allow us to obtain a global weak (Larey) solution for a small (induced)
strain viscoelasticity. We notice that this type of results are different from
the existence results of [39, 40, 82] and the more recent ones in [66, 16, 27]
which will be discussed in the later sections.

Finally, we see that, for the Oldroyd model, the system satisfies the
following energy law:

d

dt

∫
Ω

1
2
ρ|v|2 +

1
2

tr τ1 dx = −
∫

Ω
µ|D|2. (4.15)

4.3 Energetic Variational Formulation

In [70], in order to study the mixture of a fluid with a visco-elastic solid, we
wrote the momentum equation for the viscoelastic materials in the Eulerian
framework. Assuming the elastic energy of the solid is W (F ) where F =
[∂x/∂X] is the deformation tensor (strain). The following system (in weak
form) gives the force balance equations (linear momentum equations):∫

Ω
[ρ(vt + (v · ∇)v) · u− p∇ · u+ τ · ∇u dx =

∫
Ω
ρf · udx, (4.16)

for any test function u, the elastic stress: τ = µD(v)+(1/J)S(F )F T , where
S(F ) = [∂W/∂F ] takes the Piola Kirchhoff form. Here we also adopt the
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constraint J = det(F ) = 1 for incompressibility. This momentum equation
can be derived through the least action principle (Hamilton’s principle). The
action functional take the form:

A(x) =
∫ T

0

∫
Ω0

1
2
ρ|xt(X, t)|2 −W (F ) dXdt, (4.17)

where Ω0 is the original domain occupied by the material. We use the fact
that J = detF = 1.

Now we take any one-parameter family of volume preserving flow map
xε(X, t) with dxε

dε |ε=0 = y. From the fact that J = detF = 1 and the identity
(4.5), we have that ∇·y = 0. Now the equation (4.16) (without the viscosity
dissipation term) can be seen just following the variation of A with respect
to x:

d

dε
A(xε)|ε=0 = 0. (4.18)

We usually study the elasticity through the force balance equation, us-
ing the Lagrangian coordinate. Here we use the trajectory x(X, t) as the
unknown variable (or the displacement x−X). The equation reads as

ρxtt = −δW
δx

= ∇X ·WF +∇X(F−T p), (4.19)

where p is the Lagrangian multiplier to the incompressibility condition. and
it satisfies the energy law:

d

dt

∫
Ω0

1
2
ρ|xt|2 +W (F ) dX = 0. (4.20)

In the case of Hookean (linear) elasticity, W (F ) = |F |2 = tr (FF T ), it
becomes the usual wave equation:

ρxtt = ∇X ·WF = ∇X · F +∇X(F−T p) = ∆Xx+∇X(F−T p). (4.21)

We point out that it will be difficult to input the frame indifferent viscosity
term in the above equations.

Again, the system (4.16) satisfies the energy estimate (second law of
thermodynamics [41]):

d

dt

∫
Ω

1
2
ρ|v|2 +W (F ) dx = −

∫
Ω
µ|D|2 dx. (4.22)
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We notice that even in the linear elasticity case, the elastic stress term
τ2 = WFF

T = FF T is still nonlinear. In fact, it is always the same order as
the energy. This is the main difficulty of the current setting. On the other
hand, we can make the following observation. Using the fact that F satisfies
the transport equation (4.3), we have

τ2t + v · ∇τ2 −∇vτ2 − τ2∇vT = 0 (4.23)

and we recover the Oldroyd system (without the damping). Notice in this
case that W (F ) = tr τ2. Hence the two energy laws are also consistent with
each other.

In fact, we can also start with the above energy law and derive the linear
momentum equations (hence the constitutive equations). This is also the
approach that was used by Ericksen in the study of liquid crystal materials
[30] and Gurtin for phase transitions [35].

The linear transport equation Ft + (v · ∇)F = ∇v F in tensor case can
not be treated directly in the framework of [24] or [51]. We may ap-
ply the div-curl lemma [92] to obtain weak solutions [70]. However, this
is not enough to achieve the convergence of the stress term. As an al-
ternative, we used the polar decomposition (R be the rotation part and
the symmetric U be small) and get the equations Rt + u · ∇R = W (v)R,
Ut + v · ∇U = RTD(v)R, where F = R(I + U), D(v), W (v) are the sym-
metric skew components of ∇v. This was not the usual linear elastic formu-
lation, rather, it was in the same sitting as the famous work by F. John [47]
where he had applied the John-Nirenberg inequality [36] to study nonlinear
elasticity for the static small strain cases. We linearized the elastic stress:

DW(F )F T = R(DW(I) +DW(I)U + C(U) +O(U2))RT . (4.24)

where we used the notation C(U)jβ = D2W(I)(U)jβ = ∂2W
∂Fiα∂Fjβ

(I)Uiα. The
special form of the equation of R allowed us to get an approximate system for
R and to generalize the tools for scalar transport equations [24] to this small
strain case, and eventually leaded to the global existence of the approximate
system [70].

Lin, Liu and Zhang study the existence of the original system. Accord-
ing to different situations, we let Ω be a bounded domain in R2 (or R3)
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with smooth boundary, the whole domain or periodic boxes. The (linear)
viscoelastic fluid system takes the following form:

Ft + v · ∇F = ∇vF, (4.25)

vt + v · ∇v +∇p = µ∆v +∇ · (FF T ),

∇ · v = 0,

where the i−th component of ∇ · (FF T ) on the right hand side of the
momentum equation is ∇j(FikFjk). The system has the initial condition:

F (x, 0) = F0(x), v(x, 0) = v0(x), (4.26)

In cases of bounded domain, we chose the boundary condition: for any x on
the boundary ∂Ω,

F (x, t) = I, v(x, t) = 0, (4.27)

The system satisfies the energy identity:

d

dt

∫
Ω

1
2
|v|2 +

1
2
|F |2 dx = −

∫
Ω
µ|∇v|2 dx. (4.28)

From the identity (∇ · F )t + v · ∇(∇ · F ) = 0 for the incompressible
materials, if we assume that∇·F0 = 0, we have that∇·F = 0 and F = ∇×φ
where φ is a matrix. In 2-dimensional case, if we denote φ = (φ1, φ2), then
the original system can be transformed (after adjusting the order and sign)
into:

φt + v · ∇φ = 0, (4.29)

vt + v · ∇v +∇p = µ∆v −
2∑
i=1

∆φi∇φi,

∇ · v = 0.

with initial condition:

φ(x, 0) = φ0, v(x, 0) = v0(x), (4.30)

and in case of bounded domain, the boundary conditions: for any x on the
boundary ∂Ω,

φ(x, t) = x, v(x, t) = 0, (4.31)
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And the energy law becomes:

d

dt

∫
Ω

1
2
|v|2 +

1
2
|∇φ|2 dx = −

∫
Ω
µ|∇v|2 dx. (4.32)

The following theorems are proved in [65].

Theorem 10 Let k ≥ 2 be a positive integer, ∇φ0 ∈ Hk(Ω), v0 ∈ Hk(Ω),
then there exists a positive time T, which depends only on |∇φ0|H2 and
|v0|H2 , such that the system possesses a unique solution in the time interval
[0, T ] with

∂jt∇αxv ∈ L∞([0, T ];Hk−2j−|α|(Ω)) ∩ L2([0, T ];Hk−2j−|α|+1(Ω)),

∂jt∇αx∇φ ∈ L∞([0, T ];Hk−2j−|α|(Ω)), (4.33)

for all j, α satisfying 2j + |α| ≤ k. Moreover, if T ∗ is the maximal time of
existence, then ∫ T ∗

0
|∇v|2H2 ds = +∞. (4.34)

Theorem 11 Let Ω is a periodic box or the whole space R2, k ≥ 2 be a
positive integer, ∇φ0 ∈ Hk(Ω) and v0 ∈∈ Hk(Ω). Furthermore, for some
large enough constant C, we assume that,

|∇v0|H2 + |∇ψ0|H2 ≤
µ

C(1 + 1
µ)3(1 + µ+ 1

µ)
(4.35)

then the system (4.29) will have a unique global classical solution, such that,

|v|2H2 + |∇ψ|2H2 +
∫ ∞

0
(µ|∇v|2H2 +

1
µ
|∇∆ψ|2L2) ds ≤ µ

C(1 + µ+ 1
µ)
, (4.36)

and (4.33) holds for T =∞.

The results has been generalized to the general system in [56] and the
small strain viscoelastic materials [55].
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5 Liquid Crystal Flows

5.1 Ericksen-Leslie Theory

The hydrodynamical theory must describe not only orientation, as repre-
sented by the director field, n(x, t) but macroscopic motion, represented by
the velocity field u(x, t).

We shall present the Ericksen-Leslie’s set up (the corresponding static
theory will be that of Oseen-Frank).

As usual, for liquids idealized as incompressible, we have the equation of
continuity

div u = 0 , u = (u1, u2, u3), (5.1)

representing conservation of mass. In general terms, equations of motion for
u are of conventional form, i.e.,

ρ

(
∂ui
∂t

+ ui,juj

)
= tij,j + fi , (5.2)

where ρ is the (constant) mass density, f the body force, t the stress tensor.
Then the stress tensor t can be written as

t = ts + tD , (5.3)

the superscript s indicating a part covered by static theory, D indicating a
dissipative part, vanishing when there is no motion.

Under various physical considerations, Leslie and Ericksen derived that

tsij = −pδij +Wδij − τkjnk,i ,
τij = ∂W

∂ni,j
,

(5.4)

where W is the Oseen-Frank energy density (with q = 0 in nematics) and p
is the pressure. Regarding the motion of n, as suggested by static theory,

n ∧ h = 0, (5.5)

h being the total molecular field. There is an equivalent formulation, rephras-
ing this in terms of a balancing of moments. (Again one ignores the effect
of the electromagnetic field).
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Similarly,
h = hs + hD ,

hsi = ∂W
∂ni
− τij,j .

(5.6)

The terms tD, hD in dynamics have been treated from various view-
points. In the purely dissipative model (parabolic system), the constitutive
assumption presumes that tD, hD are linear functions of ∇u and

ṅ =
∂n

∂t
+ u · ∇n, (5.7)

with coefficients depending on n. Under further symmetry assumptions, as
well as thermodynamics and mechanical arguments, the constitutive equa-
tions reduce to the form

tD =
∂∆
∂∇u

, (5.8)

hD =
∂∆
∂ṅ

, (5.9)

∆ being a dissipation function. In terms of the variables A and N given by

2A = ∇u+∇ut , (5.10)

N = ṅ− 1
2

(∇u−∇ut)n , (5.11)

this function has the form

2∆ = α1(n ·An)2 + α4(trA2) + (α5 + α6)‖n⊗An‖2
+γ1‖N‖2 + 2γ2N ·An ≥ 0.

(5.12)

Here the scalar α′s and γ′s, the measure of viscosity, depend on the material
and the temperature.

Based on a somewhat different argument, Leslie [Le2] obtained more
general parabolic-hyperbolic systems. This system can be written in the
following more concise form:

ρu̇ = div
(
−pI +∇nT ·Wq +

∂∆
∂∇u

)
+ F. (5.13)

σn̈ = −Wn + div Wq +
∂∆
∂ṅ

+ γn+G. (5.14)

Here p is (as before) the pressure, γ is a Lagrange multiplies due to the
constraint |n| = 1, and F,G are external forces.
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The system (5.14) is derived from the conservation law of the form (pro-
posed by J. Ericksen)

d
dt

∫
Ω

(ρu2 +W + σ|ṅ|2)dx (5.15)

= −
∫

Ω
∆dx+ boundary terms and harmless terms.

The first system (with σ = 0 ) is parabolic, and can be thought of
as nonlinear coupling between harmonic maps heat flow and Navier-Stokes
equations.

The second system is a parablic-hyperbolic couples systems. Here one
has a nonlinear coupling between wave maps with dumping effect and Navier
Stokes equations.

Remark 3 In Ericksen’s equations, if we choose k1 = k2 = k3 = 1, k4 =
q = 0, α1 = α4 = α5 + α6 = γ2 = 0, γ1 = 1, then the coupled systems can be
written as 

∂
∂tu

i + u · ∇ui = ∆ui +∇ip− (nxi · nxj )xj
i = 1, 2, 3.
∂
∂tn

i + u · ∇ni − Ωi
jn
j = ∆ni + |∇n|2ni

i = 1, 2, 3.

(5.16)

In addition, we have two constraint divu = 0 and |n| = 1. Where Ωj =
1
2 [uixj − u

j
xi ]. There is also a similar version for Leslie’s equations.

If u ≡ 0, then we have

∂n

∂t
= ∆n+ |∇n|2n , |n| = 1. (5.17)

which is the equation of heat flow of harmonic maps from Ω→ S2.

Remark 4 . the first equation concerning balance of linear moments be-
comes

(nxi · nxj )xj =
∂

∂xi
P. (5.18)

Not all weak solutions of (5.17) satisfy (5.18) those weak solutions of
(5.17) and, in addition (5.18), have to satisfy so called energy-monotonicity
inequality. In the static case, those solutions are exactly those called [SU]
stationary solutions. They satisfy the energy monotonicity inequality.
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5.2 Existence and Regularity

In order to understand the Ericksen-Leslie theory, we will look at the follow-
ing system. Although the system is simplified, it retained most mathemati-
cal and physical difficulties of the original system. Moreover, it emphasizes
the special coupling between the director and the flow field.

ut + (u · ∇)u+∇p− ν divD(u) + λ div(∇d�∇d) = 0, (5.19)

∇ · u = 0, (5.20)

dt + (u · ∇)d− γ(∆d− f(d)) = 0, (5.21)

with initial conditions

u|t=0 = u0, d|t=0 = d0, (5.22)

satisfying either the Dirichlet boundary condition [LiLi95]

u = 0, d = d0, (5.23)

or the free surface boundary conditions [LiSh00]

u · n = 0, ((∇× u)× n)× n = 0,
∂d

∂n
= 0, (5.24)

on the boundary ∂Ω of the domain with n being the outward normal.
In the above system, u represents the velocity of the liquid crystal fluid, p

the pressure, d represents the normed director of the molecule. The vectors
u, d : Ω × <+ → <n, and the function p : Ω × <+ → <, where Ω ⊂ <n

is a bounded smooth domain (or a polygonal domain) with boundary ∂Ω.
D(u) = (1/2)(∇u+ (∇u)T ) is the stretching tensor, σv = pI + νD(u) is the
fluid viscosity part of the stress tensor, (∇d�∇d)ij =

∑n
k=1(∇idk)(∇jdk),

and finally, f(d) is a polynomial of d which satisfies f(d) = F ′(d) where
F (d) is the bulk part of the elastic energy. The choice of F (d) is such that
the maximal principle for |d| holds in the equation (5.21), that is, if |d| ≤ 1
on the boundary and in the initial data, the |d| ≤ 1 is true everywhere at
any time. Usually, we chose F (d) to be the Ginzburg-Landau penalization

F (d) =
1

4ε2
(|d|2 − 1)2. (5.25)
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Again, we see that (5.20) represents the fact that the fluid is incompress-
ible. (5.21) is the evolution of the director, the left hand side shows that
d is transported by the flow. We want to point out that the momentum
equation (5.19) can be derived through the following least action principle.

The above highly simplified system, in fact, captures all the mathe-
matical difficulties (as shown in the the later discussions) and the physical
characteristics of the original model. To demonstrate the later one, we will
derive the linear momentum equation (force balance) equation using the
least action (Hamiltonian) principle.

Let us begin by computing the variations of the following ”elastic” part
of the ”action” functional among all the volume preserving flow maps:

A(x) =
∫ T

0

∫
Ω

λ

2
|∇d|2 − h(d) dxdt. (5.26)

We look at the volume preserving flow maps x(X, t) such that

xt(X, t) = v(x(X, t), t), x(X, 0) = X. (5.27)

Here we can view X as the Lagrangian (initial) material coordinate and
x(X, t) the Eulerian (reference) coordinate.

In order to perform the variation, we look at the one parameter family
of such maps xε such that:

x0 = x,
dxε

dε
= y. (5.28)

for any y such that ∇x · y = 0.
Now we computer the variation of A(xε) = A(d(xε, t)) with respect to ε:

0 =
d

dε
|ε=0A(xε) =

∫ T

0

∫
Ω0

λ∇ixd
d

dε
|ε=0∇ixεd(xε, t)) + f ′(d)∇jxdyj dXdt

=
∫ T

0

∫
Ω0

λ∇ixd
d

dε
|ε=0

(
∇jxd(xε, t))∇ixεxj

)
+ f ′(d)∇jxdyj dXdt

=
∫ T

0

∫
Ω0

λ∇ixd∇jx∇ixd(x, t) + λ∇ixd(x, t)∇jxd(x, t)∇ixyj

+f ′(d)∇jxdyj dXdt

Here we have used the fact that ∇xεx is the inverse matrix of ∇xxε.
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Since y is an arbitrary divergence free vector field, integration by parts
gives the following equation:

ut + (u · ∇)u+∇p+ λ div(∇d�∇d) = 0. (5.29)

We point out that the viscosity and other types of dissipation are due to
other term.

From this derivation, it is easy to see the energy law of the system.
Moreover, the hydrodynamic equilibrium will be a special kind of stationary
solution of d, as we remarked in the last section. This can be viewed in the
following spatial Noether theorem.

In [62], we study the wellposedness of the system by establishing the
following basic energy law:

1
2
d

dt

∫
Ω

(‖u‖2 +λ‖∇d‖2 + 2λF (d))dx = −
∫

Ω
(ν‖∇u‖2 +λγ‖∆d− f(d)‖2)dx,

(5.30)
for all t ∈ (0, T ].

This energy law together with a modified Galerkin method enables us to
prove the existence of a weak solution of the above system (1)-(2):

Theorem 12 Under the assumptions that u0(x) ∈ L2, and that d0(x) ∈
H1(Ω) with d0|∂Ω ∈ H3/2(∂Ω), the system has a global weak solution (v, d)
satisfying:

u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), (5.31)

d ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω))

for all T ∈ (0,∞).

We also proved the existence of the classical solution.

Theorem 13 The system has a unique global classical solution (u, d) pro-
vided that u0(x) ∈ H1(Ω), d0(x) ∈ H2(Ω) and, that either dim Ω = 2 or
dim Ω = 3 and ν ≥ ν(γ, λ, u0, d0).

The stability result is established in the following theorem:
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Theorem 14 Suppose d∗ ∈ H2(Ω) is an absolute minimum of the func-
tional

E(d) ≡ 1
2

∫
Ω

(‖∇d‖2 + F (d))dx (5.32)

in the sense that E(d∗) ≤ E(d) whenever d = d∗ on ∂Ω . Then there is an
ε > 0, possibly depending on the system such that: whenever ‖d0−d∗‖H2(Ω)+
‖u0‖H1(Ω) < ε, then the original system has a unique global solution (u, d)
with u(x, t) −→ 0 in H1(Ω), as t −→ +∞. Moreover, for any sequence
ti −→ +∞, d(x, t′i) −→ d̃ in H2(Ω), for a subsequence {t′i}. Here d̃ is a
critical point of E.

Theorem 15 If the domain and the initial-boundary conditions in system
are smooth enough, then there exists a suitable weak solution whose singular
set has one-dimension Hausdorff measure zero in space-time.

6 Free Interface Motion in Mixtures

The interfacial dynamics in the mixture of different fluids, solids or gas have
attracted attentions for more than two centuries. Many surface properties,
such as capillarity, are associated with the surface tension through special
boundary conditions on the interfaces [80, 50, 29, 14].

In classical approaches, the interface is usually considered to be a free
surface that evolves in time with the fluid (the kinematic boundary con-
dition). The dynamics of the interface at each time is determined by the
following stress (force) balance condition:

[T ] · n = mHn, (6.1)

where [T ] = [νD(u) − pI] is the jump of the stress across the interface Γt,
n is its normal, D(u) = ∇u+(∇u)T

2 is the stretching tensor, H is the mean
curvature of the surface and m is the surface tension constant. This is the
usual Young-Laplace junction condition (see, for instance, [4, 80, 50, 29]).
The hydrodynamic system describing the mixture of two Newtonian fluids
with a free interface will be the usual Navier-Stokes equations in each of the
fluid domains (possibly with different density and viscosity) together with
the kinematic and force balance (traction free) boundary conditions on the
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interface. The weak form of such a system when the density ρ and viscosity
ν may vary in the mixture can be represented exactly in the following form
[68]: ∫ T

0

∫
Ω

[ − ρuvt − ρuu · ∇v + ν∇u∇v − p∇ · v] dxdt (6.2)

=
∫ T

0

∫
Γt

mHn · v dsdt

for any test function v.
One classical method to study the moving interfaces is to employ a mesh

that has grid points on the interfaces, and deforms according to the motion of
the boundary, such as the boundary integral and boundary element methods
(cf. [21, 95, 49] and their references). Keeping track of the moving mesh may
entail computational difficulties and large displacement in internal domains
may cause mesh entanglement. Typically, sophisticated remeshing schemes
have to be used in these cases.

As an alternative, fixed-grid methods that regularize the interface have
been highly successful in treating deforming interfaces. These include the
volume-of-fluid (VOF) method [58, 59], the front-tracking method [38, 37]
and the level-set method [15, 77]. Instead of formulating the flow of two
domains separated by an interface, these methods represent the interfacial
tension as a body-force or bulk-stress spreading over a narrow region cov-
ering the interface. Then a single set of governing equations can be written
over the entire domain, and solved on a fixed grid in a purely Eulerian
framework.

The energetic phase field model can be viewed as a physically motivated
level-set method. Instead of choosing an artificial smoothing function for
the interface, the diffuse-interface model describes the interface by a mixing
energy. This idea can be traced to van der Waals [96], and is the foundation
for the phase-field theory for phase transition and critical phenomena (see
[25, 13, 12, 75, 76, 93] and the references therein). The phase field models
allow topological changes of the interface [71] and over the years, they have
attracted a lot of interests in the field of nonlinear analysis (cf. [2, 11,
17, 84, 89]). Similar to the popular level set formulations (see [77] for an
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extensive discussion), they have many advantages in numerical simulations
of the interfacial motion (cf.[15]). When the transition width approaches
zero, the phase field model with diffuse-interface becomes identical to a
sharp-interface level-set formulation and it can also be reduced properly to
the classical sharp-interface model.

In this paper, we will illustrate some basic features and general ap-
proaches of this method.

6.1 An energetic variational approach with phase field method

Here we will present the simpliest case of the phase field method to study
the mixture of two incompressible Newtonian fluids.

Introduce a “phase” function φ(x, t) to identify the two fluids ({x :
φ(x, t) = 1} is occupied by fluid 1 and {x : φ(x, t) = −1} by fluid 2).
Looking at the following Ginzburg-Landau type of mixing energy:

W̃ (φ,∇φ) =
∫

Ω
[
η

2
|∇φ|2 +

1
4η

(φ2 − 1)2] dx.

We can view φ as volume fraction. The mixing density and viscosity will
be functions of φ. The part of bulk energy represents the interaction of dif-
ferent volume fractions of individual species (like Flory-Huggins free energy
[54, 28]). The gradient part plays the role of regularization (relaxation). The
combination represents the competition between the (hydro)phobic and (hy-
dro)philic effects between different species. The interface is represented by
{x : φ(x, t) = 0}, with the fixed transition layer of thickness η. The dynam-
ics of φ can be driven by either Allen-Cahn or Cahn-Hillard types of gradient
flow, depending on the choice of different dissipative mechanism. The later
one preserves the overall volume fraction of two fluids. For Chan-Hillard
case (where the volume is preserved):

φt + u · ∇φ = −γ δW
δφ

= −γ∆(∆φ− f(φ)), (6.3)

where f(φ) = F ′(φ) = 1
η (φ2 − 1)φ. u is the velocity field. The right hand

side can be viewed as the variation with respect to φ is the regular L2 space.
The left hand side indicates that the variable φ is transported by the flow, on
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top of the energy decent dynamics. As γ → 0, where γ represents the elastic
relaxation time, the limiting φ satisfies the transport equation, which is
equivalent to the mass transport equation (for incompressible fluids). Hence
this formulation can also be viewed as the link (relaxation) between the
mass average (in the kinetic energy) and the volume average (in the elastic
energy).

In case the variational space is take to be H−1, then φ will take the
dynamics as the Allen-Cahn equation:

φt + u · ∇φ = γ(∆φ− f(φ)), (6.4)

Combining this elastic energy with the kinetic energy, we have the total
energy E =

∫
Ω[ρ2 |u|

2 + λ
2 |∇φ|

2 + λF (φ)] dx. Using the least action principle
(the principle of virtual work), we can derive the following linear momentum
equation (balance of force equation) [68, 67, 42, 81]:

ρ(ut + (u · ∇)u) +∇p− ν∆u+ λ∇ · (∇φ⊗∇φ) = g(x). (6.5)

The density will satisfy the forllowing transport equation:

ρt + u · ρ = 0, (6.6)

under the incompressibility condition for the velocity field:

∇ · u = 0. (6.7)

The final system (6.3)(6.6)(6.7)(6.5) (together with the suitable bound-
ary and initial conditions) will then possess the following energy law:

d

dt

∫
Ω

[
ρ

2
|u|2 +

λ

2
|∇φ|2 + λF (φ)] dx = −

∫
Ω

[ν|∇u|2 + γλ|∇(∆φ− f(φ))|2] dx.

(6.8)
We can see that as η → 0, the elastic force λ∇ · (∇φ ⊗ ∇φ) converges to
a measure supported only on the interface, with magnitude proportional
to the mean curvature [70]. Hence we recover the traction-free boundary
condition with surface tension. Moreover, we can also derive the relation of
our parameters into the sharp interface ones as the following:
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Consider a one-dimensional interface. We require that the diffuse mixing
energy in the region be equal to the traditional surface energy:

σ = λ

∫ +∞

−∞

{
1
2

(
dφ

dx

)2

+ f0(φ)

}
dx. (6.9)

Let us further assume that the diffuse interface is at equilibrium, and thus
has zero chemical potential,

δFmix
δφ

= λ{−d
2φ

dx2
+ f ′0(φ)} = 0. (6.10)

Since f0(±∞) = 0 and dφ
dx

∣∣∣
x=±∞

= 0, this equation can be integrated once
to give

1
2

(
dφ

dx

)2

= f0(φ), (6.11)

which implies equal partition of the free energy between the two terms at
equilibrium.

Eq. (6.11) can be solved together with the boundary condition φ(0) = 0,
and we obtain the equilibrium profile for φ(x):

φ(x) = tanh
(

x√
2ε

)
(6.12)

Thus, the capillary width ε is a measure of the thickness of the diffuse
interface. More specifically, 90% of variation in φ occurs over a thickness of
4.1641ε, while 99% of the variation corresponds to a thickness of 7.4859ε.

Substituting Eq. (6.12) into Eq. (6.9), we arrive at the following matching
condition for the interfacial tension σ:

σ =
2
√

2
3

λ

ε
(6.13)

As the interfacial thickness ε shrinks toward zero, so should the energy
density parameter λ; their ratio gives the interfacial tension in the sharp
interface limit.

Obviously, the correspondence between the diffuse- and sharp-interface
models is meaningful only when the former is at equilibrium. During the
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relaxation of the diffuse interface (cf. Eq. 6.3), one cannot speak of a con-
stant interfacial tension. Although one may view this as a deficiency of the
diffuse-interface model, it in fact reflects the reality that the interface has
its own dynamics which cannot be summarized by a constant σ except un-
der limiting conditions. To anticipate the results in Section 3.3, we note
that fanch may also contribute to the surface energy, thus giving rise to an
anisotropic “interfacial tension” that is not encompassed by the traditional
version of the concept.

These models allow for topological changes of the interface ([71, 8, 46,
43]) and have many other advantages in numerical simulations of the interfa-
cial motion, and have seen many applications in the physics and engineering
literature [81, 97].

The conservative dynamics of the above diffuse-interface model can be
formulated in the classical procedures of Lagrangian mechanics [1, 3]. The
starting point is the Lagrangian L = T − F , where T and F are the kinetic
and potential energies of the system. The least action principle requires that
the action integral I =

∫
Ldt be stationary under variations of “paths”.

This will lead to a momemtum equation, with elastic stresses arising from
the microstructural changes embodied in the free energy F , and evolution
equations for the field variables whose momenta are included in T .

The least action principle (variation on the flow maps), which gives the
momentum equation, and the fastest decent dynamics or other types of
gradient flows (variation on the phase variables) are due to different physical
principles. However, they are related in the static case: the first one is
equivalent to the variation with respect to the domain and the second one is
the variation of the same functional with respect to the function. It is clear
that if the solutions are smooth (or regular enough), they are equivalent.
The discrepancy between these two equations requires the presence of the
singularities and defects.

The existence of the hydrodynamic equilibrium states for the coupled
systems (the static solution with the velocity u = 0) can be viewed as a
diret consequence of the special relation between the solution of the Euler-
Lagrange equation of the elastic energy and the solution of the equation from
variation of the domain to such an energy. Formally, it can be summerized
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into the following simple theorem (see, for example, [64]):

Theorem 6.1 Given an energy functional W (φ,∇φ), all solutions of the
Euler-Lagrangian equation:

−∇ · ∂W
∂∇φ

+
∂W

∇φ
= 0 (6.14)

also satisfy the equation

∇ · ( ∂W
∂∇φ

⊗∇φ−WI) = 0. (6.15)

This theorem guarantees the existence of the hydrodynamic equilibrium
states for most systems. It also gives the stability results [62] and shows
that all solutions of the system (6.24-6.28) will approach to an equilibrium
state as t→ +∞. One can also derive from Theorem 6.1 the usual Pohozaev
identity [90] by writing the equations (6.14) and (6.15) in weak forms.

It is the generality of this energetic variational procedure, especially in
accommodating microstructured fluids via the free energy F , that has made
the diffuse-interface (phase field) method our choice for tackling interfacial
problems of complex fluids. Conceivably, any complex fluid with a prop-
erly defined free energy can be included in this formulation. In this paper,
we will be dealing with two kinds: The thermo-induced Marangoni-Benard
convection, and the mixture involving nematic liquid crystals, which are de-
scribed by a regularized Leslie-Ericksen model [22, 30, 31, 57]. The latter
also introduces the issue of surface anchoring.

• Level set formulation: work of Hamilton, Evans-Spruck, Evans-Soner-
Souganidis, Xinfu Chen

• Giga and Solonnikov: Classical results.

• General solutions;

6.2 Marangoni-Benard convection

The conventional Marangoni-Benard convection is described by the following
two phase fluids with a sharp interface, involving the Boussinsq approxima-
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tion.

∇ · u = 0, (6.16)

ρ0(ut + (u · ∇)u) +∇p− ν divD(u) = −ρgj, (6.17)

θt + u · ∇θ = k∆θ. (6.18)

Here ρ is the temperature dependent density, g is the gravitational acceler-
ation, j is the upward direction. u and p stands for the fluid velocity and
the pressure, θ is the temperature. k is the thermal diffusion. Moreover, we
assume that

ρ = ρ0[1− α(θ − θ0)]. (6.19)

With the usual initial and boundary conditions, the interface conditions take
the form:

ηt + u · η = 0, (6.20)

[T ] · n = −σKn+ (t · ∇σ)t. (6.21)

Equation (6.20) is the kinematic condition, representing the surface (η = 0)
evolve with the fluid. (6.21) is the traction (T ) free boundary (balance of
forces) condition. The surface tension depends on the temperature σ =
σ0 − σ1θ.

In order to incoporate this effect in the phase field model and still man-
tain the energy law, we consider the action function:

A(x) =
∫ T

0

∫
Ω0

1
2
ρ0|xt(X, t)|2 (6.22)

−λ(x(X, t))
2

(|∇xφ(x(X, t), t)|2 + F (φ(x(X, t), t))) dXdt.

Here we can view X as the Lagrangian (initial) material coordinate and
x(X, t) the Eulerian (reference) coordinate. Ω0 is the initial domain occupied
by the fluid. The notion that φ(x(X, t), t) indicated that φ is transported
by the flow field. The special feature in this case is the spatial dependence
of λ. In fact, it can be a function of temperature that is transported by the
flow.
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For incompressible materials, we look at the volume preserving flow maps
x(X, t) such that

xt(X, t) = v(x(X, t), t), x(X, 0) = X. (6.23)

We arrive at the following system:

ρ0(ut + (u · ∇)u) +∇p− ν divD(u) (6.24)

= −∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2 − λ

4ε2
(φ2 − 1)2)

−(1 + φ)g(ρ1 − ρ0)j − (1− φ)g(ρ2 − ρ0)j,

φt + (u · ∇)φ+ γ∆(∆φ− f(φ)) = 0, (6.25)

∇ · u = 0, (6.26)

θt + u · ∇θ = k∆θ. (6.27)

with initial conditions

u|t=0 = u0, d|t=0 = d0, (6.28)

and appropriate boundary conditions. In our simulations, we choose the
period boundary conditions. The parameter λ is a linear function of the
tempreature θ.

Here we used the classical Boussinesq approximation, which is the linear
version of all different types of average approaches. The “background” den-
sity can be treated as a constant ρ0 and the difference between the actual
density and ρ0 will contribute only to the buoyancy force [60].

Moreover, we see that

−∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2 − λ

4ε2
(φ2 − 1)2)

= −λ∆φ∇φ− λ

2
∇|∇φ|2 − (∇λ · ∇φ)∇φ

+
∇λ
2
|∇φ|2 +

λ

2
∇|∇φ|2 +

1
4ε2
∇λ(φ2 − 1)2 +

1
4ε2

λ∇(φ2 − 1)2.

And the right hand side convergence to −σHn + ∇σ − (∇σ · n)n =
−σHn + (∇σ · t)t where t is the tangential direction of the interface. This
recovers the traction free boundary condition (6.21).
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In order to avoid the using of the Boussinsq approximation, which is only
valid when the density of the mixture does not vary much, we can solve the
transport eqaution (6.6) instead. The momentum equation will becomes:

ρ(ut + (u · ∇)u) +∇p− ν divD(u) (6.29)

= −∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2 − λ

4ε2
(φ2 − 1)2)− ρgj,

More generally, the viscosity in different components can also be differ-
ent.

Since we can view φ as the approxiamtion of the volume fraction, an
alternative is to use the following “average” density and viscosity as follows:

1
ρ(φ)

=
1 + φ

2ρ1
+

1− φ
2ρ2

, (6.30)

1
ν(φ)

=
1 + φ

2ν1
+

1− φ
2ν2

,

where ρ1, ρ2 are the corresponding density and ν1, ν2 are the viscosity con-
stants. The reason to choose the harmonic average as in (6.30) is that the
solution of the Cahn-Hilliard equation (6.3) does not satisfy the maximal
principle. Hence, the linear average can not be guaranteed to be bounded
away from zero. However, due to the L∞-bound of the solution [10], the har-
monic averages lead to desired properties. This approach can be replaced
using the normal linear averages in the case when (6.3) is replaced by the
Allen-Cahn equation (6.4) for which the solution satisfies the maximal prin-
ciple.

The modified momentum equation with variable density and viscosity
takes the form

(ρ(φ)u)t + (u · ∇)(ρ(φ)u) +∇p− div(ν(φ)D(u)) (6.31)

+ λ∇ · (∇φ⊗∇φ) = −ρ(φ)gj,

where g(x) is the external body force. As the equation (6.25) converges to
the pure transport equation, together with the incompressibility condition
(6.25), the density ρ will satisfy the continuity equation:

ρt +∇ · (ρu) = 0. (6.32)
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6.3 Mixtures involving liquid crystals

In an immiscible blend of a nematic liquid crystal and a Newtonian fluid,
there are three types of elastic energies: mixing energy of the interface, bulk
distortion energy of the nematic, and the anchoring energy of the liquid
crystal molecules on the interface.

We again use the previously discussed Ginzburg-Laudan energy for the
mixing energy.

fmix(φ,∇φ) =
1
2
λ|∇φ|2 + f0(φ), (6.33)

with a double-well potential for F

f0 =
λ

4ε2
(φ2 − 1)2, (6.34)

The nematic has rod-like molecules whose orientation can be represented
by a unit vector n(x) known as the director. When the director field is not
uniform, the nematic has a Oseen-Frank distortion energy [22]:

fbulk =
1
2
K1(∇ · n)2 +

1
2
K2(n · ∇ × n)2 +

1
2
K3(n×∇× n)2, (6.35)

where K1, K2, K3 are elastic constants for the three canonical types of
orientational distortion: splay, twist and bend. We will adopt the customary
one-constant approximation: K = K1 = K2 = K3, so that the Frank energy
simplifies to fbulk = K

2 ∇n : (∇n)T. Liu & Walkington [69] used a modified
model by allowing a non-unity director whose length indicates the order
parameter. Thus, the regularized Frank elastic energy becomes:

fbulk = K

[
1
2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]
, (6.36)

The second term on the right hand side serves as a penalty whose minimiza-
tion is simply the Ginzburg-Landau approximation of the constraint |n| = 1
for small δ. The advantage of this regularized formulation is that the en-
ergy is now bounded for orientational defects, which are non-singular points
where |n| = 0. This makes the numerical treatment much easier. Note that
the regularization is based on the same idea as in Cahn-Hilliard’s mixing
energy. It is also related to Ericksen’s theory of uniaxial nematics with a
variable order parameter [32].
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Depending on the chemistry of the two components, the rod-like molecules
of the nematic phase prefer to orient on the interface in a certain direction
known as the easy direction. The two most common types of anchoring
are planar anchoring, where all directions in the plane of the interface are
easy directions, and homeotropic anchoring, where the easy direction is the
normal to the interface.

In the classical sharp interface picture, the anchoring energy is a surface
energy. In our diffuse-interface model, however, we write it as a volumetric
energy density in the same vein as the mixing energy:

fanch =
A

2
(n · ∇φ)2 (6.37)

for planar anchoring, and

fanch =
A

2
[|n|2|∇φ|2 − (n · ∇φ)2] (6.38)

for homeotropic anchoring. In these two equations, the positive parameter
A indicates the strength of the anchoring.

Finally, the total free energy density for the two-phase material is written
as:

f(φ,n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch (6.39)

where 1+φ
2 is the volume fraction of the nematic component, and φ = 1 in

the purely nematic phase. This energy is equivalent to that of Rey [83], and
contains all the physics discussed there.

The induced elastic energy will be:

σe = −λ(∇φ⊗∇φ)−K 1 + φ

2
(∇n) · (∇n)T −G, (6.40)

where G = A(n · ∇φ)n⊗∇φ for planar anchoring and G = A[(n ·n)∇φ−
(n · ∇φ)n] ⊗ ∇φ for homeotropic anchoring. Note that the asymmetry of
G reflects the fact that surface anchoring exerts a net torque on the fluid.
Bulk distortion will give rise to an asymmetric stress as well if the elastic
constants are unequal [22]. Morever, from the derivation of the previous
section, we see that the anchoring energy fanch, hence the term G, induces
a Marangoni force along isotropic-nematic interfaces
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For our model system of a blend of a nematic and a Newtonian fluid,
the field variables are velocity v, pressure p, phase function φ and director
n. We write the continuity and momentum equations in the usual form:

∇ · v = 0, (6.41)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ · σ, (6.42)

where σ is the deviatoric stress tensor.
Based on the free energy in equation (6.39), a generalized chemical po-

tential can be defined as δF/δφ. If one assumes a generalized Fick’s law
that the mass flux be proportional to the gradient of the chemical potential,
the Cahn-Hilliard equation is obtained as an evolution equation for φ [13]:

∂φ

∂t
+ v · ∇φ = ∇ ·

[
γ1 ∇

(
δF

δφ

)]
(6.43)

where γ1 is the mobility, taken to be a constant in this paper. The diffusion
term on the right hand side has contributions from all three forms of free
energy.

The rotation of n is determined by the balance between a viscous torque
and an elastic torque. The latter, also known as the molecular field [22],
arises from the free energies of the system:

h = −δF
δn

= K

[
−∇ ·

(
1 + φ

2
∇n
)

+
1 + φ

2
(n2 − 1)n

δ2

]
+ g, (6.44)

where g = A(n · ∇φ)∇φ for planar anchoring, and g = A[(∇φ · ∇φ)n −
(n · ∇φ)∇φ] for homeotropic anchoring. Now the evolution equation of n is
written as:

∂n

∂t
+ v · ∇n = γ2h, (6.45)

where the constant γ2 determines the relaxation time of the director field.
Equation (6.45) is a simplified version of the Leslie-Ericksen equation [22].

Equations (6.41), (6.42), (6.43) and (6.45) form the complete set of equa-
tions governing the evolution of the nematic-Newtonian two-phase system.

In this paper, we assume that the two phases have the same constant
density, with negligible volume change upon mixing. Thus, the mixture is

49

Chun Liu Intro to EnVarA  p. 286-337 of  
Hou, T. Y., C. Liu and J.-g. Liu, Eds. (2009). Multi-scale Phenomena in Complex Fluids: 
                                Modeling, Analysis and Numerical Simulations    
                                Singapore, World Scientific Publishing Company. 



incompressible with a solenoidal velocity. In general, however, the diffuse-
interface method is not restricted to equal-density components. When the
two phases have differing densities, one approach is to view the mixture as
a compressible fluid with ∇ · v 6= 0 in the mixing layer, where v is a mass-
averaged velocity [71]. As an alternative, [67] have proposed a picture in
which the components mix by advection only without diffusion. Thus, the
velocity at a spatial point is defined as that of the component occupying
that point; it is spatially continuous and remains solenoidal. An inhomoge-
neous average density is established from the initial condition, which is later
transported by the velocity field. Finally, if the density difference is small,
the Bousinesq approximation can be employed [67]. .

A solution to the above governing equations obeys an energy law.

d

dt

∫
Ω

(ρ
2
|v|2 + f

)
dΩ = −

∫
Ω

(
µ∇v : ∇vT + γ1

∣∣∣∣∇δFδφ
∣∣∣∣2 + γ2

∣∣∣∣δFδn
∣∣∣∣2
)
dΩ,

(6.46)
where f is the system’s potential energy density. Physically, the law states
that the total energy of the system (excluding thermal energy) will decrease
from internal dissipation. The work of Lin and Liu [62, 63] can be used to
rigorously prove the well-posedness of such a system. Under such an energy
law, a finite-dimensional approximation to the governing equations, such
as a finite-element or spectral scheme, can be shown to be guaranteed to
converge [69]. This constitutes one of the advantages of our method over
previous methods that do not maintain the system’s total energy budget.
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7 Magneto-hydrodynamics (MHD)

7.1 Introduction

We are interested in the following unsteady incompressible Magneto Hydro-
dynamics (MHD) system:

ρ(∂tu+ u · ∇u) +∇p = µ∆u+
1
c
j × b, (7.1)

∇ · u = 0, (7.2)
1
c
∂tb+∇× e = 0, (7.3)

∇× b =
4π
c
j, (7.4)

σ(e+
1
c
u× b) = j, (7.5)

in a smooth bounded domain in either R2 or R3. We also equip the system
with no-slip and perfectly conducting wall conditions

u = 0, e× n = 0 on Γ = ∂Ω, (7.6)

where ρ is the fluid density, u the fluid velocity, b, j and e are the magnetic
field, the electric current density and the electric field respectively. µ, σ and
c are physical constants representing the viscosity coefficient, the electric
conductivity and the speed of light.

We see that (7.1) consists of the Navier-Stokes equation governing the
motion of the solenoidal fluid motion, coupled with the Faraday equation
describing the evolution of the magnetic field, through the Lorentz force
j × b and the electro transport u× b.

7.2 The evolution of the magnetic field

First, let us look at the transport equation of b, and take divergence of the
equation with respect to the spatial variable. We have that

(∇ · b)t = 0. (7.7)

Hence we see that b is a divergence free vector field (assume this is true for
the initial datum). This, combined with the fact that u is also divergence
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free, we have

∇× (u× b) = (b · ∇)u− (u · ∇)b+ u(∇ · b)− b(∇ · u)

= (b · ∇)u− (u · ∇)b.

We can now rewrite the evolution equation (7.4) of the magnetic field b as:

bt + (u · ∇)b− (b · ∇)u = − c
σ
∇× j. (7.5)

The right hand side (7.7) is the dissipation term, while the left hand side
can be written as bt+Lub, where Lub is the Lie derivative of b with respect
to the flow field u.

Again we look at F , the deformation tensor ∂x
∂X , where x is the Eulerian

(reference) coordinate and X is the Lagrangian (material) coordinate. The
flow trajectory of a partial will be x(X, t), where

∂

∂t
x(X, t) = u(x(X, t), t), x(X, 0) = X. (7.5)

In case of incompressible materials, x is a volume preserving diffeomorphism
and detF = 1. In this case, we have the following identity [41, 70]:

d

dt
F (x(X, t), t) =

∂

∂t
F (x, t) + u(x, t) · ∇F (x, t) = ∇u(x, t)F (x, t). (7.5)

The transport bt + (u · ∇)b − (b · ∇)u represents exactly the relation
b(x(X, t), t) = F−1b0(X), where b0 is the initial magnetic fields. From here,
we see that F carries all the transport information of b. This makes the
MHD system very much related to the viscoelastic system discussed in the
earlier sections.

7.3 The energy law

The system (7.1) admits the following energy law:

d

dt

∫
Ω

1
2
ρ|u|2 +

1
8π
|b|2 dx = −

∫
Ω
µ|∇u|2 +

4π
cσ
|j|2 dx. (7.5)

This energy law can be derived by multiply (7.2) by u and (7.4) by b,
add the results together, and integration by parts. The special cancellation
of the term from the Lorentz force and the term from the transport of the
magnetic field shows the special coupling that will be discussed in the later
sections.
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7.4 The linear momentum equation

The linear momentum equation (without the dissipation term µu) in (7.1)
can be derived through the variations of the following ”action” functional
in the space of volume preserving flow maps:

A(x) =
∫ T

0

∫
Ω

1
2
ρ|u(x, t)|2 +

1
8π
|b(x, t)|2 dxdt (7.6)

=
∫ T

0

∫
Ω0

1
2
ρ|xt(X, t)|2 +

1
8π
|F (X, t)b(x(X, t)|2 dXdt

= A1(x) +
1

4π
A2(x).

Here we use the fact that the Jacobian of x with respect to X is 1, due to
the incompressibility.

In order to perform the variation, we look at the one parameter family
of such maps xε such that:

x0 = x,
dxε

dε
= y. (7.4)

for any y such that ∇x · y = 0.
We computer the variation of A(xε) = A(φ(xε, t)) with respect to ε. The

contribution of the kinetic part 1
2ρ|u(x, t)|2 will give the Euler part of the

equation (7.2). Suppose that F ε = xε

X , the contribution of the magnetic field
will be:

d

dε
|ε=0A2(xε) =

∫ T

0

∫
Ω0

(
F (X, t)b(x(X, t),

d

dε
|ε=0(F ε(X, t)b(xε(X, t))

)
dXdt

=
∫ T

0

∫
Ω0

(
F (X, t)b(x(X, t), F (X, t)(y · ∇x)b

)
+

(
F (X, t)b(x(X, t),∇Xyb(x(X, t)

)
dXdt.

Since y is an arbitrary divergence free vector field, integration by parts gives
the following equation:

ρ(∂tu+ u · ∇u) +∇p =
1

4π
∇ · (b⊗ b) +

1
2π
∇|b|2, (7.1)

Since we have the identity:

(∇× b)× b = (b · ∇)b− 1
2
∇|b|2 = ∇ · (b⊗ b)− 1

2
∇|b|2, (7.1)
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we have that

ρ(∂tu+ u · ∇u) +∇p1 =
1

4π
(∇× b)× b =

1
c
j × b. (7.1)

From the above derivation, we see that the Lorentz force comes from
the fact that the magnetic field is transport by the flow map as a covariant
1-form and the inclusion of the magnetic energy of b in the total energy.

7.5 The dynamics of magnetic field lines

In the case that σ =∞, then we are in the case that

e = −1
c
u× b. (7.1)

Taking the ∇× on the both sides of the equation yields that

(∇× b)t + (u · ∇)(∇× b)− ((∇× b) · ∇)u (7.2)

− (b · ∇)(∇× u) + ((∇× u) · ∇)b = 0.

In the 2-dimensional case, that is, both u and b depend only on the first
two coordinate x1, x2 and the third component u3 = b3 = 0, then we have

(∇× b)t + (u · ∇)(∇× b)− (b · ∇)(∇× u) = 0. (7.1)

If we are in a irrotational flow field, we have that

(∇× b)t + (u · ∇)(∇× b) = 0. (7.1)

Hence we can see that if (∇ × b) concentrate on a curve (interface) at the
initial time, it will also be concentrated a curve.

Finally, since ∇ · b = 0, we have that

b = ∇×A, (7.1)

where A is the electric potential with the Columb gauge ∇ · A = 0. The
electric current j = −∆A. Moreover, it satisfies the transport equation:

At + (u · ∇)A = 0. (7.1)
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In the 2-dimensional case, we have the simpler form

b = ∇⊥φ = (φy,−φx), (7.1)

for a scalar function φ(x, y). The current j = −∆φe3 and it satisfies the
transport equation:

φt + (u · ∇)φ = 0. (7.1)

Moreover, the Lorentz force

j × b = ∆φ∇φ. (7.1)

The level set of φ, {φ = c} is the magnetic field lines. The dynamics of
such curves is very important in understanding the MHD equations.
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