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Motivated by the seminarial work of Onsager and Rayleigh, the frame work

of the Energy Variational Approaches had been employed to study many com-

plex fluids systems [Liu2001], [Yue2004], [Eisenberg2010]. Although there is a

vast body of literatures on various applications, there lacks a comprehensive

reference on the topic. The purpose of the paper ” AN ENERGETIC VARI-

ATIONAL APPROACH FOR ION TRANSPORT” is on the specific appli-

cations on Poisson-Nernst-Planck system and Poisson-Nernst-Planck-Navier-

Stokes system. Due to the 10 pages limitation, we left out some details in that

manuscript. This is the motivation of this supplement.

1 Some basic examples of Energetic Variational Approach

1). Hookean Spring : This is the original example by the Rayleigh [Strutt

1873]

The (Least) Action Principle is the reformulation of the fact that force×
distance = work. Hence variation of the energy with respect to flow map

x(X, t) yields the (conservative) force. Let x denote the displacement of the

lower end of the spring form its equilibrium position. Then the traditional

equation used to describe the spring is

mxtt + γxt + kx = 0, (0.1)

where mxtt is the inertia, γxt is damping, and kx is elastic force.

Multiplying (0.1) by xt and integrating by parts, it yields

d

dt
(
1

2
mx2

t +
1

2
kx2) = −γx2

t , (0.2)

where the total energy is Etotal = 1
2
mx2

t +
1
2
kx2, and the dissipation functional

is quadratic on velocity u = xt, ∆ = −γx2
t .
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Reversely, if we start from energy dissipation law (0.2), the action func-

tional is

A =

∫ t∗

0

(
1

2
mx2

t −
1

2
kx2

)
dt. (0.3)

By LAP and taking variation of A with respect to x, we get immediately

Fcon = −mxtt − kx, (0.4)

which is exactly the conservative force for the Hookean spring.

Next we treat the dissipative part. If we denote xt = u, by MDP, it yields,

for any smooth test function v,

d

dε

∣∣∣
ε=0

1

2
∆(u+ εv) =

d

dε

∣∣∣
ε=0

(
1

2
γ(u+ εv)2) = γu · v, (0.5)

which is also consistent with the optimal transportation [Villani2003]. This

yields the dissipative force

Fdis = γxt. (0.6)

Now we have both the dissipative part (0.6) and the Hamiltonian part (0.4) of

the system. The equation for the entire system comes from the force balance

Fcon = Fdis:

−mxtt − kx = γxt, (0.7)

which is equivalent with equation (0.1).

2) Simple Diffusion

Various forms of this derivation can be found in many literatures, for in-

stance, [Xu2013]. Here we take the simple heat equation as example. The

diffusion equation

ft = c△f, (0.8)

can be viewed as special case in this energetic variational framework. Equation

(0.8) can be rewritten as {
ft +∇ · (uf) = 0,

−c∇f = fu.
(0.9)
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Multiplying the first equation in (0.9) by c(ln f + 1) and integrating by parts,

it yields,

d

dt

∫
Ω

cf ln fdx =

∫
Ω

ftc(1 + ln f)dx

=

∫
Ω

fuc∇(1 + ln f)dx =

∫
Ω

fuc
∇f

f
dx

= −
∫
Ω

f |u|2dx. (0.10)

Reversely, we start with the kinematic assumption of density f (conserva-

tion law) and energy dissipation law{
ft +∇ · (uf) = 0,
d
dt
Etotal = d

dt

∫
Ω
cf ln fdx = −

∫
Ω
f |u|2dx. (0.11)

By the LAP, we can get

Fcon =
δA

δx
= −δEtotal

δx
= −c∇f (0.12)

and by MDP, we can get

Fdis =
δ

δu

∆

2
= fu. (0.13)

The force balance yields

−c∇f = fu. (0.14)

Combining above formula and the conservation law, we can get

ft = c△f. (0.15)

2. The derivation of compressible Navier-Stokes equation

This is motivated by the classical derivations of Euler equation by (Least)

Action Principle [Arnold1989] and also the (Maximum) Dissipation Principle

of Onsager [Onsager1931a,Onsager1931b] which is another version of the linear

response theory [Kubo1976]. The density ρ satisfies the kinematic assumption

(conservation of mass),

ρt +∇ · (ρu) = 0. (0.16)

From the energy variation point of view, the following energy dissipation law

includes all the physics of Newtonian fluids
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d

dt
Etotal =

d

dt

∫
Ω

(
1

2
ρ|u|2 + ω(ρ)

)
dx = −

∫
Ω

[
µ1|∇u|2 + µ2|∇ · u|

]
dx,(0.17)

where µ1 and µ2 are viscosity constants, the Hemholtz free energy density ω(ρ)

includes both the entropic contributions and the internal energy describing the

particle interactions. The action functional in Lagrangian coordinates, after

Legendre transformation, is

A(x) =

∫ t∗

0

∫
Ω

(
1

2
ρ|u|2 − ω(ρ)

)
dxdt

=

∫ t∗

0

∫
Ω0

(
1

2

ρ0
J
|xt(X, t)|2 − ω(

ρ0
J
)

)
JdXdt

=

∫ t∗

0

∫
Ω0

(
1

2
ρ0|xt(X, t)|2dXdt− ω(

ρ0
J
)J

)
dXdt, (0.18)

where J = detF , F (X, t) = ∂x(X,t)
∂X

is the deformation gradient. Taking the

variation with respect to x yields, for any y(X, t) = ỹ(x(X, t), t) smooth with

compact support

d

dε

∣∣∣
ε=0

A(x(X, t) + εy(X, t)) =
d

dε

∣∣∣
ε=0

A(x+ εy)

=
d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

1

2
ρ0(X)|xt + εyt|2 − ω

(
ρ0(X)

det(∂(x+εy)
∂X

)

)(
det(

∂(x+ εy)

∂X
)

)
dXdt

=

∫ t∗

0

∫
Ω0

ρ0(X)xtytdXdt+

∫ t∗

0

∫
Ω0

ωρ(
ρ0(X)

J
)
ρ0(X)

J2
· tr(∂X

∂x

∂y

∂X
) · J2

−ω(
ρ0(X)

J
) · J · tr(∂X

∂x

∂y

∂X
)dXdt. (0.19)

Here we use the fact δ(detF ) = detF · tr(F−T ∂δx
∂X

).
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Integrating by parts, above formula yields∫ t∗

0

∫
Ω0

−ρ0(X)xttyt

+

(
ωρ

(
ρ0(X)

J
·
)

ρ0(X)

J
− ω

(
ρ0(X)

J
·
))

· tr(∂X
∂x

∂y

∂X
)JdXdt

=

∫ t∗

0

∫
Ω

(−ρ(x)
d

dt
u(x, t)) · ỹ

+(ωρ(ρ(x, t))ρ(x, t)− ω(ρ(x, t))) · (∇x · ỹ)dxdt

=

∫ t∗

0

∫
Ω

−(ρ(x, t)
d

dt
u(x, t) +∇x(ωρ(ρ(x, t)) · ρ(x, t)− ω(ρ(x, t)))) · ỹdxdt

=

∫ t∗

0

∫
Ω

−(ρ(x, t)(ut + u · ∇xu) +∇xΠ(x, t)) · ỹdxdt, (0.20)

where Π(x, t) = ωρ(ρ(x, t)) · ρ(x, t) − ω(ρ(x, t))(same result as Lemma 1.1).

Then we obtain the conservative force

Fcon = − (ρ(x, t)(ut + u · ∇xu) +∇xΠ(x, t)) . (0.21)

As to the dissipation part, the dissipation functional is

∆ =
∫
Ω
[µ1|∇u|2 + µ2|∇ · u|] dx. Maximum Dissipation Principle, as a refor-

mulation of the linear response theory, takes the variation of ∆ with respect

to the rate function u.

d

dε

∣∣∣
ε=0

1

2
∆(u+ εv)

=
d

dε

∣∣∣
ε=0

∫
Ω

1

2
µ1(x, t)|∇xu+ ε∇xv|2 +

1

2
µ2(x, t)|∇x · u+ ε∇x · v|2dx

=

∫
Ω

µ1(x, t)∇xu : ∇xv + µ2(x, t)(∇x · u)(∇x · v)dx

=

∫
Ω

(−∇x(µ1(x, t)∇xu)−∇x(µ2(x, t)∇x · u) · vdx, (0.22)

where v is any test function with compact support. Hence the dissipative force

is

Fdis = −∇x(µ1∇xu) +∇x(µ2∇x · u). (0.23)

Finally, by force balance Fcon = Fdis, we can get the usual Navier-Stokes

equation (momentum equation)

ρ(ut + u · ∇u) +∇Π(ρ) = ∇ · (µ1∇u) +∇(µ2∇ · u). (0.24)
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3. Interactions between particles

In a dissipation system, the particle interactions attribute to both the free

energy functional and dissipation functional. The coarse graining derivation

of the Helmholtz free energy U − TS, or equivalently, the equation of states,

takes into account the free energy part . As in the standard statistical physics,

the particles interactions contribute to the internal energy U . Such interac-

tions can be local, such as hard core interations or nonlocal, such as Coulomb

electro static interactions. At the same time, however independently, the non-

equilibrium thermaldynamics, following the linear response theory of Onsager

[Onsager1931a,Onsager1931b]and Kubo [Kubo1976], the dissipative functional

(the entropy production) is the sum of the quadratic powers of various rate

variables. In PNP, the free energy includes the Gibbs entropy and the particle

Columb interaction. The dissipation are quadratic of velocities.
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