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ABSTRACT: The flow of current through an ionic channel is studied using
the energetic variational approach of Liu applied to the primitive (implicit
solvent) model of ionic solutions. This approach allows the derivation of self-
consistent (Euler−Lagrange) equations to describe the flow of spheres through
channels. The partial differential equations derived involve the global
interactions of the spheres and are replaced here with a local approximation
that we call steric PNP (Poisson−Nernst−Planck) (Lin, T. C.; Eisenberg, B.
To be submitted for publication, 2012). Kong combining rules are used and a
range of values of steric interaction parameters are studied. These parameters
change the energetics of steric interaction but have no effect on diffusion
coefficients in models and simulations. Calculations are made for the calcium
(EEEE, EEEA) and sodium channels (DEKA) previously studied in Monte
Carlo simulations with comparable results. The biological function is quite
sensitive to the steric interaction parameters, and we speculate that a wide
range of the function of channels and transporters, even enzymes, might
depend on such terms. We point out that classical theories of channels,
transporters, and enzymes depend on ideal representations of ionic solutions in
which nothing interacts with nothing, even in the enormous concentrations
found near and in these proteins or near electrodes in electrochemical cells for
that matter. We suggest that a theory designed to handle interactions might be more appropriate. We show that one such theory
is feasible and computable: steric PNP allows a direct comparison with experiments measuring flows as well as equilibrium
properties. Steric PNP combines atomic and macroscales in a computable formulation that allows the calculation of the
macroscopic effects of changes in atomic scale structures (size ≅ 10−10 meters) studied very extensively in channology and
molecular biology.

■ INTRODUCTION

Ion channels are protein molecules that conduct ions (such as
Na+, K+, Ca2+, and Cl− that might be named bioions because
of their universal importance in biology) through a narrow
pore of fixed charge formed by the amino acids of the channel
protein.2 Membranes are otherwise quite impermeable to
natural substances, so channels are gatekeepers for cells.
Channels are natural nanovalves that control a wide range of

biological function.3 Channels open and close stochastically,
allowing ionic current to flow and forming a path for solute
movement when they are open.4−6 Only electrodiffusion
moves ions through channels, so this biological system is like a
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hole in a wall that we should be able to understand
physically.7−9

Ion channels are responsible for signaling in the nervous
system. Ion channels are responsible for the coordination of
muscle contraction and the transport of dissolved substances
and water in all tissues. Each of these functions has been so
important for so long that evolution has probably produced a
nearly optimal adaptation within physical constraints and
conserved it using the same design principle again and again.
Investigation of the physical mechanisms of current flow has

just begun, although there is no shortage of descriptive
metaphors in the literature of structural and molecular biology
and biophysics.2 The fundamental problem in a physical
analysis is one of scale.10 Mutations in single amino acids,
which sometimes change only a handful of atoms involving
perhaps just one permanent charge (radius of ∼0.1 nm), have
dramatic biological effects. Such sensitivity comes as no
surprise to the biologically oriented chemist or physicist.
Theories and simulations must account for the sensitivity of

macroscopic function to atomic detail. Ion channels are
nanovalves designed so that a few atoms, coded by the genetic
blueprint of the protein, can control macroscopic function:
that is what nanovalves (and channels) are all about. Theories
and simulations must deal with 0.1 nm structural changes in
charged groups that produce changes on the macroscopic scale
of function. Structures as small as 0.1 nm move, and cannot be
stopped from moving, via thermal (nearly Brownian) motion
in 10−16 s. Their trajectories reverse direction infinitely often,
whereas biology moves on time scales of 10−3 s or so in much
simpler trajectories. The central physical issue is how to
preserve this sensitivity to tiny structures while averaging over
trajectories with such complex behavior over a 1013 range of
time. Other scales also pose problems. Physics and biology and
simulations of physics and biology must cope with a wide
range of time scales and concentrations10 as well as the
immense range and strength of the electric field.11−15

The extremes of length, time, and concentration scales are
all involved in the natural function of ion channels (or any
nanovalve), so theory and simulations must deal with all of
these extremes together. It is not likely that atomic-scale
simulations by themselves will be able to deal with these, all
together in finite time. Rather, reduced models of the type
used widely in the physical sciences are more likely to be
helpful in the foreseeable future.
A useful reduced model will include atomic-scale structural

variables that determine macroscopic function. Sensitivity
functions, determined by the theory of inverse problems, can
help evaluate and construct reduced models. Biological
function will be sensitive to important parameters and
insensitive to others. The utility of these models can be
evaluated by solving the relevant inverse problem for
channels16−18 using general methods.19,20

So far, the most studied reduced model for ion flow in the
bulk and in channels is the Poisson−Nernst−Planck (PNP)
equation.11,12,21−26 Although this model has had some success
in dealing with experimental data,22,27−51 it does not include
correlations introduced by the finite diameter of ions,52 and
these are of great importance in determining the selectivity of
channels9,53,54 and the properties of ionic solutions in
general.55−69 Crudely speaking, PNP is to nonequilibrium
systems (such as channels) what Poisson−Boltzmann is to
static systems: both are first approximations, useful in showing
the crucial role of the electric field,11,12,14,70 the ionic

atmosphere, and screening.71 Neither are adequate models
for ionic solutions such as seawater or the related solutions
inside and outside biological cells.52,72−74

Recently, work by Eisenberg, et al.,75−78 built on the
energetic variational theory of complex fluids,77,79−86 has
developed a new set of PNP equations to implement and
generalize an approach to selectivity started by Nonner and
Eisenberg.87−92 Nonner and Eisenberg considered a simplified
model with ions (and side chains of the channel protein)
represented as spheres of different finite sizes. They have
shown in a long series of papers that important (static)
selectivity properties of some significant types of ion channels
can be explained with this model (reviewed in refs 9, 53, and
93). They have in fact constructed a single model with two
adjustable parameters (diameter of channel, dielectric co-
efficient of protein, both set only once to unchanging values)
using a single set of (crystal) radii of ions that fits the detailed
and complex selectivity properties of two quite different types
of channels, the heart CaV calcium channel90,94−98 and the
nerve NaV sodium channel.9,91,99 The theory accounts for the
properties observed in solutions of different composition, with
concentrations ranging from 10−7 to 0.5 M. When the side
chains in the model are amino acid residues Asp-Glu-Lys-Ala,
the channel has net charge of −1 although it is very salty (the
magnitude of net charge is 3). The channel then is a DEKA
sodium channel. When the side chains are Asp-Glu-Glu-Ala,
then the channel is even saltier (the channel has net charge of
−3). It is a DEEA calcium channel with quite different
properties, although no parameters in the model are changed
whatsoever, except the side chains that determine selectivity.
Most importantly, channels have been built according to the

prescription of this theory, and they behave as pre-
dicted.100−102 In studying another channel, the ryanodine
receptor (of enormous biological importance as the final
regulator of Ca2+ concentration in muscle and thus of
contractions), Gillespie successfully predicted subtle and
complex properties of selectivity and permeation before
experiments were done and also the properties of drastic
mutants in a wide range of solutions before the experiments
were performed,103−112 extending work on an earlier
unsuccessful reduced model of the receptor that did not deal
with the finite diameter of ions.30,32,113,114 One of the
Meissner−Gillespie mutants reduces the permanent charge
from 13 M to zero, yet Gillespie’s theory fits current voltage
relations in several solutions with nearly the same approx-
imately eight parameters as for wild type.
The calculations reported here extend the pioneering

calculations of Hyon75,76,78 by applying the energy variational
approach to ion channels.115 The bath and boundary condition
treatments are somewhat different. A full 3D treatment is
needed before the appropriate 1D approximation (particularly
boundary conditions) can be determined without ambigu-
ity.25,43,88,116−121

Here, we simulate the properties of the family of calcium
channels CaV (reviewed in refs 9 and 98) and sodium channels
NaV

91,99 using parameters already shown to fit a wide range of
stationary (time-independent) experimental data in a variety of
“symmetrical” solutions, which are designed so that current
does not flow. Our results agree with previous equilibrium
binding results and extend them to the world of current−
voltage relations using a model and numerical methods that
can be easily implemented on inexpensive computers.
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Current−voltage relations can be computed in a few hours on
a notebook system.

■ MATHEMATICAL MODEL

Poisson−Nernst−Planck (PNP) Equations with Size
Effects. The energy functional and the procedures for
handling it with variational calculus are central to the energetic
variational approach (EnVarA) formulated by Liu, more than
anyone else. Liu’s approach is described in refs 75, 79−82, 84,
115, and 122−126. The “energy” of EnVarA is shown to
correspond to the Helmholtz free energy of classical
thermodynamics (in applicable equilibrium systems) in a
recent article.127 The application of EnVarA to membranes,128

biological cells and tissues,77 and ions, in channels and bulk
solution, is described in detail in refs 1 and 75−78 in a way
that is accessible to physicists and chemists without extensive
experience with variational methods.
The energy functional for the ion channel is defined by
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where ci and zi are concentration and valence for the ith ion (i
= 1,···, N − 1); cN = cO−1/2 is the concentration for side chain
O−1/2 (as in the glutamate side chain) with valence zN = zO−1/2

= −1/2 located in the filter only; ϕ is the electrostatic
potential; kB is the Boltzmann constant; T is the absolute
temperature; N is the number of ions; e is the unit charge; ρ0
is the permanent charge density; cO−1/2 is the concentration of
the spherical “side chain” with valence zO−1/2 = −1/2 located in
the filter only; V is the restraining potential that keeps the side
chain inside the filter at all times; ai and aj are the radii of ions
i and j; and εij is the energy coupling constant between ion i
(including side chain O−1/2) and j (including side chain
O−1/2). The last term is the repulsive part of the hard sphere
potential that keeps ions apart.
The hard sphere repulsion characterizes the finite-size effect

of ions and side chains inside the filter. These repulsive terms
obviously depend on the chemical species and are called
combining rules when they describe the interactions of
different species. We discuss the combining rules later.
The basic reasoning is that the ion filter is so narrow that

extra energy is needed to crowd ions into its tiny
volume.9,53,54,87,89,95−97,99,101,102,104,129−131 Without finite size
effects, the total energy will yield the traditional PNP
equations.
The Euler−Lagrange equation (eq 1) will introduce PNP

equations with size effects that depend on the global properties
of the problem in the following way
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There is extra flux from the restraining potential that keeps
side chains within the selectivity filter:
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These equations are very similar to the drift-diffusion
equations of semiconductors,11,12,23,24,116,121,132−149 with the
first term in the flux being the diffusion term and the second
one being the drift term driven by the electrostatic potential of
the field.
The third term involves a mutual repulsive force and

interparticle hard sphere potential that is not typically found in
semiconductor equations (although the semiconductor liter-
ature is so large that the volume exclusion of finite-sized holes
and electrons is probably found somewhere that we do not
know). This term includes forces usually called Lennard-Jones
and depends globally on the properties of the solution
everywhere because of the range of the integral on the right-
hand side of eqs 4 and 5.
We call attention to the important role that the coefficients

of these steric terms will have in determining biological
function. The role of these steric terms will be somewhat
different in our calculations from those in classical equilibrium
analysis of ionic solutions using Monte Carlo simulations, for
example. The cross terms in our expression appear as part of
partial differential equations. These terms will then have effects
on all terms in the solution of those partial differential
equations. The integration process spreads out the effects of
the cross terms. They propagate into everything as the partial
differential equations are solved. The usual classical equilibrium
treatment of Monte Carlo simulations is likely to produce
different radial distribution functions from those produced by
our differential equations, but a detailed comparison of MC
and EnVarA calculations of absolutely identical models is
necessary to determine the significance (or even existence) of
this effect.
The steric cross terms, often called combining rules, turn

out to have significant effects on the properties of ion
channels. As mentioned, we use the Kong combining rules150

to describe the repulsion between ionic spheres because they
seem to be more accurate and justified151,152 than the more
common Lorentz−Berthelot rules. It will turn out that the
biological properties of ion channels are quite sensitive to
these terms, but the choice of parameters seems to require
detailed fitting to the properties of specific biological channels
and transporters. We do not know what the effects of attractive
terms (known to be present in bulk solutions) will be when we
include them. We reiterate that these terms do not change the
diffusion coefficients in our model.
One might think that simulations in full atomic detail (of

molecular dynamics) would give good estimates of the
combining rules, but sadly that is not the case. These
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simulations of molecular dynamics use combining rules
(similar or identical to what we use in our reduced models)
in the force fields of their own calculations.150−152 We cannot
use molecular dynamics to justify our combining rules because
molecular dynamics itself uses those rules. It is possible that no
one knows what cross terms to use in bulk solution. It seems
likely that no one knows what cross terms should be used
inside a channel or between side chains and ions. Indeed, it is
difficult to conceive of experiments that might measure these
inside channels with reasonable reliability.
Returning to the mathematical issues, we note that the

singular convolution integral term can be regularized by a
cutoff in the integration domain or simply by letting the
integrand be 0 when |x ⃗ − y|⃗ ≤ ai + aj. However, the regularized
term still produces numerical difficulty and is very time-
consuming to compute, particularly at high dimensions, even if
fast Fourier transform methods are used. We have tried. In
addition, computing the convolution term generates an
artificial boundary layer with a length of several grid spacings
that needs to be filtered out and may have troublesome
qualitative effects that are not so easy to remove by any local
filtering because it has some of the properties of aliasing.
Aliasing has devastating effects if not handled properly in both
temporal and spatial systems that are treated as periodic when
they are not.
We turn now to a simplified steric model that is much easier

to compute because it uses only a local representation of
interatomic forces. As we shall see, this steric model allows the
computation of a large range of interesting phenomena,
despite this simplification.
Local PNP Equations with Steric Effects (PNP−Steric

Equations).
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where δ is a small number for the cutoff length, cδ is a
dimensionless integration factor associated with δ, and d is the
dimension. Here, the symmetry εij = εji has been assumed for
notational convenience. To obtain this model, we have two
important considerations: (1) the localization of the nonlocal
size effects and (2) the finite truncations, which make the term
local. Compared to the standard PNP equations, the PNP−
steric equations have extra nonlinear differential terms (in the
spatial variables) called steric effects. These represent the
effective averaging/coarse graining of microscopic size effects
for the macroscopic/continuum scales.
It should be clearly understood that coarsening terms of this

sort are used throughout the chemistry literature, including
within the simulations of molecular dynamics. The potentials
of molecular dynamics simulations of proteins are not
transferrable from quantum mechanical simulations of
interatomic forces. The force fields that are used in every
time step of an atomic-scale simulation include terms such as

our εij justified only in the way that we have. Thus, molecular
dynamics simulations depend on effective parameters, as do
ours. Molecular dynamics simulations are no more derivable
from quantum mechanics than are our models.
The main difficulty with eqs 2−5 comes from the

convolution integral of the energy functional E with the
following form
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Usually, one would approximate the above integral by
truncating the kernel 1/|x ⃗ − y|⃗12 with the cutoff length δ,
which causes kernel 1/|x ⃗ − y|⃗12 to have a flat top when |x ⃗ − y|⃗
≤ δ. To approach kernel 1/|x ⃗ − y|⃗12, the length δ must be set
as a small number tending to zero. One may expect that the
smaller the cutoff length δ, the better the approximation.
However, because of the effect of high-frequency Fourier
modes, the approximation may lose the accuracy of numerical
computations and makes numerical simulations difficult and
inefficient.153

To deal with the effect of high-frequency Fourier modes,
band-limited functions are used to cut off high-frequency
Fourier modes. The functions act as optical filters by
selectively transmitting light in a particular range of wave-
lengths. Band-limited functions play important roles in the
design of signal transmission systems with many applications
in engineering, physics, and statistics.154 See also any textbook
on digital signal or image processing. In ref 1, a class of band-
limited functions depending on the length δ is found to
approximate the kernel 1/|x ⃗ − y|⃗12 and allow the derivation of
the PNP−steric equations. The same approach can be used to
modify the Poisson−Boltzmann equations used widely in
physical chemistry, applied mathematics, and molecular
biology.70,155 Once modified, these new steric Poisson−
Boltzmann equations are particularly useful for the study of
crowded boundary layers near charged walls, including the
special behavior usually attributed to Stern layers. As the
length δ goes to zero, the singular integral (eq 8) can be
approximated by the integral Sδ ∫ ci(x ⃗) cj(x ⃗) dx ⃗ with Sδ ≈
δ−12+d. Hence, the energy functional (eq 1) can also be
approximated by
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which gives eqs 2, 3, 6, and 7, where gij = εij(ai+aj)
12Sδ for i =

1,···, N−1 and gNj = εNj(ai + aj)
12cδSδ.

The PNP−steric equations (eqs 2, 3, 6, and 7) are
convection−diffusion equations following the energy dissipa-
tion law
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where μi = ∑j = 1
N gijcj is the chemical potential.

Note that eqs 6 and 7 contain no singular integrals such as
in eqs 4 and 5 but have extra nonlinear differential terms.
These extra nonlinear terms are crucial to simulating the
selectivity of ion channels that cannot be found by simulating
the standard PNP equations. Hence, the (local) PNP−steric
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equations are more useful than the standard PNP equations
and are significantly more efficient and easy to work with than
the global equations of the EnVarA treatment (eqs 2−5)
discussed in the Introduction and Discussion sections of this
article. These extra local terms in differential equations 6 and 7
have global effects when the differential equations are solved.
Thus, pair correlation functions described by the solutions to
differential equations 4 and 5 may have properties not present
in classical equilibrium analyses containing local steric forces.
(Classical analyses often deal only with positions and
correlations and not with solutions of differential equations
containing the forces.) Detailed fitting to specific experimental
data is needed to compare the solutions of the local steric
differential equations (eqs 6 and 7), the solutions of the more
general differential equations (eqs 4 and 5), and the actual
nonlocal phenomena of experiments.
We Adopt the PNP−Steric Equations. We replace eqs 4

and 5 with more approximate eqs 6 and 7 from now on. The
real 3D geometry of an ion channel shown in Figure 1 is

replaced with the simple axisymmetric geometry shown in
Figure 2, with eqs 2, 3, and 6 valid in Ω and eq 7 valid only in
Ωf, where Ωf is the filter part of the channel and Ωf ⊂ Ω. The
associated boundary conditions are also shown in Figure 2,

with the Dirichlet boundary conditions specified for both the
ionic concentration and potential at the channel inlet (left
end) and outlet (right end); no-flux boundary conditions are
set for both the ionic concentration and potential at the side
wall of the channel. Extra no-flux boundary conditions are set
for side chains JO−1/2 = 0 at the interfaces (z = α and β)
between the filter and the other part of the channel because
side-chain molecules are free to move inside the filter only.
This model is meant to be nearly identical to that used in

the many papers using Monte Carlo methods reviewed in ref
9, particularly the key papers.54,90,93−96,99,156 The treatment of
the region outside the channel and thus buildup phenomena
are different from those in refs 75, 76, and 78.
Because no-flux boundary conditions are implemented for

both the ionic concentration and potential at the side walls
(orthogonal to the direction of current flow), this 2D problem
(eqs 2, 3, 6, and 7) can be well approximated by a reduced 1D
problem along the axial direction z, with a cross-sectional area
factor A(z) included as in refs 25, 43, 88, and 116−121,
described succinctly in ref 119, and perhaps included most
carefully in the 3D spectral element calculations of
Hollerbach.34,43 Of course, some phenomena cannot be
reproduced well in one dimension. See Figure 7 in ref 99.
The resulting 1D equations are
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The no-flux interface conditions for the side chains guarantee
that side chains are not allowed to leave the filter. Mass
conservation is preserved inside the filter:
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t
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Also, in eqs 11 and 12, the Einstein relation is used for both
the drift current and hard-sphere-potential flux, which is μe,i =
Di/kBT, μLJ,i = Di/kBT(i = 1,···, N − 1), and μV,N = DN/kBT,
where μe,i and μL J,i are the electrical mobility and the mobility
associated with the hard sphere potential for ionic species i and

Figure 1. Typical geometry configuration of an ion channel. The
usual time scale for an ion passing through the channel is ∼200 ns.
Specifically, a channel passing 1 pA of current with an occupancy of 1
ion has a mean passage time of 160 ns.

Figure 2. Cartoon of the configuration of an ion channel with
specified boundary conditions. Ω denotes the domain of the whole
channel; Ωf denotes the filter part of the channel bounded by α ≤ z ≤
β and a side wall; n ̂ is the unit outward vector normal to the side wall.
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μV,N is the mobility associated with the restraining potential for
glutamate. Note that Di and ∀i do not have to be
homogeneous in space, nor do the dielectric coefficients of
the solution and channel protein. We have not yet studied the
effects of variation in these parameters, however. Usually, Di

and ∀i are set to 1/20th of their bulk solution values inside the
channel filter but are set to bulk solution values in the rest of
the channel as discussed at length in the Supporting
Information and body of ref 109.
Dimensionless Equations. Nondimensionalization of the

governing equations is especially important in discovering the
structure, such as the boundary or internal layer, of the
solution of PNP-type equations in advance, and so
perturbation methods,21,24,25,135,157 including some using the
powerful and rigorous methods of geometrical perturbation
theory,24,147,148 have been used. We follow this work and scale
the dimensional variables by physically meaningful quantities
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where s denotes all length scales and L = rmin (the narrowest
radius in the channel shown in Figure 2) unless otherwise
specified. Note the scaling with respect to the physical
dimension and not the Debye length. The Debye length varies
with concentration and concentration varies with location and
conditions. Equation 8 becomes
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where Γ = λ2/L2 and the Debye length is λ = (εkBT/cmaxe
2)1/2.

Γ is the reciprocal of the length of the channel in units of
Debye lengths. Note that Γ can vary dramatically with location
and conditions if the contents of the channel vary with
location or conditions. In the channels dealt with here, the
contents of the channel are “buffered” by the charge of the side
chains of the protein, most clearly in calcium channels EEEE
and EEEA but also for the salty DEKA channel. Such buffering
is not expected in all channels (e.g., potassium channels).
Equations 9−11 then become
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We remove all of the tilde decorations (∼) and rewrite the
dimensionless governing equations (eqs 15−18) for the
mixture of Na+, Ca2+, Cl−, and O−1/2 as follows:
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Note that εĩjcδδ ̃−9(aĩ + a ̃j)12 in eq 17 is lumped into gĩj along
with cδδ ̃−9 and is assumed to be the same for all species.
Lennard-Jones parameters εĩj are obtained from the literature
for alike species (i = j) and computed by Kong’s rule for unlike
species (i ≠ j). They do not change diffusion coefficients in
our model or calculations.

Channel Wall Shape Function. The wall shape function
g(z) in Figure 2 can be arbitrarily specified, for example, g(z) =
((rmaz − rmin)/((
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In our calculation, we choose p = 4. The geometrical
parameters are typically a = 50 Å, rmin = 3.5 Å, rmax = 40 Å,
and D = DNa,bulk = 1.334 × 10−5 cm2/s . We set ε = 30ε0 inside
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the filter; in the rest of the channel, ε = εwater = 80ε0. For a
typical cmax = 100 mM, we have Debye length λ = 8.48 Å and
Γ=5.87 inside the filter and λ = 13.8 Å and Γ = 15.65 outside
the filter. The above Γ values are based on L = rmin = 3.5 Å.
The fact that Γ is not small implies that no internal or

boundary layer is expected in the radial (transverse) direction.
However, we sometimes choose L = a = 50 Å and Γ = 0.0288
inside the filter and Γ = 0.07668 outside the filter. Though Γ is
not as small as in semiconductor devices, an internal/boundary
layer is still expected in the lateral (axial) direction. We must
not forget that the nonlocal hard sphere potential term
(present in ionic solutions but not in semiconductors) may
produce internal layers as well. See Figure 7 in ref 99.
A noticeable problem in all PNP (and Poisson−Boltzmann)

theories without finite size are internal boundary layers near all
boundaries with charge (permanent or induced). Such layers
are customarily removed by introducing a single distance of
closest approach for all ions, however ill-defined. Of course, no
single distance of closest approach can deal with ions of
different diameters, a problem that Debye, Hückel, and
Bjerrum were evidently quite aware of. The need for multiple
distances of closest approach (different for each ion and very
nonideal, depending on each other and everything else in the
system) means that the complex layering phenomena seen
near walls of charge can have counterparts in channels. Indeed,
complex layering is expected when ionic solutions are mixtures,
such as the salt water in oceans or biology, and spatial
inhomogeneities are present. Reference 158 is a gateway into
the enormous chemical literature on layering phenomena near
walls of charge. Reference 78 is a mathematical approach.
Layering in ionic solutions might be able to produce nonlinear
phenomena as important as pn junctions or even pnp
junctions in semiconductors.
One might argue the validity of choosing rmin = 3.5 Å and

wonder if an exclusion zone adjacent to the channel side wall
for an ion sphere center with the thickness of an ion radius
should be given extra consideration. In 3D models, this may be
necessary and requires extra care in computation because the
radial exclusion zone is different for ions of different sizes and
charge: see Figure 7 in ref 99. However, in the 1D continuum
model studied here, which ignores such ion-specific radial
effects, our single radial zone would change only the value of
rmin. Because all of the governing equations are scaled to be
dimensionless, the effect of changing rmin would change only
the value of Γ in eq 19. That in turn would only change the
distribution of the electric potential. Γ is proportional to 1/
rmin

2. The permanent charge concentration ρ0 in eq 19 is also
proportional to 1/rmin

2. The net effect is simply reduced to the
amplification or shrinking of the influence of the contribution
of the electric potential exerted by ion distributions. The
permanent charge concentration ρ0 is generally much larger
than all ion concentrations and dominates the distribution of
electric potential, we imagine. We then reason that a minor
change in rmin would not affect our results significantly.
Numerical Methods. Now we apply the multiblock

Chebyshev pseudospectral method153 together with the
method of lines (MOL) to solve eqs 19−22 with the
associated boundary/interface conditions (eqs 13 and 14).
These governing equations are semidiscretized in space
together with boundary/interface conditions.
The resulting PNP delta representation is a set of coupled

ordinary differential algebraic equations (ODAE’s). The
algebraic equations come from the boundary/interface

conditions that are time-independent. The resulting ODAE’s
have an index of 1, which can be solved by many well-
developed ODAE solvers. For example, ode15s in MATLAB is
a variable-order, variable-step index-1 ODAE solver that can
adjust the time step to meet the specified error tolerance and
integrate with time efficiently. The numerical stability in time
is automatically assured at the same time. The spatial
discretization here is performed by the highly accurate
Chebyshev pseudospectral method with the Chebyshev
Gauss−Lobatto grid and its associated collocation derivative
matrix. To cope with the computational domain of side chains
being strictly within the [α, β] region and the conformation of
grids, we need to use domain decomposition. We decompose
the whole domain into [0, α], [α, β], and [β, a].
The extra interface conditions from this domain decom-

position for ions are implemented simply by continuity of ion
concentration and the associated flux. Finally, the Poisson
equation for the electric potential is solved by the direct
inverse at every time step, which is easy because it is only 1D.

■ RESULTS
Here we consider a calcium channel (EEEE) with four
glutamate side chains and eight O−1/2 particles that are free to
move inside the filter, which is essentially the model
introduced by Nonner and Eisenberg53,87−89 and used by
them and their collaborators since then (reviewed in refs 9 and
72). Our goal is to demonstrate the feasibility of a PNP−steric
model and the range of phenomena that can be calculated
despite its local approximation. Note that the effects of a local
approximation on the right-hand side of partial differential
equations are not the same as the effects of a local
approximation in a classical analysis of the BBGKY hierarchy.
The much-needed detailed comparison with experimental
results lies in the future. We are particularly interested in the
effects of the steric parameters that we call εij in eq 1 and then
the effects of gij as well, so we concentrate on steady-state
results. Transients of the type previously reported75 have been
computed and will be reported separately.
The channel geometry used for the current 1D simulations

is shown in Figure 3, and the parameters used are shown
below. These parameters are not changed in the calculations
(e.g., the diffusion coefficients are always the same and are not
changed as the interaction (Kong) parameters are changed).

■ PARAMETERS
Filter radius, 3.5 Å; filter length, 10 Å; diffusion coefficients
(cm2/s) in the nonfilter region, DNa

+ = 1.334 × 10−5, DCa
+2 =

Figure 3. Channel geometry. A precise specification of the geometry
of our model.
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0.792 × 10−5, DCl
− = 2.032 × 10−5, and DO

−1/2 = 0.76 × 10−5;
diffusion coefficients in the filter region, 1/20 of the above
values (see Gillespie,109 particularly the Supporting Informa-
tion); ion radii, aNa+ = 0.95 Å, aCa+2 = 0.99 Å, aCl− = 1.81 Å, and
aO−1/2 = 1.4 Å; relative dielectric constant, 30 in the filter region
and 80 in the nonfilter region.
Dimensionless restraining potential for O−1/2 inside the filter

required by eq 22

γ= −V V z a( 0.5 )max
2

(24)

where γ is a scaling constant that makes V reach Vmax at z = α
and β.

■ BOUNDARY CONDITIONS
Voltage in both reservoirs, 100 mV; Na+ concentration in both
reservoirs, 100 mM; Ca2+ concentration in both reservoirs,
0.001−10 mM. The Cl− concentration in both reservoirs is
chosen to keep the whole solution electrically neutral.
To measure the selectivity, as reported in the biological

literature of calcium channels, we need to compute the Ca
binding ratio

=

+

+

+

+

binding ratio (number of Ca ions inside the filter)

/(number of Na ions inside the filter

number of Ca ions inside the filter)

2

2

(25)

Turning to the precise description of the spherical ions, we
need to specify many Lennard-Jones-style parameters. There
are 10 parameters of the gij’s that must be chosen, without
specific experimental data relevant to the interior of a channel.
(We note that this problem is not ours alone. The same
situation is faced for any atomic-scale model. No one knows
how to choose force fields of molecular dynamics that are
suitable for the special conditions inside an ion channel. If one
follows the convention of molecular dynamics and uses force

fields that depend only on the distance between two atoms,
this problem is particularly serious. Note that dielectric
boundary forces are almost always of great importance in
confined systems such as ion channels.159,160 It is not likely
that dielectric boundary forces acting on two ions can be well
approximated as a function of only the distance between two
ions.)
We use the energy well εij data from the traditional Lennard-

Jones (12−6 rule) potential as a reference. From the work in
refs 151 and 152. we choose εNa,Na/εCl,Cl/εCa,Ca/εO,O =
1:1:1:1.56. Kong’s combining rule150 seems to be the best
for ionic solutions,151,152 with σij = (ai + aj). This gives us the
εij values for the rest of the cross hard-sphere potential terms.

ε ε ε ε ε ε ε ε ε ε

=

/ / / / / / / / /

1:1:1:1.56:0.955:1.00:1.28:0.961:1.21:1.28

Na,Na Cl,Cl Ca,Ca O,O Na,Cl Na,Ca Na,O Cl,Ca Cl,O Ca,O

and similarly

=

g g g g g g g g g g/ / / / / / / / /

1:2280:1.64:164:42.2:0.642:8.20:50.4:327:10.0

Na,Na Cl,Cl Ca,Ca O,O Na,Cl Na,Ca Na,O Cl,Ca Cl,O Ca,O

We can see that gCl,j (especially gCl,Cl) is much larger than the
other gij terms because the size is increased so dramatically by
the exponent in (ai + aj)

12. These large values would make the
governing equations very stiff in numerical properties and hard
to integrate in time. To resolve this numerical difficulty, we
remove all of the hard sphere forces involving Cl−, which
means that gCl,j = 0, ∀j. This approach can be rigorously
justified because Cl− is usually very dilute inside the filter, as
are all co-ions in ion exchangers,161 because of the electrostatic
repulsion from the highly concentrated permanent charge of
eight O−1/2.

Choosing Self-Coupling Coefficients gNa,Na. The above
coupling terms gij are derived as ratios, and we still need to
determine actual gij values by choosing self-quantities gNa,Na.
The self-coupling gNa,Na is known only from its relationship to
its effective ion radius: it is proportional to (aNa + aNa)

12.

Figure 4. Species concentration distributions with various gNa,Na values. For Vmax = 200: (a) gNa,Na = 0 and Ca2+ binding ratio = 0.60214; (b) gNa,Na
= 10−4 and Ca2+ binding ratio = 0.59418; (c) gNa,Na = 10−3 and Ca2+ binding ratio = 0.75433; (d) gNa,Na = 10−2 and Ca2+ binding ratio = 0.86109;
(e) gNa,Na = 10−1 and Ca2+ binding ratio = 0.82580; (f) gNa,Na = 1, Ca2+ binding ratio = 0.71644, and the symmetrical symmetric boundary
conditions are [Ca2+]L = [Ca2+]R = 1 mM, [Na+]L = [Na+]R = 100 mM, ϕL = ϕR = 100 mV. Note the 4-fold scaling of the [O−1/2] concentration.
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Larger gNa,Na values imply a stronger hard sphere potential and
more pushing among particles. Smaller gNa,Na implies less
interaction and pushing among particles. If we choose gNa,Na to
be too small, then the finite-size effect will be trivial and
(judging from previous work cited above) the correct
selectivity of calcium ions will not be found. If we choose
gNa,Na to be too large, then repulsion will be too strong and the
profile of concentration of all species (inside the filter) will be
flat. Selectivity, as biology knows it, will not be present.
A numerical experiment (Figure 4 and Table 1) shows how

gNa,Na changes the Ca binding ratio. The conditions of each
case are stated in the figure captions. Note that many of the
cases considered below correspond to different physiological
states that may have profound implications on function.
Cycling between such states has been the explanation of most
behavior of channels and transporters for some 60 years, since
Hodgkin and Huxley (who, one notes, did not use such
explanations themselves). But the states in those explanations
are ad hoc, arising as inputs of models from wisdom and
experimentation on macroscopic systems, not from a direct
physical knowledge of channels. The states shown here in our
calculations arise without human intervention or wisdom.
Rather, they arise as outputs of direct self-consistent
calculations. Sometimes it is better to be wise, and sometimes
it is not. The choice between handcrafted traditional models of
states and direct calculations of ions that are sometimes in
definite states should be made, in our view, by success or
failure in explaining and predicting experimental results with
models. The models should be parsimonious and specific, of
course, so they can be falsified, at least in principle. Otherwise,
they are more poetry than science.
We can summarize the observations in the following text.
(1) From eqs 21 and 22, the flux of ion species consists of

diffusion, migration (i.e., electrostatic drift driven by electric
potential), and particle-to-particle steric-effect interaction. The
typical steric-effect flux of −D̃icĩgĩj(∂cj̃/∂z)̃ can be seen as a
chemical potential drift exerted on ion species i by species j, in
which i = j is also allowed. The steric-effect flux generally
includes a flux coupling between species i and j, and this
coupling is not captured in plain PNP and DFT−PNP theory,
where fluxes of one species are driven only by gradients of the
chemical potential of that one species. Here, everything
interacts with everything else: the flux of one species is driven
by gradients of the chemical potential of another species, even
though we use (nearly) the same constitutive (NP) relation for
transport as in classical PNP or DFT−PNP. Our chemical-
potential drift term is not like electrostatic drift. The
electrostatic drift can flow uphill or downhill along the electric

potential, depending on the sign of the valence zi being
negative or positive. The chemical potential drift, however,
always flows downhill along the chemical potential unless D̃igĩj
is negative, which is impossible if the particle-to-particle steric-
effect interaction is always repulsive (not attractive). If particles
push each other away, then peaks of ion concentration (for
different species) tend to separate from each other as best they
can, unless frustrated or overcome by additional electrostatic
force. Here, in the present case, Na+ and Ca2+ chiefly feel a
strong push from O−1/2 as gNa,Na gets larger (because aO−1/2 is
large and O−1/2 is kept inside the filter) as well as the
electrostatic attractive force from O−1/2. This can be clearly
seen in Figure 4. Note the 4-fold scaling of O−1/2

concentration. In Figure 4a, for gNa,Na = 0, the concentration
profiles of O−1/2, Na+, and Ca2+ reach equilibrium (at the
minimum of total energy) simply by diffusion and the
electrostatic force because the extra restraining force is felt
by glutamate O−1/2 only. O−1/2, Na+, and Ca2+ all form single-
peak concentration profiles in the same region of the channel
for the same range of z. Physically, Na+ and Ca2+ are attracted
to focused O−1/2 by the electrostatic force. The attraction for
Ca2+ has a larger effect than the attraction for Na+ because
Ca2+ is divalent. Also, Na+ and Ca2+ at the same time repel
each other by electrostatic (and steric) forces.
This complex balance of forces can produce a wide range of

behavior that varies a great deal as concentrations and
conditions are changed. The biological function of channels
and transporters has been defined experimentally for many
decades by their behavior in complex ionic mixtures of variable
composition as different voltages are applied across the cell
membrane. We have not yet investigated the properties of our
model as the concentrations of ions are made unequal on
either side of the channel, as the electrical potential is varied,
or, most importantly, as different species of ions are included
in ionic mixtures on both sides of the channel.
The interaction forces (without the attractive component)

may be responsible for many of the single-file properties of
channels. More complete descriptions of Lennard-Jones forces
include an attractive component. The interaction forces with
the attractive component might (conceivably) produce the
phenomena that define transporters, whether they are co-
transporters or counter-transporters.
(2) As gNa,Na becomes larger in Figure 4b−f, the primary

force is still the electrostatic attraction of Na+ and Ca2+ by
O−1/2 but is modified by the finite-size effect (hard-sphere
force). This electrostatic force will make peaks of Na+ and
Ca2+ occur in the selectivity filter (i.e., in the same region of
the channel that contains the O−1/2 side chains). For Na+,

Table 1. Effect of Increasing εglobal on the Ca Binding Ratio with [Ca2+]L = [Ca2+]R = 1 mM [Na+]L = [Na+]R = 100 mM, ϕL =
ϕR = 100 mM, and Vmax = 200

gNa,Na 0 10−4 10−3 10−2 10−1 1
gNa,Cl 0 0 0 0 0 0
gCl,Cl 0 0 0 0 0 0
gNa,Ca 0 6.41 × 10−5 6.41 × 10−4 6.41 × 10−3 6.42 × 10−2 6.42 × 10−1

gCl,Ca 0 0 0 0 0 0
gCa,Ca 0 1.64 × 10−4 1.64 × 10−3 1.64 × 10−2 1.64 × 10−1 1.64
gNa,O−1/2 0 8.19 × 10−4 8.19 × 10−3 8.19 × 10−2 8.20 × 10−1 8.20
gCl,O−1/2 0 0 0 0 0 0
gCa,O−1/2 0 1.00 × 10−3 1.00 × 10−2 1.00 × 10−1 1.0034 1.00 × 101

gO−1/2
,O

−1/2 0 1.63 × 10−2 1.64 × 10−1 1.64 1.65 × 10 1.64 × 102

Ca binding ratio 0.602 0.594 0.754 0.861 0.825 0.72
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Ca2+, and O−1/2, the hard-sphere forces between ions of the
same species will make the concentration profiles flatter as
gNa,Na gets larger, when particles feel the push from similar
particles. Flattening is clearly seen in Figure 4b−f.
(3) As gNa,Na gets larger in Figure 4b−f, Ca2+ pushes Na+

away from the middle part of the filter and forms a depletion
zone and double-peak profile for Na+ in Figure 4c−e.
Depletion zones of this sort have profound effects on the
selectivity of ion channels in Monte Carlo simulations. See
Figure 6 in refs 99 and 54. Depletion zones have profound
effects on the behavior of transistors132−135,162 and the
selectivity of channels.9,54,99 A single transistor can have
qualitatively distinct properties (e.g., gain, switch, logarithm,
and exponential) for different boundary electrical potentials
(bias for one transistor; power supply more generally) because
the different boundary potentials produce different arrange-
ments (layering) of depletion zones. Each arrangement of
layers or depletion zones makes the same transistor a different
device with a different device equation, corresponding to a
different reduced model for the transistor. Different reduced
models are appropriate for different conditions and have
different functions. The function of the depletion zones found
here is not yet known nor is the pattern or effect of cycling
through structures known, but the complex properties of the
Ca/Na exchanger, wonderfully characterized by Hilge-
mann,163−166 immediately come to mind.
The major mechanism in Figure 4c−e is still that Ca2+ is

more attracted to O−1/2 than to Na+. However, with extra help
from the interspecies hard sphere force between Na+ and Ca2+

(in addition to the electrical repulsive force between Na+ and
Ca2+), Ca2+ is able to push Na+ out of the filter. Note that
again Figure 4f is an exception because all concentration
profiles in it are very flat. In Figure 4f, the interspecies
repulsive forces are greatly reduced and Na+ resides in the
middle of the filter along with Ca2+. Note that Ca2+ forms a
single-peak concentration profile in all of these cases without
splitting into two peaks. Na+, however, can form a double peak
when gNa,Na increases. The splitting occurs when the
electrostatic attraction by O−1/2 is large enough to survive
the push of different species from O−1/2 and Na+ in addition to
the repulsive electrostatic force from Na+.
The singular behavior in Figure 4f may have direct

functional significance. The splitting of a single peak into a
double peak can create a depletion zone that can dominate the
channel behavior (even though it is very small) because it is in
series with the rest of the channel. A depletion zone can block
flow and create switching behavior, as it does in transistors.
The depletion zones could help create the many states of a

channel, identified as activated, inactivated, slowly inactivated,
blocked, and so forth.2 The depletion zones could be
responsible for many of the similar (but correlated) states
identified in classical experiments on transporters. In our
calculations, of course, states arise as outputs of a self-
consistent calculation and as a result of theory and
computation, not as handcrafted metaphors summarizing the
experimental experience and wisdom of structural biology and
classical channology.2

Despite our enthusiasm and focus on our work, it must be
clearly understood that our treatment of correlations is
incomplete. We leave out many of the correlation effects of
more complete variational treatments1,75,76 and the more
subtle correlations in the BBGKY hierarchy, derived for
nonequilibrium systems67 such as PNP (without finite-sized

ions) from a Langevin description of trajectories in refs 278,
167, and 168. Our treatment is mathematically fully self-
consistent but physically incomplete in its treatment of
correlations and of course chemical interactions as well. The
classical discussion of the BBGKY hierarchy and its treatment
of correlations is not directly applicable to our analysis,
however. The correlation forces of the hierarchy appear as
driving forces in our partial differential equations, so the results
of those forces are spread through all the terms of the solution
of our partial differential equations. Thus, the effects of the
correlations are likely to be more widespread than the effects
of classical equilibrium analysis. Only detailed fitting of theory
to data will show which correlations must be included in our
model to explain the experimental data. Conclusions from
equilibrium analysis may not apply.
(4) From Table 1, the Ca2+ binding ratio starts from

0.60214 when the finite size effect is zero (i.e., gNa,Na = 0).
Affinity for Ca2+ in the filter region shows itself, even without
the finite-size effect. This is obviously because Ca2+ feels a
stronger electrostatic force than Na+ because of the larger
valence. The valence effect dominates even though the
concentration of Ca2+ is much lower than that of Na+ in
reservoirs. The fact that valence effects overwhelm concen-
tration effects when studying divalents has been known for at
least 100 years. The binding ratio of Ca2+ decreases, increases,
and then decreases again as gNa,Na increases, which shows the
influence of the finite-size effect. The Ca2+ binding ratio
roughly reaches its maximum at gNa,Na = 0.01 with a value of
0.861. This is far larger than the 0.602 that occurs when the
finite size effect is zero and helps generate the affinity of Ca
(selectivity). These effects can be further seen from the
computational results shown later, when gNa,Na = 0.01.
We have not yet studied the effects of concentration

gradients. Note that in biological systems, gradients of Ca2+ are
large and have profound effects in experiments. Calcium
concentrations outside cells are typically ∼2 × 10−3 M,
whereas those inside cells (cytoplasm) are <10−7 M. There are
many compartments within cells (vesicles, mitochondria,
endoplasmic reticulum, and sarcoplasmic reticulum) essential
to living function that maintain distinctive concentrations of
Ca2+ without which they cannot function. We anticipate
complex behavior of concentration profiles of ions within the
selectivity filter when our model is studied in realistic ionic
mixtures. It seems unlikely that these are uninvolved in
biological function, however obscure that involvement seems
today and however difficult it is to discover. It seems wise to
do calculations under conditions in which the systems can
actually perform their natural function, and it is unwise to
simulate conditions in which biological systems are known not
to function properly.

Ca Binding Curve. In these calculations, we first studied
how finite size effects change the Ca binding curve, and the
results are shown in Table 2 and its associated Figure 5. We
choose gNa,Na = 0 and an appropriate finite size effect by
choosing gNa,Na = 0.01 to calculate the binding curves of Na+

and Ca2+ respectively. Vmax = 200 mV as above, boundary
conditions ϕL = ϕR = 100 mV, and concentration of Na+

inside and outside = 100 mM.
The results are shown in Table 2 and its associated Figure 5.

The finite-size effect greatly enhances the selectivity, as
observed previously in Monte Carlo simulations. The
concentration profiles for different species are shown for
both cases in Figures 6 and 7, respectively. Note the 2-fold
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scaling of the O−1/2 concentration in both figures. Figure 6
shows the increase in Ca2+ and the decrease in Na+ as the Ca2+

concentration increases (in the baths on both sides of the
channel). Increases are due to the interplay of diffusion and
electrostatic forces. There are no special chemical forces in our

calculations. Binding forces are the output of our calculation,
not the input as in so many treatments of selectivity.
In our model, Na+ and Ca2+ are both attracted to confined

O−1/2. They repel each other at the same time. Na+ and Ca2+

both form only single-peak concentration profiles; therefore,
the depletion of Na+ in the middle of the filter occurs only at
the largest peak as the Ca2+ concentration increases (on both
sides).
Figure 7 shows the extra influence of the finite-size effect

compared to Figure 6. The single-peak profile of Ca2+ found in
all cases means the pull from O−1/2 by electrostatics survives
the electrostatic repulsive force from Na+ as well as the hard-
sphere pushes from both O−1/2 and Na+. The pull is so strong
that there is no splitting and no double-peak profile.
However, the electrostatic pull for Na+ from O−1/2 is much

smaller than its counterpart for Ca2+. The combination of the
hard-sphere pushes from both O−1/2 and Ca2+ and also the
electrostatic repulsive force from Ca2+ have qualitative effects.
The concentration profile of Na+ changes from a single-peak to
a double-peak profile as the Ca2+ concentration increases (on
both sides of the channel). Also, a depletion zone of Na+

inside the filter is observed as the Ca2+ concentration increases
(on both sides of the channel). A depletion zone, which arises
when a peak splits in two, can have profound functional
consequences because it is in series with the entire channel. A
series barrier can entirely block the current flow.

DEEA Ca2+ Binding Curve. We have also computed the
Ca2+ binding curve of a mutant sodium channel (DEEA) with
three glutamate side chains. These are represented as six O−1/2

particles freely moving inside the filter as in previous work,
consisting mostly of Monte Carlo simulations previously cited.
Figure 8 shows the effect of a −4e side chain in EEEE and a
−3e side chain in DEEA on the Ca2+ binding curve. Obviously,
EEEE with a −4e side chain has a slightly larger affinity for
Ca2+ than does DEEA with a −3e side chain. This DEEA
binding curve, employing the PNP−steric model, agrees well

Table 2. Ca Binding Ratio vs [Ca2+]L = [Ca2+]R with gNa,Na =
0 (No Finite-Size Effect) and gNa,Na = 0.01 (Having a Finite-
Size Effect)a

[Ca2+], mM Ca binding ratio gNa,Na = 0 Ca binding ratio gNa,Na = 0.01

10−6 9.2286 × 10−6 4.4525 × 10−3

10−5 9.2257 × 10−5 3.1819 × 10−2

10−4 9.1970 × 10−4 0.12233
10−3 8.9241 × 10−3 0.28671
10−2 7.0641 × 10−2 0.49926
10−1 0.29171 0.70778
1 0.60214 0.86109
10 0.82816 0.94502
100 0.93661 0.98080

aVmax = 200, ϕL = ϕR = 100 mV, and [Na+]L = [Na+]R = 100 mM.

Figure 5. Binding curves corresponding to Table 2.

Figure 6. Species concentration distributions under various [Ca2+]L = [Ca2+]R with gNa,Na = 0 (no finite-size effect). Vmax = 200, ϕL = ϕR = 100 mV,
and [Na+]L = [Na+]R = 100 mM: (a) [Ca2+]L = [Ca2+]R = 10−7 M; (b) [Ca2+]L = [Ca2+]R = 10−6 M; (c) [Ca2+]L = [Ca2+]R = 10−5 M; (d) [Ca2+]L
= [Ca2+]R = 10−4 M; (e) [Ca2+]L = [Ca2+]R = 1 mM; (f) [Ca2+]L = [Ca2+]R = 10 mM. Note the 2-fold scaling of the O−1/2 concentration.
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with its counterpart in ref 75 using the PNP−LJ model and its
counterpart in ref 99 using Monte Carlo simulations.
DEKA Ca2+ Binding Curve. Here we compute the Ca2+

binding curve of the sodium channel (DEKA) with two
glutamate side chains (four O−1/2 particles) and one lysine side
chain (one NH4

+ particle) free to move inside the filter. The
Ca2+ binding curve is shown in Figure 9, and the associated
species concentration profiles are shown in Figure 10. Note
that the scaling of [O−1/2] is the same as the scaling of other
concentrations in Figure 10, unlike those in Figures 4, 6, and 7.
The loss of affinity for Ca2+ is obviously due to the existence of
a lysine side chain with a +1e charge, though the net charge on
glutamate and lysine side chains taken together is still −1e. We
also computed an artificial EAAA channel with only one
glutamate side chain (two O−1/2 particles) in which the net
permanent charge on the filter is −1e, to correspond precisely
to the experimental situation as discussed in ref 99 and
references cited therein. EAAA still has a much higher affinity
for Ca2+ than for Na+ (data not shown). The DEKA binding
curve, employing the PNP−steric model, agrees well with its
counterpart in ref 75 computed using the PNP−LJ model and
also with its counterpart in ref 99 computed using Monte

Carlo simulation. The concentration profiles of individual
species shown in Figure 10 also resemble those in ref 99. We
have not yet performed the calculations with multiple ion
species needed to evaluate the selectivity of the DEKA model
for K+ ions.

■ DISCUSSION
Ion channel function depends on the properties of ionic
solutions and ions in channels, along with the properties of the
channel protein itself, so it is necessary to relate our work to
previous work in each field, emphasizing the properties of ions
in bulk solutions, ions in proteins, and proteins that determine
the biological function in our model of channels, if not in the
real world.

Relation to Classical Work on Ionic Solutions,
Poisson−Boltzmann, and PNP. The limitations of Pois-
son−Boltzmann and PNP models of ionic solutions have been
known a very long time to the physical chemistry community
but seem not to be so well known to either applied
mathematicians or biophysicists. Exhaustive references to the

Figure 7. Species concentration distributions under various [Ca2+]L = [Ca2+]R with gNa,Na = 0.01 (with finite-size effect). Vmax 200, ϕL = ϕR = 100
mV, and [Na+]L = [Na+]R = 100 mM: (a) [Ca2+]L = [Ca2+]R = 10−7 M, (b) [Ca2+]L = [Ca2+]R = 10−6 M, (c) [Ca2+]L = [Ca2+]R = 10−5 M, (d)
[Ca2+]L = [Ca2+]R = 10−4 M, (e) [Ca2+]L = [Ca2+]R = 1 mM, (f) [Ca2+]L = [Ca2+]R = 10 mM. Note the 2-fold scaling of the O−1/2 concentration.

Figure 8. Binding curves of EEEE (−4e) and DEEA (−3e).
Figure 9. Binding curves of DEKA (−1e).

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp305273n | J. Phys. Chem. B 2012, 116, 11422−1144111433



literature are in refs 52, 59, 65, and 169−171. Applied
mathematicians understandably are attracted to the simplicity
of the Poisson−Boltzmann−PNP equations and view them as
a starting point for more realistic treatments.70 Biophysicists2

use the independence principle that worked so well172,173

when applied to membranes in which ions flow through
separated, independent protein channels.174−177 When chan-
nels are not selective178,179 or two types of ions flow through
one channel, as in classical ligand-gated acetylcholine channels
nAChRs,180 the independence does not apply.
The independence principle is a restatement of Kohlraush’s

law of a century ago, which does not apply to bulk ionic
solutions of the type found in biology (eq 3.27a,b on p 125 of
ref 67). References to the physical chemistry literature include
refs 21, 57−63, 66−69, 74, 129, 158, 169, 171, and 181−230.
Many of these papers are strictly experimental, presenting
compilations of physical chemistry data. These papers also
show that ionic solutions are not well described by Poisson−
Boltzmann or PNP, if they contain divalents, multivalents, or
mixtures of monovalents. (Biological solutions are mixtures
usually containing divalents.) Interactions are strong in all
ionic solutions because they all satisfy global electroneutrality.
Thus, ionic solutions are nothing like ideal, so the law of mass
action, for example, does not apply as usually used with rate
constants independent of concentration. Note that rate
constants in complex models will depend on each other as
well as on concentration because the electric field in one part
of a channel (described by one rate constant) will interact with
charges in another part of the channel (described by another
rate constant). It is that variation of the electric field that
allows Kirchoff’s current law (and its generalization to the
Maxwell equations232−234) to be true. The electric field is long-
range and cannot be broken into independent spatial
components as it is in most classical treatments.2

Classical Work on Channel Proteins: Permeation.
Currents permeate biological membranes by flowing through

channel proteins that are either open or closed. A single ionic
channel controls the current by opening and closing
(spontaneous gating),5,6,235−237 thereby making a random
telegraph signal238 that has been studied in enormous detail for
many (hundreds or thousands of) channel types178,179,239,240

using the wonderful techniques of single-channel recording,
patch clamp,6,241−245 and bilayer reconstitution.246

Sadly, the structures and mechanisms that produce this
gating are still mostly unknown. However, progress is at
hand.247−251 Special structures modulate spontaneous stochas-
tic gating in most channels to produce the macroscopic gating
properties of classical electrophysiology.2,4,5,252,253 The proper-
ties of macroscopically modulated gating are complex, as is
clear from the variety and number of complex schemes in the
classic text2 (chapters 18 and 19 and Figure 19.11). Some of
these schemes involve nearly 100 ill-determined rate constants
(Figures 18-11 and 18-12 in ref 2) and have attracted the
attention of literally hundreds of investigators over many
decades.239,240 So far, no theoretical model can explain gating
and selectivity using the fundamental physics that is described
(crudely) in the PNP equations, but this situation may change.
Despite our ignorance of the mechanism of gating, the

phenomena of spontaneous gating is remarkably clear, one
might even say crystal clear, despite the amorphous structures
involved. Once the single channel is open, the current through
the single channel is remarkably stable. Single-channel (mean)
currents are independent of time from say 10 μs to 10 s or
longer, strongly suggesting that the channel protein has only
one structure over a range of (at least) 106. A glance at an MD
simulation of channels or the numerical values of energies
computed from Coulomb’s law or Lennard-Jones potentials
suggests that the structure of the channel pores and the pore
walls must be very constant indeed over these time scales. A
change in radius of 3% would produce a change in current of
at least (and probably much more than) 9%. Single-channel
currents are routinely resolved to within 2% (and can be

Figure 10. Species concentration distributions under various [Ca+2]L = [Ca+2]R with gNa,Na = 0.01 (having a finite-size effect). Vmax = −200 for
glutamate side chain, Vmax = 200 for lysine side chain, ϕL = ϕR = 100 mV, and [Na+]L = [Na+]R = 100 mN: (a) [Ca2+]L = [Ca2+]R = 10−7 M, (b)
[Ca2+]L = [Ca2+]R = 10−6 M, (c) [Ca2+]L = [Ca2+]R = 10−5 M, (d) [Ca2+]L = [Ca2+]R = 10−4 M, (e) [Ca2+]L = [Ca2+]R = 1 mM, and (f) [Ca2+]L =
[Ca2+]R = 10 mM. Note that the scaling of [O−1/2] is the same as the scaling of other concentrations in this figure, unlike that in Figures 4, 6, and
7.
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resolved much better5,242,243,254−256 if necessary because the
stability is nearly perfect and signal-to-noise ratios are often
larger than 50). The complexity and ignorance of the gating
mechanism reappear when we consider the time course of the
opening and closing processes themselves (e.g., on a much
faster time scale244 or in cooled systems245). The opening and
closing processes do not in fact have well-defined time courses,
and nothing seems to be known about their physical origin in
either case.
Classical Work on Channel Proteins: Permeation and

Selectivity. Once open, channels select between ions of
different chemical types. Channels allow only some types of
ions to flow, even though the different chemical types are quite
similar. For example, Na+ and K+ ions differ only in diameter;
Na+ and Ca2+ ions differ only in charge. Simple models do
surprisingly well in dealing with the selectivity of some types of
channels. This work was reviewed in the Introduction of this
article and elsewhere.7,9,72

Dealing with Biological Reality. It is important that the
study of permeation and selectivity be carried out in the
context of specific channels using parameters known to fit a
wide range of experimental data properly.9,16−18,90,94−97,99−112

It is a surprise, particularly to structural biologists and
traditional channologists, who customarily deal with meta-
phors257−259 and not quantitative fits to data that powerful
results, with quantitative fits to data in important cases, can
arise from the Nonner and Eisenberg models with their very
simple structures. We do not know why these models work,
but one reason may be that the structures are the computed
consequences of the forces in the model so the structures of
the channel protein and of the ionic solutions are always
exactly self-consistent. Even tiny deviations in the location of
side chains from their free-energy minima produce large
energy and functional effects.54,93 Exact self-consistency
between channel protein and ionic solution seems to be
necessary to make reasonable models. We suspect that exact
self-consistency is why some simulations fit some data so well.
If exact self-consistency is necessary to make reasonable

models, then classical models in much of molecular
biology260−264 will need to be reconsidered, even in much of
chemistry,73,74 because classical chemical and biochemical
models are almost never self-consistent. They almost never
calculate the electric field from the charges present, let alone
deal self-consistently with boundary conditions, steric forces,
or the resulting interactions of everything with everything else.
Our approach in this article represents the ionic atmosphere
around an ion consistently in a simplified way using the
approximated LJ potential instead of the original LJ potential.
Surely, we have not included all of the correlations among
ions. Only detailed fitting to large amounts of data will show
whether we have captured enough correlations, and captured
them well enough.
It is also possible that the Nonner and Eisenberg models

work well because the community of scientists working on
them has recapitulated evolutionary history. Perhaps those
scientists have stumbled on the adaptation that biological
organisms found eons ago, as evolution selected mutations that
allowed cells to live and reproduce. It is even possible (for the
same reason) that simple, nearly 1D models will capture most
of what we need to understand time-dependent non-
equilibrium properties of channels.
Nonequilibrium Treatments. An important advantage of

the methods considered here is their extension to non-

equilibrium in a mathematically precise and defined way,
always fully self-consistent. Other approaches depend on
physical approximations that are not self-consistent. They were
the best that could be done at the time but cannot substitute
for self-consistent treatments, in our view. For example, the
DFT−PNP method18,105,107,108,110−112 is not self-consistent
(i.e., it does not precisely satisfy sum rules of statistical
mechanics265,266 or Poisson’s equation and boundary con-
ditions) and apparently leaves out relaxation and dielectropho-
resis terms of the (more or less) self-consistent Debye−
Hückel−Onsager equation. See the classical work267−278 and
the textbook207 (p 282, Figure 7.7). DFT−PNP indeed
assumes local equilibrium, as do other approaches using
combinations of simulation and PNP equations,279−281

although it computes global flux.
It must be clearly understood that any assumption of local

equilibrium is also an assumption of local zero flux. It is not
clear how a system can have zero local flux and long-range
substantial flux as does DFT−PNP, particularly when the
system is a nanovalve connected in series to a high-impedance
entry process and macroscopic baths. DFT−PNP is incon-
sistent in its treatment of both flux and electrostatics. Adopting
models that are inherently inconsistent is dangerous because
the results of calculations can depend on how the
inconsistency is resolved, and that resolution may be presented
sotto voce, or chosen without conscious thought.
It is striking that very successful PNP calculations in a

closely related field such as computational electronics do not
use inconsistent assumptions (such as local equilibrium and
global nonequilibrium) and always satisfy Poisson and
boundary conditions with great accuracy. Simulations in
computational electronics directly solve the relevant equations
and so are fully self-consistent. Otherwise, they have difficulty
accounting for the function of semiconductor devices that
arises from small differences in large forces. Calculations of
computational electronics account for the macroscopic
function using atomic-scale models.8,9,11,12,134,136,149,282−284

Most treatments of ions in water and channels have been
much less successful, perhaps because they are inconsistent.
Resolving inconsistencies can be a difficult task. It took a

detailed stochastic analysis (lasting many years) of a second-
order Langevin equation with doubly conditioned non-
differentiable Brownian trajectories285,286 to resolve a similar
inconsistency in an analysis of noninteracting particles. And
the results of that analysis were not at all what had been
anticipated, although they were pleasingly simple when
interpreted correctly with the classical theory of mass action.74

The stochastic analysis allowed one to derive the law of mass
action, but with variable rate constants that were specific
functions of everything in the system, as given by the analysis.
It is not clear how one can evaluate or resolve the paradox of
local equilibrium and global flow in DFT−PNP. One attempt
is in refs 76 and Appendix C of ref 75.

Flows in Complex Mixtures. An important advantage of
the methods presented here is their indifference to flow. The
methods work at thermodynamic equilibrium and when flows
are vigorous. Thus, calculations can be made in the
nonequilibrium situations and mixed ionic solutions used
nearly always in experimental work. Such calculations require
some further numerical work because they involve many
species of ions and ionic tracers (radioactive ions with
properties identical to nonradioactive isotopes but present in
trace amounts) that must be included appropriately in our
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Euler−Lagrange equations. Such calculations will allow the
direct simulation of the experiments used historically to define
single filing by ratios of unidirectional fluxes (e.g., which are
estimated by the net fluxes of tracers) and most importantly to
define the properties of transporters of every type, whether
they transport species in the same direction or in opposite
directions or in both. It is likely that some of the properties
attributed to the interactions of ions with the channel protein
actually occur between ions themselves.73,74 After all,
interactions between ions had been ignored almost entirely
in classical theories because ions were treated as ideal
solutions264,287,288 even when present in enormous concen-
trations.9,260 The effect of nonideality on the very definition of
transporters remains to be investigated. This investigation can
be done abstractly in general but much better if it can be done
by realistic simulations of actual experimental setups using the
PNP−steric model and other models that deal even more
realistically with interactions.
Future Work: Inverse Problems. The distribution of

permanent charge within the channel can be determined
reliably from measurements of current voltage relations.
Surprisingly, the inverse problem of determining the charge
within the channel of the Nonner and Eisenberg model has
been solved.16−18 The sensitivity to noise and errors is small
when the problem is solved by standard methods of inverse
problems. The inverse problem of interest to biologists has a
well-posed solution and can be used to determine the internal
structure of the model channel from the kind of experimental
information recorded in hundreds if not thousands of
laboratories every day. The inverse problem for the PNP−
steric model needs to be studied so that experiments can be
designed to reveal properties of interest.
Future Work: One-Dimensional Models. The forward

PNP problem has in some ways been more difficult to
compute than the inverse problem because it has had to deal
with the complex geometry of the channel protein. The inverse
problem hides much of this geometrical complexity in effective
1D parameters. In fact, most numerical work assumes simple
geometry for the ion channel and reduces the problem to one
dimension. These papers all assumed that the pore diameter
had some simple dependence on location, either parabolic or
some kind of funnel shape that is easier to deal with
analytically.24,25,47,48,51,88,116,143,147,148,167,289,290 Although some
2D and 3D work ha s been r epo r t ed in the
past,24,35−40,43−45,49,50,281,291−295 many results have not been
as well converged as one might wish, and others simply were
not checked as carefully as refs 26, 43, and 230 showed was
necessary, as the semiconductor community had learned earlier
(reviewed in ref 136; see ref 149). Very few computations have
been reported using the real shape of channels, and even then
the accuracy of the electrostatic treatment was not sufficient to
be sure that important details were resolved (Claudio Berti,
personal communication139,296). Obviously, the difficulty is
expected to be much greater when extending the traditional
PNP equations to the modified ones of Eisenberg et al. and
others.26,75−77,230

The difficulties in dealing with the full structural complexity
of an ion channel should not be underestimated. The spatial
resolution needed can put severe burdens on the memory
bandwidth of even modern day computers. The relation of
structures determined by the X-ray analysis of crystals to the
spatial distribution of the mass density of each species, the
spatial distribution of the (effective) diffusion coefficient (of

each species), and the spatial distribution of polarization (i.e.,
induced dielectric) charge cannot be determined by presently
available methods, but these distributions must be specified
with precision in 3D calculations. The issues of temporal
properties are hardly ever discussed, yet the polarization
properties of electrolyte solutions change tremendously in the
time range from biological function to atomic motion. It is not
clear how these effects are involved in protein function or how
to include them in models. It may be that these issues are less
important in 1D models than in 3D models because the lower-
dimensional models smooth over them in an appropriate way.

Time Dependence: Future Work. Future work needs to
address each of the time-dependent phenomena to see what
part of the classical properties of ion channels, studied in
innumerable experimental papers, might arise from a model as
simple as that used here. Obviously, many of those classical
properties will involve conformational changes of the channel
protein not described by our simple model. But just as
obviously, those conformational changes will be coupled to
ions in the channel by the electric field and probably by steric
interactions as well, so everything must be analyzed together
ions, channel conformation, bathing solutions, ion flux, and
current flowas is usually the case in complex fluids flowing
through complex spatial domains. Theory and simulations
must allow everything to interact with everything else. They
must not assume nothing interacts with nothing, as in ideal
solutions.

■ CONCLUSIONS
Traditional PNP equations do not include the finite-size effect
that is known to be significant in ionic solutions containing
divalents and containing mixtures and even in pure
monovalent solutions more concentrated than 50 mM. The
concentration of ions in seawater, in and around cells, and
inside channels is much higher than that. Therefore, classical
PNP cannot describe the specific ion properties of bulk
solutions such as seawater and the solutions in living systems,
the plasmas of life. It cannot predict the ion-selectivity
behavior of ion channels correctly. Here, we introduce the
finite-size effect by treating ions and side chains as solid
spheres and using hard sphere potentials to characterize this
effect. Our work shows that selectivity is found in a simple 1D
analysis and simulations.
Complex effects of changes in the repulsion parameters

show a variety of states and depletion zones that are likely to
be important in the functioning of channels and transporters.
For example, the sudden appearance of a depletion zone,
because of instability or a stochastic fluctuation, would surely
gate a channel closed. If that gating happened on one side of a
channel, then the properties on the other side would surely be
affected. Everything interacts with everything else in these
systems profoundly coupled by Coulomb and steric exclusion
forces. If an exclusion zone moved from one side of a channel
to another and then back and forth, then the channel protein
could easily produce a reciprocating ping pong effect and
mimic the alternating access states of transporters discovered
with such wisdom and work by experimentalists who did not
have the help of self-consistent models. The everything
interacts with everything nature of the crowded charge
environment inside a channel, or active sites,2,260,297 makes
such nonlinear interactions possible. It is not clear if the
correlations included in our model are sufficient to produce
ping pong effects or not: our model leaves out many forms of
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correlation, we are sad to say. It also remains to be seen
whether biology actually uses such interactions at all.
Alternating access could be produced in quite different ways,
as most assume.
It is very important for the reader in the physical sciences to

understand that complex systems of states and rates have been
used by experimental biologists to characterize the function of
hundreds of channels178,179,239,240 and transporters298 studied
by thousands of laboratories daily because of their medical and
biological importance.
It is very important for the reader in the biological sciences

to understand that an enormous wealth of living behavior
could be controlled by the physical phenomena described here,
as outputs of a self-consistent model and as solutions of a set
of partial differential equations and boundary conditions,
without invoking classical, vaguely defined effects. Those
classical effects are more vitalistic than vital in many cases, in
our view.
Early workers of some reputation in molecular biology,

including Nobel Prize winners,299−301 attributed the secret of
life to allosteric interactions of chemical signals acting on
proteins and then channels.2 It is striking to the biologists
among us that a self-consistent model of ions and side chains
in channels produces strong interactions over long distances
(i.e., more than 1 nm) without invoking the metaphors of
vitalistic allostery. The calculations of a self-consistent
variational theory of the energetics of complex fluids seem
ready to replace the poetry of our ancestors.
Self-consistent theory is useful only because it can be

evaluated with computers. Those computers in turn are
possible only because of the successful treatment of complex
physical interactions by self-consistent mathematics. It is
amusing that physicists learned to use self-consistent
mathematics to analyze (control and build) complex
interacting systems of holes and electrons302−304 during the
same years that biologists used poetry to describe complex
interacting systems of cations and anions.
Channels are nearly enzymes,9,297 and it is possible that the

interactions described by models of the sort described here for
channels underlie the complex interactions of a wide range of
proteins that produce the special properties of life. Certainly, a
theoretical and computational approach to biology and its
molecules must allow everything to interact with everything
else, instead of assuming that everything is ideal and nothing
interacts with nothing.
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