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AN ENERGETIC VARIATIONAL APPROACH FOR ION

TRANSPORT ∗

SHIXIN XU † , PING SHENG‡ , AND CHUN LIU§

Abstract. The transport and distribution of charged particles are crucial in the study of many
physical and biological problems. In this paper, we employ an Energy Variational Approach to derive
the coupled Poisson-Nernst-Planck-Navier-Stokes system. All physics is included in the choices of
corresponding energy law and kinematic transport of particles. The variational derivations give the
coupled force balance equations in a unique and deterministic fashion. We also discuss the situations
with different types of boundary conditions. Finally, we show that the Onsager’s relation holds for
the electrokinetics, near the initial time of a step function applied field.
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1. Introduction and Background The Poisson-Nernst-Planck (PNP) sys-
tem is one of the most extensively studied models for the transport of charged par-
ticles in many physical and biological problems, such as free moving electrons in
semiconductors [14, 19, 20], fuel cell [21, 25], ion particles in the electrokinetic fluids
[3, 12, 15, 18], and ion channels in cell membranes [2, 6, 22]. Traditionally, the PNP
system can be derived by explicit averaging of correlated Brownian trajectories [5],
while the actual dynamics of charged particles in water and protein channels are much
more complicated [7]. In continuum description, the PNP system can also be viewed
as the consequence of both conservation of ion distributions and the Fick’s law. The
limitation of this method is that the specific interactions of particles are usually am-
biguous or totally neglected. The purpose of this paper is to present an alternative
way, an Energetic Variational Approach (EnVarA) [8], in which a consistent, coupled
system of equations can be derived for the description of charged particles transport.
Our approach is motivated by the seminal work of Lars Onsager [23, 24], that has an
attribution to Lord Rayleigh’s 1873 paper [30].

The general framework of EnVarA is the combination of the statistical physics and
nonlinear thermodynamics. The First Law of Thermodynamics states that the rate of
change of the sum of the kinetic energyK and the internal energy U is equal to the sum

of the rates of change of workW and heatQ, so d(K+U)
dt

= dW
dt

+ dQ
dt

. From the standard
statistical physics, the internal energy U takes into account the particles interactions.
Such interactions can be local, such as hard core interactions and nonlocal, such as
Coulomb electro static interactions. The Second Law of Thermodynamics, in the
isothermal case, is given by, T dS

dt
= dQ

dt
+∆, where T is temperature, S is entropy and

∆≥ 0 is entropy production. As a reformulation of the linear response assumption,
this entropy production functional can be represented as the sum of various rates such
as the velocities and the strain rates. By subtracting the Second Law from the First
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2 An Energetic Variational Approach for ion transport

Law, under the isothermal assumption, we have,

d

dt
(K+U −TS)=

dW

dt
−∆, (1.1)

where F :=U−T S is the Helmholtz free energy, and K+F is the total energy Etotal.
In case no external forces or fields are applied, i.e., dW

dt
=0, the above expression yields

the usual energy dissipation law [8, 9, 26, 27], where the entropy production is the
sole contribution to the dissipation,

d

dt
Etotal+∆=0 ⇔

d

dt
Etotal=−∆. (1.2)

The (Least) Action Principle (LAP) states that the equation of motion for a
Hamiltonian system is the direct result of the variation of the action functional A=
∫ t∗

0

∫

Ω(K−F)dxdt with respect to the flow map x(t)=x(X,t) (with x(X,0)=X) [1].
In other words, LAP optimizes the action with respect to all trajectories x(t)=x(X,t)

by taking the variation with respect to x, δA=
∫ t∗

0

∫

Ω0

[Fcon] ·δxdXdt, where Fcon is
the conservative force and Ω0 is the Lagrangian reference domain of Ω. In particular,
in equilibrium, we have the condition Fcon=0 for a Hamiltonian dynamics.

Next, we treat the dissipation part with the (Maximum) Dissipation Principle
(MDP) [23, 24, 29, 11]. Take the variation with respect to the velocity (rate) in
Eulerian coordinates δ(12∆)=

∫

Ω[Fdis] ·δudx, where Fdis is dissipative force. Note

that the factor 1
2 corresponds to the underlying assumption that ∆ is quadratic in

the function u. In particular, Fdis is linear in u, indicating the fact that we can view
MDP as just a reformulation of the linear response assumption of the nonequilibrium
thermodynamics [16]. Such postulations are the key to Onsager’s approach [23, 24],
as realized by Kubo [16] in the more explicit linear response theory.

The final equation of motion, the balance of all forces, includes both conservative
and dissipative components.

The following auxiliary Lemma is crucial in the energetic variational derivation
of the system of coupled equations.
Lemma 1.1. Let f satisfy the mass conservation law ft+∇·(uf)=0. Define W =
∫

Ωω(f)dx and Π(ω)=ωff−ω , and then δW =
∫

Ω∇Π ·δxdx.

Proof: The conservation of mass is equivalent to f(x(X,t),t)= f0(X)
J

, which is a direct
consequence of the identity Ft+u ·∇F =∇uF , where f0(X) is the initial density, J=

detF , F (X,t)= ∂x(X,t)
∂X

is the deformation gradient tensor [9]. Rewrite the integration

in the Lagrangian coordinate system and obtain W =

∫

Ω0

ω(
f0(X)

J
)JdX . Taking the

variation with respect to flow map x 7→x+εy, it yields

δW =
d

dε

∣
∣
∣
ε=0

W (x+εy)=
d

dε

∣
∣
∣
ε=0

∫

Ω0

ω(
f0(X)

J(x+εy)
)J(x+εy)dX

=−

∫

Ω0

ωf (
f0(X)

J
)
f0(X)

J2
· tr(

∂X

∂x

∂y

∂X
) ·J2dX+

∫

Ω0

ω(
f0(X)

J
) ·J · tr(

∂X

∂x

∂y

∂X
)dX

=

∫

Ω

−(ωff−ω,∇xỹ)dx=

∫

Ω

(∇(ωff−ω), ỹ)dx, (1.3)

where ỹ(x(X,t),t)= y(X,t). Hence the result holds. �
Remark 1.2. The above Lemma relates the pressure (the equation of states) to
the free energy density. For given energy dissipation law d

dt
Etotal= d

dt

∫

Ω
ω(f)dx=
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−
∫

Ω
f |u|2dx, if ω(f)= cf lnf only contains the Gibbs entropy, i.e. no particle inter-

actions, hence ideal gas, then Π=ωff−ω= cf . In particular, f satisfies ft= c△f ,
which is a simple diffusion equation [8].

If ω(f)=afγ, then Π=ωff−ω=a(γ−1)fγ. In particular, f satisfies ft=
△(a(γ−1)fγ), which gives the diffusion equation in porous media [31].

Next, we use the compressible Navier-Stokes (NS) equations as an example to
illustrate the framework of EnVarA. We start with the kinematic mass conservation,

ρt+∇·(ρu)=0, (1.4)

where ρ is mass density of fluid and u is velocity of fluid. This is equivalent to the

relation ρ(x(X,t),t)=
ρ0(X)

J
, where J=detF , F (X,t)= ∂x(X,t)

∂X
is the deformation

gradient tensor and ρ0(X) is the initial density [9]. The following energy dissipation
law includes all the physics for these Barotropic fluids [28].

d

dt

∫

Ω

(
1

2
ρ|u|2+ω(ρ)

)

dx=−

∫

Ω

[
µ1|∇u|2+µ2|∇·u|

]
dx, (1.5)

where µ1 and µ2 are viscosity constants and ω(ρ) is the Hemholtz free energy density.
By LAP and Lemma 1.1, we obtain the conservative force

Fcon=−(ρ(ut+u ·∇u)+∇Π(ρ)) , (1.6)

with Π(ρ)=ωρρ−ω being the pressure. By MDP, the dissipative force is ,

Fdis=−(∇·(µ1∇u)+∇(µ2∇·u)) . (1.7)

Finally, the total force balance gives the Navier-Stokes equation,

ρ(ut+u ·∇u)+∇Π(ρ)=∇·(µ1∇u)+∇(µ2∇·u). (1.8)

The conservative force corresponds to the compressible Euler equation, while the
dissipative force corresponds to the Stokes equation. Navier-Stokes equation can be
viewed as a hybrid model combining these two independent system.

In this paper, we use the EnVarA to derive the electrokinetic systems by consid-
ering the particles interactions in the dissipation part and the corresponding energy
law. The outline of paper is as follows: in §2, we present the derivation of the elec-
trokinetic system, Poisson-Nernst-Planck-Navier-Stokes(PNP-NS) system, by using
the EnVarA; in §3 we focus on the energy law of the PNP-NS system with different
types of boundary conditions; the Onsager relation is proved in §4; conclusion part is
given in §5.

2. Derivation of Electrokinetic System Using EnVarA Ion transport
in solutions by nature is a multiscale-multiphysics system. With the macroscopic
hydrodynamics description, the microscopic dynamics takes account of diffusion and
convection as well as electrostatics. The cross scale coupling can be modeled in the
general EnVarA framework. The total energy include all the equilibrium physics
included in system

Etotal=

∫

Ω

ρ

2
|u|2dx

︸ ︷︷ ︸

macroscopic

+

[

KBT (n ln
n

n∞
+p ln

p

p∞
)+

ε

2
|∇φ|2

]

︸ ︷︷ ︸

microscopic

dx, (2.1)
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where ρ is the mass density of fluid, u is the macroscopic velocity of fluid, KB is
the Boltzmann constant, T is the absolute temperature, n∞(p∞) is the characteristic
negative(positive) charge distribution, n(p) is negative (positive) charge distribution,
the dielectrics of solution is chosen to be the constant ε, and φ is electric potential.
The first term is the macroscopic kinetic energy of the solution fluids. The second
and third terms are the thermo-fluctuations (Gibbs entropy) of the ion species. The
last term is the electro energy.

In the macroscopic scale, we consider the fluid to be incompressible, i.e. ∇·u=
0. At the same time, we observe the following kinematic conservation of charge
distributions,

nt+∇·(nun)=0, pt+∇·(pup)=0, (2.2)

where un and up are the effective velocities of negative and positive charges, respec-
tively. The Gauss’s law yields the Poisson equation,

−ε△φ= ze(p−n), (2.3)

where z is valence of ion and e is the charge for one electron. Equivalently, the
potential φ can be given by the Green’s kernel G(x,y) in the form of

φ(x)= ze
1

ε

∫

Ω

G(x,y)(n−p)(y)dy. (2.4)

By substituting (2.4) into (2.1), the energy can be written in the following form

Etotal=

∫

Ω

ρ

2
|u|2dx+

∫

Ω

KBT (n ln
n

n∞
+p ln

p

p∞
)dx (2.5)

+
ze

2ε

∫

Ω

(p−n)(x)

∫

Ω

G(x,y)(n−p)(y)dydx,

where the last term, the electrostatic energy, represents the nonlocal Coulomb inter-
actions.

In order to take into account the more detailed interactions of particles, we fur-
thermore consider the dissipation functional ∆ as a sum of three parts, which are all
quadratic in terms of the ’rates’, the velocities,

∆=

∫

Ω

[
KBT

Dn

n|un−u|2+
KBT

Dp

p|up−u|2+η|∇u|2
]

dx, (2.6)

whereDn (Dp) is the diffusion constant of negative (positive) ion and η is the viscosity
of fluid. The first and second terms represent the frictions between particles and the
solvents. The last term is the fraction caused by the viscosity of the solutions.

Now we begin to use the EnVarA to derive the electrokinetic system. In this
case, there are three flow maps corresponding to three velocities fields, u, un, up:
macroscopic flow map x(X,t), negative charge map xn(X,t) and positive charge map
xp(X,t), respectively. For map xn, Lemma 1.1, Remark 1.2 and the variation yield,

Fn−con=
δA

δxn

=
δ

δxn

[
∫ t∗

0

(∫

Ω

ρ

2
|u|2dx−

∫

Ω

KBT (n ln
n

n∞
+p ln

p

p∞
)dx

−
ze

2ε

∫

Ω

(p−n)(x)

∫

Ω

G(x,y)(n−p)(y)dydx

)

dt

]

=−(KBT∇n−zen∇φ)=−n∇µn, (2.7)
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where µn :=
δ
δn
Etotal=KBT (1+lnn)−KBT lnn∞−zeφ is the chemical potential for

negative charge distribution n(x,t).
Using MDP, we calculate the variation of 1

2∆ with respect to the velocity un to
get the dissipative force,

Fn−dis=
δ

δun

(
1

2
∆)=

KBT

Dn

n(un−u). (2.8)

The total force balance for negative charge yields (including (2.7) and (2.8)):

nun=nu−
Dn

KBT
n∇µn. (2.9)

Substituting (2.9) into (2.2), the mass conservation of negative charge is:

nt+∇·(un)=∇·

(

Dn∇n−
ze

KBT
Dnn∇φ

)

. (2.10)

Similarly for positive charge, we can get

pup=pu−
Dp

KBT
p∇µp, (2.11)

pt+∇·(up)=∇·

(

Dp∇p+
ze

KBT
Dpp∇φ

)

, (2.12)

where µp :=
δ
δp
Etotal=KBT (1+lnp)−KBT lnp∞+zeφ is the chemical potential for

positive charge distribution p(x,t). In the absence of the flow field u, equations (2.10)
(2.12) with the Poisson equation (2.3) give the PNP system .

As for the macroscopic flow map x(X,t), considering the incompressible condi-
tion, we use 1-parameter family of volume preserving diffeomorphisms to perform the

variation, i.e. function xε such that x0=x, and dxε

dε

∣
∣
∣
ε=0

= y, and for any ε : det ∂xε

∂X
=1,

which in fact leads to a divergence free condition for y(X,t)= ỹ(x(X,t),t), i.e.
∇x · ỹ=0. For LAP, we use the variations xε of x as described above and with y
satisfying y(X,0)= y(X,t∗)=0 for any X ∈Ω0. We can calculate the variation of
action functional:

d

dε

∣
∣
∣
ε=0

A(xε)=
d

dε

∣
∣
∣
ε=0

∫ t∗

0

∫

Ω0

1

2
ρ0(X)|xε

t |dXdt (2.13)

=

∫ t∗

0

∫

Ω0

−ρ0(X)(xt)t ·ydXdt=

∫ t∗

0

∫

Ω

−ρ(x,t)(ut+u ·∇xu) · ỹdxdt.

Hence by the Weyl’s decomposition or Helmholtz’s decomposition, for some Π1∈
W 1,2(Ω), we have,

−ρ(x,t)(ut+u ·∇xu)=∇xΠ1. (2.14)

By MDP and incompressible constrain, we obtain the following equation of motion
for the dissipative part,

−η△u+
KBT

Dn

n(u−un)+
KBT

Dp

p(u−up)=∇Π̃2, (2.15)
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where Π̃2 is the Lagrange multiplier of incompressible constrain.
Substitute (2.9) and (2.11) into above formula and let Π2=Π̃2−KBT∇n−

KBT∇p,

∇Π2=−η△u−(n−p)ze∇φ. (2.16)

Then using the force balance, (2.14) and (2.16) yield

ρ(
∂u

∂t
+(u ·∇)u)= η△u−∇Π+(n−p)ze∇φ, (2.17)

with Π=Π1−Π2. The last term is the Lorentz force induced by the charges in
the fluids. It is the reaction to the convected term in (2.10) and (2.12), which is
consistent with the Newton’s third Law. Combining (2.3), (2.10), (2.12), (2.17) and
incompressibility, we get the coupled Poisson-Nernst-Planck-Navier-Stokes (PNP-NS)
system:







nt+∇·(un)=∇·
(

Dn∇n− ze
KBT

Dnn∇φ
)

=−∇·Jn,

pt+∇·(up)=∇·
(

Dp∇p+ ze
KBT

Dpp∇φ
)

=−∇·Jp,

−ε△φ= ze(p−n),
ρ(∂u

∂t
+(u ·∇)u)= η△u−∇Π+(n−p)ze∇φ,

∇·u=0.

(2.18)

Finally in this section, we verify the following theorem satisfied by the derived coupled
PNP-NS system (2.18).
Theorem 2.1. With the isothermal assumption and vanishing boundary conditions,
the system (2.18) satisfies the following energy dissipation law,

d

dt
Etotal=

d

dt

[∫

Ω

(
ρ

2
|u|2+KBT (n ln

n

n∞
+p ln

p

p∞
)+

ε

2
|∇φ|2

)

dx

]

=−

∫

Ω

[
Dn

KBT
n|∇µn|

2+
Dp

KBT
p|∇µp|

2+η|∇u|2
]

dx

=−

∫

Ω

[
KBT

Dn

n|un−u|2+
KBT

Dp

p|up−u|2+η|∇u|2
]

dx

=−∆. (2.19)

Reversely, if we choose the action functional as

A=

∫ t∗

0

∫

Ω

ρ

2
|u|2dx−

∫

Ω

KBT (n ln
n

n∞
+p ln

p

p∞
)dx−

ε

2
|∇φ|2dx,

and the dissipation functional as (2.6), then by (Least) Action Principle and (Max-
imum) Dissipation Principle, under the kinematic assumption of distribution (con-
servation law) (2.2) and Poisson equation, we can obtain the Poisson-Nernst-Planck-
Navier-Stokes system (2.18).

Sketch of Proof: From the energy law to PNP-NS system are above derivations.
By adding the first equation multiplied by µn, second equation multiplied by µp,
and fourth equation multiplied by u together, and using the weak form of Poisson
equation, we can get the energy law. �
Remark 2.2. Some more complicated models can be derived by including more cou-
pling terms for particle interactions in the total energy Etotal, such as
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1. In [8, 10], it is shown that, by EnVarA, a modified model can be derived
naturally for ion particles with finite size effects, through adding interaction
term Erepulsion =

∑N
i=1

∑N
j≥i

1
2

∫

Ω
Ψi,j(|x−y|)ci(x)cj(y)dxdy to the total en-

ergy, where ci, cj mean different species of ions, and Ψi,j(|x−y|)=
εij(aj+ai)
|x−y|12

is Lennard-Jones (LJ) potential for ith and jth ions located at x and y with
the radii ai, aj , respectively.

2. If we add Esurface= ze
∫

Ω
(p−n)Ψs to the total energy, we can derive the

surface potential trap model [32] to describe the electrokinetics induced by the
interface of solid and solution, where Ψs is a surface potential only depending
on the property of material.

3. Boundary Conditions In electrokinetics, most physically interesting prop-
erties arise from different boundary conditions [4, 17, 33]. These boundary conditions
represent the interactions between particles in the bulk solutions and the particles
in or near the boundary [32]. The interactions can also be included into the energy
functionals. As in the previous sections, we assume the non-flux boundary condition
Jn ·ν=Jp ·ν=0 for charge density, with ν being out normal vector, and the nonslip
boundary condition u=0 for velocity. We will focus on the boundary effect of po-
tential φ which plays an important role in electrodynamics. For the three different
boundary conditions, the PNP-NS system has the following theorem.
Theorem 3.1. If n, p satisfy Jn ·ν=Jp ·ν=0, and u=0 on the boundary ∂Ω, then

1. if φ=φ0(x), i.e. Dirichlet boundary, then PNPNS satisfies the energy law,

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT (n ln

n

n∞
+p ln

p

p∞
)+

ε

2
|∇φ|2

]

dx (3.1)

=−

[∫

Ω

Dn

KBT
n|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

+ε

∫

∂Ω

∂φ

∂ν
φ0dx;

2. if ∂φ
∂ν

= σ0(x)
ε

, i.e. Neumann boundary condition, then PNPNS satisfies the
energy law,

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT (n ln

n

n∞
+p ln

p

p∞
)+

ε

2
|∇φ|2

]

dx (3.2)

=−

[∫

Ω

Dn

KBT
|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

+

∫

∂Ω

σ0φdx;

3. if φ+ζ ∂φ
∂n

=φ0(x), i.e Robin boundary condition, then PNPNS satisfies the
energy law,

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT (n ln

n

n∞
+p ln

p

p∞
)+

ε

2
|∇φ|2+

ε

2ζ

∫

∂Ω

|φ|2dx

]

=−

[∫

Ω

Dn

KBT
|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

. (3.3)

Remark 3.2.

1. When φ on the boundary is Robin boundary condition, as time approaches
infinity, (3.3) means ∇µn=∇µp=∇u=0. Considering the boundary condi-
tion, it yields Jn=Jp=u=0, which means there is no fluid flux in the time
limit. Then we can derive a Charge Conservation Poisson Boltmann (CCPB)
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equation [17, 32]

−ε△φ= zen∞V

(
β exp(−zeφ/KBT )

∫

Ω
exp(−zeφ/KBT )dx

−
αexp(zeφ/KBT )

∫

Ω
exp(zeφ/KBT )dx

)

as the time limit of PNPNS system, where α= n0

n∞

and β= p0

n∞

with n0 (p0)
being the initial negative (positive) ion distribution.

2. In the ion transport process, most of time an extra field is added to the domain
to generate the electrodynamics phenomena. When there is an external filed
added to the PNPNS system, there will be an extra term

∫

Ω
(p−n)Ψdx added

to the total energy in Theorem 3.1, where −∇Ψ is the extra electric field
[13, 32].

4. Onsager’s Relation in Cylindrical Situation The coupling between
the flow field and the electric field gives arise to all the important properties and
applications of the electrokinetic fluids. For instance, when the fluid-solid interface
is charged, the application of an electrical voltage difference can induce a fluid flow.
This effect is known as electroosmosis (EO). Conversely, the application of a pressure
gradient can generate, besides fluid flow, a voltage difference that is denoted as the
streaming potential (SP). The EO and SP coefficients are not independent. They are
related by the well-known Onsager’s reciprocal relation [23, 24]. It dictates that the
electric current density Je and the fluid current density Jf be linearly related to the
voltage gradient ∇φ and the pressure gradient ∇Π :

[
Je

Jf

]

=−

[
L11 L12

L21 L22

][
∇φ
∇Π

]

, (4.1)

where L11 is the electrical conductivity and L21 is the hydrodynamic permeability.
In literature [33], the proportional matrix is treated as symmetric and attributed to
Onsager’s relation. Onsager’s reciprocal relation, the microscopic reversibility [23, 24]
is a stability conditions. It is manifested by specific coupling effects in different
physical settings. In (4.1), it is a reformulation of the fact that Lorentz force and the
transport of charge are action and reaction.

Onsager’s reciprocal relation has many forms in different settings. Here we take
the axisymmetric cylinder coordinate for low Reynolds number situations with con-
stant initial values, i.e. p(·,0)=p0, n(·,0)=n0 as an example. Then the PNP-NS
system is simplified to be the Poisson-Nernst-Planck-Stokes (PNP-S) system. If an
extra filed Ez and a pressure drop ∂π

∂z
are added in z direction, the velocity uz satisfies

∂Π

∂z
−µ

[
1

r

∂

∂r
(r
∂uz

∂r
)

]

=(p−n)ze(−
∂φ

∂z
+Ez), (4.2)

with uz(r=a)=φ(r=a)=0 . At the initial several steps, ∂φ
∂z

, ∂p
∂z
, ∂n

∂z
and ∂uz

∂z
are

small and negligible. Then we can get

uz =
εEzφ

µ
+
a2−r2

4µ
(−

∂Π

∂z
). (4.3)

And the fluxes for the negative and positive charges in z direction are

Jn=−

(

Dn

∂n

∂z
−Dn

ze

KBT
(
∂φ

∂z
−Ez)n

)

=−
ze

KBT
nDnEz (4.4)

Jp=−

(

Dp

∂p

∂z
+Dp

ze

KBT
(
∂φ

∂z
−Ez)p

)

=
ze

KBT
pDpEz . (4.5)
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The total electric current in z direction is the sum of the current carried (transported)
by the flow field u and the current due to the electric field,

Je=

∫ L

−L

∫ a

0 2(p−n)zeuzrdrdz+
∫ L

−L

∫ a

0 2ze(Jp−Jn)rdrdz

2La2

=Ez

[
ε

µa2

∫ a

0

rze(p−n)dr+
z2e2

KBT
Ez(Dpp0+Dnn0)

]

+(−
∂Π

∂z
)

1

2µa2

∫ a

0

(p−n)ze(a2−r2)rdr. (4.6)

The fluid flux in z direction is

Jf =

∫ L

−L

∫ a

0
2uzrdr

2La2
=

2εEz

µa2

∫ a

0

φrdr+(−
∂Π

∂z
)

1

2µa2

∫ a

0

(a2−r2)rdr.

We may write the Onsager relation as
[
Je
Jf

]

=

[
L11 L12

L21 L22

][
Ez

−∂Π
∂z

]

, (4.7)

where we have introduced the function forms of the coefficients,

L12=
1

2µa2

∫ a

0

rze(p−n)(a2−r2)dr, L21=
2ε

µa2

∫ a

0

φrdr. (4.8)

But by the Poisson equation, L12 can be rewritten as

L12=−
ε

2µa2

∫ a

0

(a2−r2)(
1

r

∂φ

∂r
+

∂2φ

∂r2
)rdr

=−
ε

2µa2

[

(−a2φ(0)+2

∫ a

0

φrdr)+(a2φ(0)−

∫ a

0

6rφdr)

]

=
2ε

µa2

∫ a

0

rφdr=L21, (4.9)

which gives the symmetric property of the matrix.

5. Conclusion In this paper, we derive the electrokinetic system for ion trans-
port in solutions by using an Energy Variational Approach. Taking into consideration
of particles interactions in both the free energy functional and the dissipation func-
tional, we obtain the Poisson-Nernst-Planck-Navier-Stokes system. We can extend
our theory to include more detailed description of the solutions, such as the finite
size effects of the charged particles and various boundary effects. Since the boundary
condition of potential play an important role in electrokinetic, we also present the
boundary effects to the energy law. The energy laws with an external electric field
under different boundary conditions of potential are also obtained. A short demonstra-
tion of Onsager’s relation is presented for the Poisson-Nernst-Planck-Stokes system
under cylinder axisymmetric coordinate.
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Supplement to the “AN ENERGETIC VARIATIONAL

APPROACH FOR ION TRANSPORT” by Shixin Xu,

Ping Sheng and Chun Liu in CMS

Motivated by the seminarial work of Onsager and Rayleigh, the frame work

of the Energy Variational Approaches had been employed to study many com-

plex fluids systems [Liu2001], [Yue2004], [Eisenberg2010]. Although there is a

vast body of literatures on various applications, there lacks a comprehensive

reference on the topic. The purpose of the paper ” AN ENERGETIC VARI-

ATIONAL APPROACH FOR ION TRANSPORT” is on the specific appli-

cations on Poisson-Nernst-Planck system and Poisson-Nernst-Planck-Navier-

Stokes system. Due to the 10 pages limitation, we left out some details in that

manuscript. This is the motivation of this supplement.

1 Some basic examples of Energetic Variational Approach

1). Hookean Spring : This is the original example by the Rayleigh [Strutt

1873]

The (Least) Action Principle is the reformulation of the fact that force×
distance = work. Hence variation of the energy with respect to flow map

x(X, t) yields the (conservative) force. Let x denote the displacement of the

lower end of the spring form its equilibrium position. Then the traditional

equation used to describe the spring is

mxtt + γxt + kx = 0, (0.1)

where mxtt is the inertia, γxt is damping, and kx is elastic force.

Multiplying (0.1) by xt and integrating by parts, it yields

d

dt
(
1

2
mx2

t +
1

2
kx2) = −γx2

t , (0.2)

where the total energy is Etotal = 1
2
mx2

t +
1
2
kx2, and the dissipation functional

is quadratic on velocity u = xt, ∆ = −γx2
t .
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Reversely, if we start from energy dissipation law (0.2), the action func-

tional is

A =

∫ t∗

0

(
1

2
mx2

t −
1

2
kx2

)
dt. (0.3)

By LAP and taking variation of A with respect to x, we get immediately

Fcon = −mxtt − kx, (0.4)

which is exactly the conservative force for the Hookean spring.

Next we treat the dissipative part. If we denote xt = u, by MDP, it yields,

for any smooth test function v,

d

dε

∣∣∣
ε=0

1

2
∆(u+ εv) =

d

dε

∣∣∣
ε=0

(
1

2
γ(u+ εv)2) = γu · v, (0.5)

which is also consistent with the optimal transportation [Villani2003]. This

yields the dissipative force

Fdis = γxt. (0.6)

Now we have both the dissipative part (0.6) and the Hamiltonian part (0.4) of

the system. The equation for the entire system comes from the force balance

Fcon = Fdis:

−mxtt − kx = γxt, (0.7)

which is equivalent with equation (0.1).

2) Simple Diffusion

Various forms of this derivation can be found in many literatures, for in-

stance, [Xu2013]. Here we take the simple heat equation as example. The

diffusion equation

ft = c△f, (0.8)

can be viewed as special case in this energetic variational framework. Equation

(0.8) can be rewritten as {
ft +∇ · (uf) = 0,

−c∇f = fu.
(0.9)
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Multiplying the first equation in (0.9) by c(ln f + 1) and integrating by parts,

it yields,

d

dt

∫
Ω

cf ln fdx =

∫
Ω

ftc(1 + ln f)dx

=

∫
Ω

fuc∇(1 + ln f)dx =

∫
Ω

fuc
∇f

f
dx

= −
∫
Ω

f |u|2dx. (0.10)

Reversely, we start with the kinematic assumption of density f (conserva-

tion law) and energy dissipation law{
ft +∇ · (uf) = 0,
d
dt
Etotal = d

dt

∫
Ω
cf ln fdx = −

∫
Ω
f |u|2dx. (0.11)

By the LAP, we can get

Fcon =
δA

δx
= −δEtotal

δx
= −c∇f (0.12)

and by MDP, we can get

Fdis =
δ

δu

∆

2
= fu. (0.13)

The force balance yields

−c∇f = fu. (0.14)

Combining above formula and the conservation law, we can get

ft = c△f. (0.15)

2. The derivation of compressible Navier-Stokes equation

This is motivated by the classical derivations of Euler equation by (Least)

Action Principle [Arnold1989] and also the (Maximum) Dissipation Principle

of Onsager [Onsager1931a,Onsager1931b] which is another version of the linear

response theory [Kubo1976]. The density ρ satisfies the kinematic assumption

(conservation of mass),

ρt +∇ · (ρu) = 0. (0.16)

From the energy variation point of view, the following energy dissipation law

includes all the physics of Newtonian fluids
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d

dt
Etotal =

d

dt

∫
Ω

(
1

2
ρ|u|2 + ω(ρ)

)
dx = −

∫
Ω

[
µ1|∇u|2 + µ2|∇ · u|

]
dx,(0.17)

where µ1 and µ2 are viscosity constants, the Hemholtz free energy density ω(ρ)

includes both the entropic contributions and the internal energy describing the

particle interactions. The action functional in Lagrangian coordinates, after

Legendre transformation, is

A(x) =

∫ t∗

0

∫
Ω

(
1

2
ρ|u|2 − ω(ρ)

)
dxdt

=

∫ t∗

0

∫
Ω0

(
1

2

ρ0
J
|xt(X, t)|2 − ω(

ρ0
J
)

)
JdXdt

=

∫ t∗

0

∫
Ω0

(
1

2
ρ0|xt(X, t)|2dXdt− ω(

ρ0
J
)J

)
dXdt, (0.18)

where J = detF , F (X, t) = ∂x(X,t)
∂X

is the deformation gradient. Taking the

variation with respect to x yields, for any y(X, t) = ỹ(x(X, t), t) smooth with

compact support

d

dε

∣∣∣
ε=0

A(x(X, t) + εy(X, t)) =
d

dε

∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

1

2
ρ0(X)|xt + εyt|2 − ω

(
ρ0(X)

det(∂(x+εy)
∂X

)

)(
det(

∂(x+ εy)

∂X
)

)
dXdt

=

∫ t∗

0

∫
Ω0

ρ0(X)xtytdXdt+

∫ t∗

0

∫
Ω0

ωρ(
ρ0(X)

J
)
ρ0(X)

J2
· tr(∂X

∂x

∂y

∂X
) · J2

−ω(
ρ0(X)

J
) · J · tr(∂X

∂x

∂y

∂X
)dXdt. (0.19)

Here we use the fact δ(detF ) = detF · tr(F−T ∂δx
∂X

).
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Integrating by parts, above formula yields∫ t∗

0

∫
Ω0

−ρ0(X)xttyt

+

(
ωρ

(
ρ0(X)

J
·
)

ρ0(X)

J
− ω

(
ρ0(X)

J
·
))

· tr(∂X
∂x

∂y

∂X
)JdXdt

=

∫ t∗

0

∫
Ω

(−ρ(x)
d

dt
u(x, t)) · ỹ

+(ωρ(ρ(x, t))ρ(x, t)− ω(ρ(x, t))) · (∇x · ỹ)dxdt

=

∫ t∗

0

∫
Ω

−(ρ(x, t)
d

dt
u(x, t) +∇x(ωρ(ρ(x, t)) · ρ(x, t)− ω(ρ(x, t)))) · ỹdxdt

=

∫ t∗

0

∫
Ω

−(ρ(x, t)(ut + u · ∇xu) +∇xΠ(x, t)) · ỹdxdt, (0.20)

where Π(x, t) = ωρ(ρ(x, t)) · ρ(x, t) − ω(ρ(x, t))(same result as Lemma 1.1).

Then we obtain the conservative force

Fcon = − (ρ(x, t)(ut + u · ∇xu) +∇xΠ(x, t)) . (0.21)

As to the dissipation part, the dissipation functional is

∆ =
∫
Ω
[µ1|∇u|2 + µ2|∇ · u|] dx. Maximum Dissipation Principle, as a refor-

mulation of the linear response theory, takes the variation of ∆ with respect

to the rate function u.

d

dε

∣∣∣
ε=0

1

2
∆(u+ εv)

=
d

dε

∣∣∣
ε=0

∫
Ω

1

2
µ1(x, t)|∇xu+ ε∇xv|2 +

1

2
µ2(x, t)|∇x · u+ ε∇x · v|2dx

=

∫
Ω

µ1(x, t)∇xu : ∇xv + µ2(x, t)(∇x · u)(∇x · v)dx

=

∫
Ω

(−∇x(µ1(x, t)∇xu)−∇x(µ2(x, t)∇x · u) · vdx, (0.22)

where v is any test function with compact support. Hence the dissipative force

is

Fdis = −∇x(µ1∇xu) +∇x(µ2∇x · u). (0.23)

Finally, by force balance Fcon = Fdis, we can get the usual Navier-Stokes

equation (momentum equation)

ρ(ut + u · ∇u) +∇Π(ρ) = ∇ · (µ1∇u) +∇(µ2∇ · u). (0.24)
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3. Interactions between particles

In a dissipation system, the particle interactions attribute to both the free

energy functional and dissipation functional. The coarse graining derivation

of the Helmholtz free energy U − TS, or equivalently, the equation of states,

takes into account the free energy part . As in the standard statistical physics,

the particles interactions contribute to the internal energy U . Such interac-

tions can be local, such as hard core interations or nonlocal, such as Coulomb

electro static interactions. At the same time, however independently, the non-

equilibrium thermaldynamics, following the linear response theory of Onsager

[Onsager1931a,Onsager1931b]and Kubo [Kubo1976], the dissipative functional

(the entropy production) is the sum of the quadratic powers of various rate

variables. In PNP, the free energy includes the Gibbs entropy and the particle

Columb interaction. The dissipation are quadratic of velocities.
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