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Poisson Fermi Formulation

We couple the 

Screened Coulomb (Yukawa) Potential*
and

Far Field Poisson Electrostatics

*to avoid the Lennard Jones Combining Rules 
that are 

Badly defined in Experiments 
and 

Simulations of Liquids
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Lennard Jones potentials are troublesome 
because they have combining rules that are ill defined in 

experiments, 
whether Lorentz-Berthelot or Kong. 

Combining parameters are likely to depend on ionic species,
concentration and perhaps other variables.

It is dangerous to have a model that depends 
sensitively on parameters that are unknown 

experimentally.
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(1)

We use Yukawa potential  𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ to describe Bjerrum/Debye Screening

𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ =
𝐞𝐞𝐞𝐞𝐞𝐞 − ⁄𝐫𝐫−𝐫𝐫′ 𝝀𝝀

4𝜋𝜋 𝐫𝐫−𝐫𝐫′

Yukawa potential  𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ satisfies the differential equation

−𝛻𝛻2𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ + 𝟏𝟏
𝝀𝝀𝟐𝟐𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ = δ 𝐫𝐫 − 𝐫𝐫′

𝐘𝐘 � is the lowest order amplitude term in a general expansion of interaction of a pair of fermions
The effective dielectric function of 𝐘𝐘(ρ) is 𝐞𝐞𝐞𝐞𝐞𝐞 − ⁄ρ 𝝀𝝀

𝛌𝛌 is the Fermi-Thomas screening wave vector.

(2)

Yukawa Screened Coulomb Potential

Poisson Fermi Formulation
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�
𝟏𝟏

𝑲𝑲

𝒒𝒒𝒊𝒊 𝑪𝑪𝒊𝒊(𝐫𝐫)

Local Potential and Yukawa interaction must be joined to create a long range global potential to deal with 
correlations in high field or crowded conditions in which the size and valence of ions and the polarization of 

water play significant roles.
Ions are often crowded where they are important

�𝜙𝜙 𝐫𝐫 is defined by Poisson equation as 

-𝜀𝜀𝑠𝑠𝜀𝜀0 𝛻𝛻2 �𝜙𝜙 𝐫𝐫 = 𝜌𝜌𝐼𝐼 𝐫𝐫 ≝ (4)

Definition

LOCAL POTENTIAL 
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Local Potential and Yukawa interaction 
are joined 

to create a long range 

Global Potential

Global Potential is needed to deal with Correlations
in high field or crowded conditions 

in which the size and valence of ions 
and the polarization of water 

are important.

Ions are often crowded where they are important:
DNA, ion channels, enzymes, binding proteins, electrodes, batteries, supercapacitors
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We introduce a 
GLOBAL POTENTIAL

𝝓𝝓 𝐫𝐫
that is a convolution of Yukawa screened Coulomb potential and the Poisson local potential �𝝓𝝓

𝝓𝝓 𝐫𝐫 =� 𝟏𝟏
𝝀𝝀𝟐𝟐𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ �𝝓𝝓 𝐫𝐫′ d𝐫𝐫’

Multiply the Yukawa potential 𝐘𝐘 𝐫𝐫 − 𝐫𝐫′ in its defining differential equation (2) by the local Poisson 
potential �𝜙𝜙 𝐫𝐫 and integrate to smooth the product, reducing the detail (and resolution) of the result.

The smoothed global potential 𝝓𝝓 𝐫𝐫 allows easier computation 
in  a differential equation we will now use.

(5)
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𝜆𝜆2𝛻𝛻2𝜙𝜙 𝐫𝐫 +𝜙𝜙 𝐫𝐫 = �𝜙𝜙 𝐫𝐫 (6)

𝜙𝜙 becomes approximate when we impose a finite domain for computation

See Xie and Volkmer (2015) Comm Computational Physics 13:174-194.

also Hildebrandt et al (2004) Phys. Rev. Lett. 93, 108104; 
Xie, Liu, and Eisenberg, Phys. Rev. E (2016) 94, 012114; 

using numerical methods in Xie, et al, (2012) 34:B107-B126.

GLOBAL POTENTIAL
𝝓𝝓 𝐫𝐫

is a convolution of the Yukawa screened Coulomb potential and the local Poisson potential

The global potential is a convolution eq. (5)  and also a solution of the differential equation

Poisson Fermi Formulation
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-𝜀𝜀𝑠𝑠𝜀𝜀0 𝛻𝛻2 �𝜙𝜙 𝐫𝐫 = 𝜌𝜌𝐼𝐼 𝐫𝐫 ≝

𝜆𝜆2𝛻𝛻2𝜙𝜙 𝐫𝐫 +𝜙𝜙 𝐫𝐫 = �𝜙𝜙 𝐫𝐫

Eq. (4) and (6) give the fourth order equation

𝜆𝜆2𝜀𝜀𝑠𝑠𝜀𝜀0𝛻𝛻4𝜙𝜙 𝐫𝐫 + 𝜀𝜀𝑠𝑠𝜀𝜀0𝛻𝛻2𝜙𝜙 𝐫𝐫 = 𝜌𝜌𝐼𝐼 𝐫𝐫

which is best solved as a pair of second order differential equations, we think 
Liu and Eisenberg (2015) Phys Rev E 92: 012711, also https://arxiv.org/pdf/011506.005953
Liu and Eisenberg (2018) J Chem Phys 148:054501, also https://arxiv.org/abs/1801.03470

�
𝟏𝟏

𝑲𝑲

𝒒𝒒𝒊𝒊 𝑪𝑪𝒊𝒊(𝐫𝐫) (4)

(6)

(7)

GLOBAL POTENTIAL 𝝓𝝓 𝐫𝐫
combines Yukawa Screened Coulomb and Poisson Far Field

Poisson Fermi Formulation
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We move from the potential
to

Free energy

using a functional formulation 
but not yet dissipation
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Free energy formulation with functionals

F(C, 𝝓𝝓) = 𝑭𝑭𝒆𝒆𝒆𝒆 (C, 𝝓𝝓)+ 𝑭𝑭𝒆𝒆𝒏𝒏(C), (8)

𝑭𝑭𝒆𝒆𝒆𝒆 (C, 𝝓𝝓) = 𝟏𝟏𝟐𝟐 𝝆𝝆𝑰𝑰𝝓𝝓 𝒅𝒅𝐫𝐫 + 𝟏𝟏
𝟐𝟐 𝝆𝝆𝑰𝑰𝑳𝑳−𝟏𝟏𝝓𝝓 𝒅𝒅𝐫𝐫 (9)

𝑭𝑭𝒆𝒆𝒏𝒏(C) = 𝒌𝒌𝑩𝑩T � 𝐥𝐥𝐥𝐥 𝑪𝑪𝒊𝒊 𝐫𝐫
𝑪𝑪𝒊𝒊

𝑩𝑩 − 𝟏𝟏 + 𝜞𝜞 𝐫𝐫
𝝂𝝂𝟎𝟎

𝐥𝐥𝐥𝐥 𝜞𝜞 𝐫𝐫
𝜞𝜞𝑩𝑩 − 𝟏𝟏 𝒅𝒅𝐫𝐫

��

Here 𝐹𝐹𝑒𝑒𝑒𝑒(C) is our (saturating) entropy functional embodying the entropy of all species 𝐶𝐶𝑖𝑖 and their steric interactions; 
𝐹𝐹𝑒𝑒𝑒𝑒(C, 𝜙𝜙) is our electrostatic functional; the sum over index  𝑖𝑖 is

And 𝐿𝐿−1 is the inverse of the fourth order self adjoint positive linear operator
Fourth Order Operator L=𝝀𝝀𝟐𝟐𝜺𝜺𝒔𝒔𝜺𝜺𝟎𝟎𝜵𝜵𝟒𝟒𝝓𝝓 𝐫𝐫 + 𝜺𝜺𝒔𝒔𝜺𝜺𝟎𝟎𝜵𝜵𝟐𝟐𝝓𝝓 𝐫𝐫

It is usually best numerically to rewrite the L operator as a pair of second order operators. 11

�
𝟏𝟏

𝑲𝑲

𝒒𝒒𝒊𝒊 𝑪𝑪𝒊𝒊(𝐫𝐫)

Average Volume ≝ 𝝂𝝂𝟎𝟎 = 𝟏𝟏
𝑲𝑲+𝟏𝟏 �

𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊
(11)

(12)

(10)
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Taking the variation of 𝐹𝐹 𝐂𝐂, 𝜙𝜙 at 𝜙𝜙
recovers previous

Crucial Multiscale Equation that links Atomic and Macroscales of Potential

𝝀𝝀𝟐𝟐𝜺𝜺𝒔𝒔𝜺𝜺𝟎𝟎𝜵𝜵𝟒𝟒𝝓𝝓 𝐫𝐫 + 𝜺𝜺𝒔𝒔𝜺𝜺𝟎𝟎𝜵𝜵𝟐𝟐𝝓𝝓 𝐫𝐫 =𝝆𝝆𝑰𝑰 𝐫𝐫 (13)

with 𝝓𝝓 𝒓𝒓 = 𝟎𝟎 on the boundary. 
This equation is converted to two second order differential equations 

to make numerical treatments easier and more accurate.

12Poisson Fermi Formulation



Poisson Fermi Formulation

Saturation Phenomena
Crucial in crowded systems, 

Near electrodes, DNA, 
in ion channels, binding proteins,

Enzyme active sites, 
Batteries, Electrodes, Supercapacitors

Ions are often crowded where they are most important

Much less important in homogeneous bulk solutions

13Poisson Fermi Formulation



Volume in our Hard Sphere Model

Spherical Ions are Species 𝟏𝟏, 𝟐𝟐, 𝟑𝟑 … 𝑲𝑲
Spherical ‘Water’ is Species 𝑲𝑲 + 𝟏𝟏

Voids* are Species                𝑲𝑲 + 𝟐𝟐

�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑵𝑵𝒊𝒊 + 𝑽𝑽𝑲𝑲+𝟐𝟐Volume 𝑽𝑽 ≡

Ions + Water Voids

*Voids are needed to fill space 
and for actual computations, as we shall see, 

spheres cannot fill space.
Leaving out spheres produces contradictions and severe

Numerical difficulties

The volume of each sphere 𝝂𝝂𝒊𝒊 = 𝟒𝟒
𝟑𝟑𝒂𝒂𝒊𝒊

𝟑𝟑 where 𝒂𝒂𝒊𝒊 is the radius of the 𝒊𝒊𝒕𝒕𝒕𝒕 species
𝑁𝑁𝑖𝑖 is the total number of spheres in the volume 𝑽𝑽.

14

(14)
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Void Volume Fraction Γ 𝐫𝐫
is a key measure of crowding* in the Fermi Distribution

⟹ free energy per mole = the activity of voids

�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑪𝑪𝒊𝒊 𝐫𝐫Γ 𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣; 𝐫𝐫 ≝ 𝑽𝑽𝑲𝑲+𝟐𝟐
𝑽𝑽

= 𝟏𝟏 −

*Ions are usually crowded where they are important,
Near DNA and Electrodes

Near and in ion channels, binding proteins, enzyme active sites.

Ions + Water

15

(15)
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Steric Potential 𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫
is 

Normalized* Activity of Voids§
Key parameter in the Fermi Distribution

*Normalized with respect to the bulk homogeneous solution  𝛤𝛤Bulk.
§ Ions are usually crowded where they are important,

near DNA and Electrodes
near and in 

Ion Channels, Binding proteins, Enzyme Active Sites

𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 ≝ 𝐥𝐥𝐥𝐥 ⁄𝜞𝜞 𝐫𝐫 𝚪𝚪𝐁𝐁𝐮𝐮𝐥𝐥𝐮𝐮

16

�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑪𝑪𝒊𝒊 𝐫𝐫Γ 𝐫𝐫 ≝�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑪𝑪𝒊𝒊 BulkΓBulk ≝ (17)

(16)
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𝐒𝐒𝐒𝐒𝐞𝐞𝐫𝐫𝐒𝐒𝐒𝐒 𝐏𝐏𝐏𝐏𝐒𝐒𝐞𝐞𝐥𝐥𝐒𝐒𝐒𝐒𝐏𝐏𝐥𝐥 = 𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 ≝ 𝐥𝐥𝐥𝐥 ⁄𝜞𝜞 𝐫𝐫 𝜞𝜞𝐁𝐁

𝚪𝚪B= reference potential  of bulk 

Determines the

Fermi Distribution of Concentrations*

𝑪𝑪𝒊𝒊 𝐫𝐫 =𝑪𝑪𝒊𝒊
𝑩𝑩 𝐞𝐞𝐞𝐞𝐞𝐞 −𝜷𝜷𝒊𝒊𝝓𝝓 𝐫𝐫 + 𝝂𝝂𝒊𝒊

𝝂𝝂𝟎𝟎
𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 where 𝛽𝛽𝑖𝑖 = ⁄𝑞𝑞𝑖𝑖 𝑘𝑘𝐵𝐵T.

for  Ions 𝒊𝒊 = 𝟏𝟏, 𝟐𝟐, … , 𝑲𝑲.
and 

also Water  𝒊𝒊 = 𝑲𝑲 + 𝟏𝟏. Water net charge = 𝑞𝑞𝐾𝐾+1 = 0.

Steric Potential and the Fermi Distribution*

17

(18)

(19)

*Fermi distribution saturates!
Poisson Fermi Formulation



Taking the variation of 𝐹𝐹 𝐂𝐂, 𝜙𝜙 at 𝐶𝐶𝑖𝑖 𝐫𝐫 , yields saturating, Fermi like distributions 
that we like to write in terms of the

Steric Potential  = 𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 ≝ 𝐥𝐥𝐥𝐥 ⁄𝚪𝚪 𝐫𝐫 𝚪𝚪B ;  𝚪𝚪B = reference potential  of bulk (20)

𝑪𝑪𝒊𝒊 𝐫𝐫 =𝑪𝑪𝒊𝒊
𝑩𝑩 𝐞𝐞𝐞𝐞𝐞𝐞 −𝜷𝜷𝒊𝒊𝝓𝝓 𝐫𝐫 + 𝝂𝝂𝒊𝒊

𝝂𝝂𝟎𝟎
𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 where 𝛽𝛽𝑖𝑖 = ⁄𝑞𝑞𝑖𝑖 𝑘𝑘𝐵𝐵T

for all Ions  𝑖𝑖 = 1, 2, … , 𝐾𝐾.
and also

for      Water 𝑖𝑖 = 𝐾𝐾 + 1.                        Water net charge = 𝑞𝑞𝐾𝐾+1= 0

Saturation Phenomena 
can be derived

from the Free Energy Functionals 

18

(21)

that determines the 

Fermi Distribution of Concentrations

Poisson Fermi Formulation



Fermi Distribution ⟺ Saturation 

𝑪𝑪𝒊𝒊 𝐫𝐫 =𝑪𝑪𝒊𝒊
𝑩𝑩 𝐞𝐞𝐞𝐞𝐞𝐞 −𝜷𝜷𝒊𝒊𝝓𝝓 𝐫𝐫 + 𝝂𝝂𝒊𝒊

𝝂𝝂𝟎𝟎
𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 where 𝛽𝛽𝑖𝑖 = ⁄𝑞𝑞𝑖𝑖 𝑘𝑘𝐵𝐵T

All concentration functions 𝐶𝐶𝑖𝑖 𝐫𝐫 < ⁄1 𝜈𝜈𝑖𝑖

𝐶𝐶𝑖𝑖 𝐫𝐫 cannot exceed the maximum value ⁄1 𝜈𝜈𝑖𝑖
for any arbitrary (or even infinite) potential

Voids
Spheres cannot fill space

Treatments with water as spheres cannot be computed unless voids are included

Proof Follows

19Poisson Fermi Formulation
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Physiologists§ give the following
Saturating Distribution 

the name  
‘Boltzmann’

𝑸𝑸 𝑽𝑽 = 𝑸𝑸𝒎𝒎𝒂𝒂𝒎𝒎
𝟏𝟏+𝒆𝒆𝒎𝒎𝒆𝒆 ⁄−𝑸𝑸𝒎𝒎𝒂𝒂𝒎𝒎 𝑽𝑽−𝑽𝑽 ⁄𝟏𝟏 𝟐𝟐 𝒌𝒌𝑩𝑩𝑻𝑻

§ p.503 of Hodgkin and Huxley. 1952.
‘Quantitative description ...’ J. Physiol. 117:500-544.

§ Bezanilla, Villalba-Galea  J. Gen. Physiol (2013) 142: 575
‘Gating charge … ‘

Boltzmann Distribution*          
of Physicists

𝒆𝒆𝒎𝒎𝒆𝒆 ⁄−𝑸𝑸𝒎𝒎𝒂𝒂𝒎𝒎 𝑽𝑽 𝒌𝒌𝑩𝑩𝑻𝑻
does NOT Saturate

Fermi Distribution Saturates

* Boltzmann. Berkeley ‘Lectures on Gas Theory’, 1904 (!)

Poisson Fermi Formulation



Proof: System Must Contain Voids

Consider a system without voids,
i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐 = 𝟎𝟎

Let’s try to fill the volume 

(1) with ions 𝟏𝟏, 𝟐𝟐, 𝟑𝟑 ⋯ 𝑲𝑲 at concentrations 𝑪𝑪𝒊𝒊 𝐫𝐫
and 

(2) with the single water species K+1

and then use a Fermi Distribution.

We will find a contradiction.
We can use a Fermi Distribution only if we include voids.

21Poisson Fermi Formulation



Proof: System Must Contain Voids

Consider a system without voids,
i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐 = 𝟎𝟎

We will find a contradiction.
Fermi Distribution for Spheres Requires Voids

22Poisson Fermi Formulation



Consider a system without voids,
i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐 = 𝝂𝝂𝑲𝑲+𝟐𝟐 = 𝟎𝟎

If the system is filled with spheres, with zero voids, 
then the volume fraction of voids is zero:  Γ 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔; 𝐫𝐫 = 𝟎𝟎

�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑪𝑪𝒊𝒊 𝐫𝐫Γ 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔; 𝐫𝐫 = 𝟎𝟎 = 𝟏𝟏 −

�
𝟏𝟏

𝑲𝑲+𝟏𝟏

𝝂𝝂𝒊𝒊 𝑪𝑪𝒊𝒊 𝐫𝐫𝟏𝟏 =

23

Ions + Water

(22)

(23)
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Consider a system without voids,
i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐= 𝝂𝝂𝑲𝑲+𝟐𝟐 = 𝟎𝟎

If the system is filled with spheres, with zero voids, 
then the volume fraction of voids Γ 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔; 𝐫𝐫 = 𝟏𝟏 − ∑𝟏𝟏

𝑲𝑲+𝟏𝟏 𝝂𝝂𝒊𝒊𝑪𝑪𝒊𝒊 𝐫𝐫 = 𝟎𝟎

𝐒𝐒𝐒𝐒𝐞𝐞𝐫𝐫𝐒𝐒𝐒𝐒 𝐏𝐏𝐏𝐏𝐒𝐒𝐞𝐞𝐥𝐥𝐒𝐒𝐒𝐒𝐏𝐏𝐥𝐥 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣 𝑤𝑤𝑖𝑖𝑤𝑤𝑤 𝑣𝑣𝑠𝑠𝑤𝑓𝑓𝑠𝑠𝑓𝑓𝑣𝑣; 𝐫𝐫 = ln ⁄𝚪𝚪 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔; 𝒓𝒓 𝚪𝚪B =ln ⁄0 𝚪𝚪B

𝐒𝐒𝐒𝐒𝐞𝐞𝐫𝐫𝐒𝐒𝐒𝐒 𝐏𝐏𝐏𝐏𝐒𝐒𝐞𝐞𝐥𝐥𝐒𝐒𝐒𝐒𝐏𝐏𝐥𝐥 = 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣 𝑤𝑤𝑖𝑖𝑤𝑤𝑤 𝑣𝑣𝑠𝑠𝑤𝑓𝑓𝑠𝑠𝑓𝑓𝑣𝑣; 𝐫𝐫 = −∞

Ions + Water

24

(24)
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−∞

25

𝐶𝐶𝑖𝑖 𝐫𝐫 =0 contradicts our original assumption of general 𝐶𝐶𝑖𝑖 𝐫𝐫?

Consider a system without voids,
i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐= 𝝂𝝂𝑲𝑲+𝟐𝟐 = 𝟎𝟎

If the system is filled with spheres, without voids, 
then the volume fraction of voids Γ 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔 =Γ 𝒗𝒗𝒗𝒗𝒊𝒊𝒅𝒅𝒔𝒔; 𝐫𝐫 = 𝟎𝟎 is zero

𝐒𝐒𝐒𝐒𝐞𝐞𝐫𝐫𝐒𝐒𝐒𝐒 𝐏𝐏𝐏𝐏𝐒𝐒𝐞𝐞𝐥𝐥𝐒𝐒𝐒𝐒𝐏𝐏𝐥𝐥 = 𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝒇𝒇𝒊𝒊𝒆𝒆𝒆𝒆𝒆𝒆𝒅𝒅 𝒘𝒘𝒊𝒊𝒕𝒕𝒕𝒕 𝒔𝒔𝒆𝒆𝒕𝒕𝒆𝒆𝒓𝒓𝒆𝒆𝒔𝒔; 𝐫𝐫 = −∞ (25)

(26)𝑪𝑪𝒊𝒊 𝐫𝐫 =𝑪𝑪𝒊𝒊
𝑩𝑩 𝒆𝒆𝒎𝒎𝒆𝒆 − ⁄𝒒𝒒𝒊𝒊 𝒌𝒌𝑩𝑩𝑻𝑻 𝝓𝝓 𝐫𝐫 + 𝝂𝝂𝒊𝒊

𝝂𝝂𝟎𝟎
𝑺𝑺𝒕𝒕𝒓𝒓𝒕𝒕 𝐫𝐫 ⟹ 𝑪𝑪𝒊𝒊 𝐫𝐫 =𝟎𝟎?

?
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We must have voids if we use a Fermi Distribution

But we only need the 
Total Void Volume, 

or Volume Fraction

No other details are needed about the voids

Proof
Consider a system without voids,

i.e., with 𝑽𝑽𝑲𝑲+𝟐𝟐= 𝝂𝝂𝑲𝑲+𝟐𝟐 = 𝟎𝟎

Conclusion:

26Poisson Fermi Formulation



27

Any Questions ?
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