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a b s t r a c t

The Poisson–Fermi equation proposed by Bazant, Storey, and Kornyshev [Phys. Rev. Lett.
106 (2011) 046102] for ionic liquids is applied to and numerically studied for electrolytes
and biological ion channels in three-dimensional space. This is a fourth-order nonlinear
PDE that deals with both steric and correlation effects of all ions and solvent molecules
involved in a model system. The Fermi distribution follows from classical lattice models
of configurational entropy of finite size ions and solvent molecules and hence prevents
the long and outstanding problem of unphysical divergence predicted by the Gouy–Chap-
man model at large potentials due to the Boltzmann distribution of point charges. The equa-
tion reduces to Poisson–Boltzmann if the correlation length vanishes. A simplified matched
interface and boundary method exhibiting optimal convergence is first developed for this
equation by using a gramicidin A channel model that illustrates challenging issues associ-
ated with the geometric singularities of molecular surfaces of channel proteins in realistic
3D simulations. Various numerical methods then follow to tackle a range of numerical prob-
lems concerning the fourth-order term, nonlinearity, stability, efficiency, and effectiveness.
The most significant feature of the Poisson–Fermi equation, namely, its inclusion of steric
and correlation effects, is demonstrated by showing good agreement with Monte Carlo sim-
ulation data for a charged wall model and an L type calcium channel model.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

For more than 100 years since the seminal works of Gouy [1] and Chapman [2] on dilute solution theory, a great deal of
effort has been devoted to improving the Poisson–Boltzmann (PB) theory of continuum models for a proper description of
steric and correlation effects in electrolytes and ionic liquids [3–30]. For a partial list of review papers on this subject, we
refer to [31–41] and references therein. In particular, Bazant et. al. give a comprehensive account of historical developments
concerning these effects in [40]. Based on Santangelo’s work [23], Bazant, Storey, and Kornyshev recently propose in [29] a
novel PB modification called the Poisson–Fermi (PF) equation in which both steric and correlation effects are included to
study the crowding and overscreening properties of ionic liquids in the double layer at large voltages. The results predicted
by this new model are consistent with those of molecular dynamic simulations and experiments.

The Poisson–Fermi equation is a fourth-order nonlinear PDE, where the fourth-order term describes the medium permit-
tivity and the dielectric response of correlated ions. Steric effects are seen in the resulting Fermi-like distribution of finite size
ions at large potentials near electrodes and boundaries. The Fermi distribution is a consequence of classical lattice models
used in [12,38,42] to describe the configurational entropy of electrolytes and avoids the long and outstanding problem of
unphysical divergence predicted by the Gouy–Chapman model at large potentials due to the Boltzmann distribution of point
0
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charges. The fourth-order term with respect to the potential function resembles a surface energy of Cahn–Hilliard type [43]
that describes the phase transition of a binary fluid in interfacial region.

Apart from the PF approach, the density functional (continuum) description of ion–ion, ion–solute, or ion-water Lennard–
Jones interactions has been independently proposed and intensively studied by Eisenberg’s group [26,44–46], called the
EnVarA (energy variational analysis) approach herein, and by Wei’s group [30,47], called VMM (variational multiscale mod-
els) approach, in recent years to deal with steric and correlation effects. The layering of charged wall model and the binding
of calcium to DEEA and EEEE channels have been observed by the EnVarA approach in one dimensional setting. In addition to
describe these effects, the VMM approach can also generate molecular surfaces that are free of geometric singularities and
are shown to be quite similar to that obtained by the MSMS package [48]. Moreover, the surface function satisfying the La-
place–Beltrami equation in VMM can be used to define a dielectric function that varies from the molecular domain to the
solvent domain within the phase transition region. This is a differential geometric method whereas the PF approach uses
a physical decomposition of the Coulomb interaction into short, intermediate, and long range components parametrized
by the correlation length to define the dielectric function. It is shown in [49] by Monte Carlo (MC) simulations that the ionic
selectivity of calcium channels is strongly affected by the dielectric properties within the channel pore region. It is however
remained to be investigated whether these three continuum approaches can reproduce MC results in this respect. One of the
main results in this paper is to compare PF and MC results on the charge distribution of electrolytes near a highly charged
surface. The EnVarA and VMM approaches should produce Firmi-like distribution due to the L-J repulsion effects. The non-
linear Poisson equation proposed in [50] offers another way to treat intensive charges that give rise to hyperpolarization ef-
fects in proteins. Nevertheless, it is unknown to the author that there are comparison results of EnVarA or VMM to MC on
charged wall models in three dimensional setting as shown in the present work. A final point to make is the dissipation prin-
ciple [51–55] of ionic flows in solvent water, which forms the basis of the EnVarA approach. Since the dissipative force acting
on an ionic species is customarily expressed in terms of its electrochemical potential and velocities of ions and solvent mol-
ecules, the electrostatic potential obtained via the PF approach can be straightforwardly used in the EnVarA models or equiv-
alently the mixing entropy and correlation terms in the PF energy functional can be included in the EnVarA variational
functional. This combination may provide opportunities to improve the Poisson–Nernst–Planck theory on its prediction or
description of a range of fluid properties such as conductance [56–59], dielectric boundary force [60–69], diffusion distribu-
tion [61,70], and osmotic pressure [71].

We propose here a generalization of the Fermi distribution involving all ions up to four species and solvent molecules for
biological ion channel modeling and a simple method to deal with the fourth-order term by reducing the PF equation to two
second-order PDEs. Suitable boundary conditions then follow from Gauss’s divergence theorem and the global charge neu-
trality condition for these equations. The jump conditions across the molecular surface are extended from those of PB equa-
tion. The four species ions, sodium Na+, potassium K+, calcium Ca2+, and chloride Cl�, make the plasma needed to sustain the
life of cells and proteins and are called ‘‘bio-ions’’ by Eisenberg because of their biological importance [41,72–74].

One of the difficulties in modeling biological systems by implicit solvent models is that their numerical approximation
can be drastically hurt by geometric singularities of molecular surfaces that separate solvent domain from biomolecular do-
main. For the PB equation, this issue has been intensively studied in [75], where a second-order finite difference method
called the matched interface and boundary (MIB) method is developed. The method is simplified (SMIB) here by assuming
that each interface position is located at the middle of its two neighboring grid points. This is not a severe limitation for the
overall approximation of a model system since the molecular surface itself is an artifact [76] and its generation by using the
rolling-ball algorithm [77] or MSMS [48] is also error-prone. Moreover, the interface of a protein and an ionic solution de-
pends dynamically on a wide range of conditions, for example, polarizability and flexibility of the protein, concentration, va-
lence, and size of ions, and spatial distribution of polarization and number density of solvent molecules. It is therefore more
adequate to make the protein wall soft enough or less restrictive [70] than to fix its position at rigid location by any surface
generation scheme. Molecular surfaces defined by the SMIB method are also free of geometric singularities. The SMIB meth-
od is much easier to implement in 3D and basically gives the same optimal order of convergence as the original one. The
approximation of continuum models in 3D is essential if correlations produced by ion crowding are to be dealt with. Biolog-
ical functions of channel proteins depend sensitively on the complex structure of the channel containing ions. These can only
be described in three dimensions [41,72–74]. Crowding near electrodes may be somewhat less sensitive to the dimension-
ality of the model, but a correct low dimensional ‘reduced mode’ can only be evaluated by comparison with a full three
dimensional model and calculation [26,41,72].

Nonlinearity is another issue in practice. Physical phenomena such as phase transition in the electric double layer struc-
ture near charged surfaces, rapid and large variation of ionic concentrations from bath to channel narrow pore, high charge
density in side chains, singular atomic charges in protein, and dielectric response of solvent molecules etc. are in general
strongly nonlinear. Consequently, stable and fast convergence of nonlinear iterative methods inherited from the nonlinear
model system is notoriously difficult to acquire in realistic simulations [70,78,79]. The PF equation is highly nonlinear in
the sense that the fourth-order term describes not only the gradient but also the curvature of charge density profiles and
that the steric effect is expressed as a nonlinear functional of electrostatic potential and the total bulk fraction of ions, which
is very sensitive to the size of ions. A continuation method [80] is developed here to resolve these problems by introducing
two continuation parameters into the steric and correlation terms, respectively. An algorithm for solving PB and PF equations
iteratively is then presented.
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Four model examples, namely, the gramicidin A (GA) channel model in [79], the Born ion model in [75], the charged wall
model in [45,81], and the EEEE calcium channel model in [82], are studied by the PB or PF equation. Numerical results have
shown that the SMIB method is optimal and accurate and that PB or PF results are in good accord with those of MC. An
improvement of the PB equation on steric and correlation effects by the PF equation is thus demonstrated here for electro-
lytic and ion channel modeling.

The remaining part of the paper is organized as follows. The PF equation is presented in Section 2 with the new formu-
lation of its reduced second-order system. Numerical methods for the PB and PF equations are gathered in Section 3. Section 4
provides all numerical results performed in this study. Some concluding remarks are given in Section 5.
2. The Poisson–Fermi equation

Using classical entropy models and the Cahn–Hilliard type of interfacial surface energy, the Landau–Ginzburg-like free
energy functional
G ¼
Z
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proposed in [29] is applied here to biological ion channel modeling, where Ci is the concentration of an ion species i carrying
charge qi ¼ ezi with the unit charge e and the valence zi;/ is the electrostatic potential, kB is the Boltzmann constant, T is the
absolute temperature, � is the electric permittivity, lc is an electrostatic correlation length, dj ¼ dðr� rjÞ is the delta function
denoting a fixed atomic charge qj located at rj, and r is the surface charge density on a surface area @Xr � @X the boundary
of a bounded domain X � R3, if any. The entropy expressed by the first integral involves all ions and solvent molecules by
means of the total volume fraction defined as v ¼

P
id

3
i CBulk

i ¼ v
P

i zij jCBulk
i , where di are diameters of ions and CBulk

i are bulk
concentrations. The correlation term in the second integral accounts for the dielectric response of the electrolyte.

In equilibrium, the variation of the functional with respect to / and Ci yields the Poisson–Fermi equation
� l2
cr2 � 1
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with
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where bi ¼ zie=ðkBTÞ and S is called here a steric functional with zþ and z� being the sums of absolute values of valences of
cations and anions, respectively (b� are similarly defined). For example, zþ ¼ 2 and z� ¼ 1 for a 2:1 electrolyte [81] and
zþ ¼ 1þ 2 and z� ¼ 1þ 1

2 for the EEEE calcium channel model in [82] that involves four species of ions, i.e.,
C1 ¼ CNaþ ;C2 ¼ CCa2þ ;C3 ¼ CCl� , and C4 ¼ CO1=2� , where the glutamate (E) is expressed by a structural oxygen ion O1=2�. More-
over, for the 2:1 electrolyte, we have
C1 ¼
1

d3
1

1
1þ 3ð1� vÞ exp b1/ð Þ=v ð2:5Þ
that resembles the Fermi–Dirac distribution in which the excluded volume interaction plays the role of the Pauli principle
[29]. For large negative potentials �b1/� 1, the concentration is saturated to CMax

1 ¼ 1=d3
1. Without the steric functional S,

the distribution is of Boltzmann that would result in absurdly large concentration of counterions near a highly charged sur-
face even for a very dilute electrolyte [17]. From this model, the dielectric function b� ¼ �ð1� l2

cr2Þ, whose Fourier transformb�k ¼ �ð1þ l2
c k2Þ is valid for wave number kj j � l�1

c , approximates the medium permittivity and the linear response of corre-
lated ions [29]. Moreover, this model provides not only the gradient of charge density q ¼ ��r2/ (third order derivative
from the perspective of the PB equation) but also the curvature of the density (fourth order derivative). These physical prop-
erties, generally inexplicable by the standard PB equation, can be used to study sensitive phenomena such as the interplay
between overscreening from short-range correlations and crowding from finite size effects at large potentials [29,40].

The central finite difference approximation of the PF equation leads to a matrix system in which the maximum number of
nonzero entries in each row of the sparse matrix, called the compressed bandwidth of the matrix hereafter, is 19 due to the
fourth order derivative term. In practice, sparse square matrices are usually compressed to rectangular matrices, where the
total number of columns is equal to the compressed bandwidth. The memory demand for (2.2) is thus nearly triple that of
second-order PDEs for which the corresponding compressed bandwidth is 7. In fact, the most challenging part in
discretization will be the numerical treatment of high order (up to the third order) derivatives across the molecular surface
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C between the solvent Xs and biomolecular Xm regions of a channel model, i.e., C ¼ Xs \Xm and X ¼ Xs [Xm, where the
dielectric constant �r in � ¼ �r�0 is discontinuous and the geometric property is highly irregular or even singular [75,76].

To bypass these potential difficulties, we propose a simple approach to deal with this fourth-order problem by reducing
(2.2) to two second-order PDEs
� l2
cr2 � 1

� �
W ¼ q; r2/ ¼ W: ð2:6Þ
From these two equations and Gauss’s divergence theorem, the global charge neutrality condition implies that
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where n is an outward normal unit vector on @X. Consequently, we require the following boundary conditions for the re-
duced model (2.6)
� �r/ � n ¼ r on @Xr;

r/ � n ¼ 0 on @X n @Xr;

rW � n ¼ 0 on @X: ð2:8Þ
Note that the Neumann boundary condition is replaced by a Dirichlet one if the potential is specified on @Xr. The jump con-
ditions across the interface C are
/½ � ¼ �r/ � n½ � ¼ W½ � ¼ rW � n½ � ¼ 0; ð2:9Þ
where the jump function u½ � is defined as u½ � ¼ umðcÞ � usðcÞ for all c 2 C with umðcÞ ¼ limr!cuðrÞ for r 2 Xm and
usðcÞ ¼ limr!cuðrÞ for r 2 Xs.

The decomposition method in [83] is used to cope with the singular charges in (2.2), namely, the potential /ðrÞ is split as
/ðrÞ ¼ e/ðrÞ þ /ðrÞ; r 2 X ð2:10Þ
such that
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The PB equation is then decomposed to
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¼
X2

i¼1

qiCiðrÞ; r 2 X n C;ð2:12Þ

�D/0ðrÞ ¼ 0; r 2 Xm;/
0ðrÞ ¼ /	ðrÞ; r 2 @Xm;ð2:13Þ
with /	 being the Green function given analytically
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The corresponding jump conditions are
/½ � ¼ �r/ � n½ � ¼ e/h i
¼ 0; �re/ � nh i

¼ ��m�0r /	 þ /0� �
� n: ð2:15Þ
For calculating the potential /, we need to solve (2.13) once for all and then solve (2.12) by Newton’s method.

3. Numerical methods

The central finite difference (FD) approximation of the Poisson equation �r2/ ¼ f in 3D at any grid point rijk ¼ ðxi; yj; zkÞ
is
�/i�1;j;k þ 2/ijk � /iþ1;j;k

Dx2 þ
�/i;j�1;k þ 2/ijk � /i;jþ1;k

Dy2 þ
�/i;j;k�1 þ 2/ijk � /i;j;kþ1

Dz2 ¼ fijk; ð3:1Þ
where /ijk 
 /ðxi; yj; zkÞ; fijk ¼ f ðxi; yj; zkÞ, and Dx;Dy, and Dz are mesh sizes on the three axes. For simplicity, we use uniform
partition, i.e., Dx ¼ Dy ¼ Dz ¼ h. This leads to a sparse matrix system A/

!¼ f
!

with the compressed bandwidth of A being 7.
The matrix size (i.e., the total number of grid points) is usually measured in millions for realistic 3D simulations. The



Fig. 1. Top view of GA channel.
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compressed bandwidth of sparse matrices is hence a critical factor for the efficiency of Poisson solvers. The convergence or-
der of this method is Oðh2Þ (optimal) in maximum error norm for sufficiently smooth function /. However, these efficient and
effective properties can be easily degraded by geometric singularities of the interface C if they are not properly treated. For
example, a second-order scheme is degraded to only of Oðh0:37Þ by this kind of singularities [84]. As noted in [75], molecular
surfaces generated by well-known software such as MSMS [48] admit cusps and self-intersecting singularities. A top view of
the GA channel surface generated by the VMD program [85] using MSMS is illustrated in Fig. 1 to show a typical simulation
geometry of biological ion channels.

A 2D cross section of the GA channel embedded in a membrane is sketched in Fig. 2, where the biomolecular domain Xm is
composed of the channel protein and the membrane and the solvent domain Xs consists of extracellular (upper), channel
pore (central), and intracellular (lower) regions. The diameter of the channel pore in the narrowest part is about 4 Å making
insufficient grid points for high order FD schemes to treat the jump conditions in (2.15). We simplify the matched interface
and boundary method of [75] by using the standard 7-point FD scheme. For conciseness, the scheme is described for the 1D
Poisson equation
� d
dx

�ðxÞd/ðxÞ
dx

	 

¼ f ðxÞ ð3:2Þ
as the corresponding 3D case follows obviously in a similar way. For the jump conditions, we assume that every jump posi-
tion c 2 C is at the middle of its two neighboring grid points as shown in Fig. 3, i.e.,
xi�1 < c ¼ xi�1
2
< xi: ð3:3Þ
The main idea of the MIB method is

(1) considering (3.2) as two subproblems on two disjoint subdomains x < c and x > c,
(2) treating the jump conditions (2.15) as the boundary conditions of the subproblems,
(3) extending smoothly a function /ðxÞ defined on a subdomain to a ‘fictitious’ function wðxÞ defined on the other

subdomain,
(4) applying Taylor’s theorem to the jump conditions, and joining two subproblems back to one.

The resulting FD formulas across the jump position c with the jumps /½ � and �/0½ � are
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Fig. 2. A cross section of 3D PF simulation domain for GA channel.

Fig. 3. Interface position c.
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where
A1 ¼
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�m þ �s

; A2 ¼
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We now briefly describe Newton’s method for dealing with the nonlinearity of PB and PF equations. For PB equation,
Gâteaux’s differentiation of
Gð/Þ ¼ �r � �r/ð Þ � qð/Þ ¼ 0 ð3:8Þ
with respect to / yields the linearized PB equation
�r � �r/1ð Þ � q0ð/0Þ/1 ¼ qð/0Þ � q0ð/0Þ/0 ð3:9Þ
for which we seek the solution /1 with /0 being given and q0ð/0Þ being the derivative of q at /0. This linear equation can be
iteratively solved by replacing the old function /0 by the newly found solution /1 and so on with initial potential /0 ¼ 0 and
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initial bulk concentrations CBulk
i . Similarly, the Poisson–Fermi solution is calculated by iteratively solving the linearized

equation
Table 4
Errors i

h in

2.00
1.00
0.50
0.25
� l2
cr2 � 1

� �
r2/1 � q0ð/0Þ/1 ¼ qð/0Þ � q0ð/0Þ/0: ð3:10Þ
Corresponding to (2.6), the linearized PF equations are
r � �l2
crW1 � �W1 ¼ qð/0Þ; r2/1 � q0ð/0Þ/1 ¼ W1 � q0ð/0Þ/0; ð3:11Þ
which result in the following linear algebraic systems
BW
!

1 ¼ q!0; A/
!

1 þ D/
!

1 ¼ W
!

1 þ /
!

0 ð3:12Þ
where the compressed bandwidth of A and B is 7 and D is a diagonal matrix.
In 3D, the steric functional (2.4) makes the algebraic systems highly unstable and sensitive to the accuracy of previous

iterative solutions /0, i.e., the nonlinear iteration can easily diverge or converge very slowly if no extra effort is made. To
accelerate the convergence, we apply the continuation method [80] to the steric functional which is replaced by
kSS; kS ¼ 0þ kDk; k ¼ 0;1;2; � � � ; 1
Dk

; ð3:13Þ
where kS is the continuation parameter and its stepping length Dk can be determined adaptively in run-time or simply by
trial and error. Hence, we get solutions without finite size effects when kS ¼ 0 and with full size when kS ¼ 1. Solutions of
step k will be used as initial guesses for seeking solutions of the next step kþ 1. The correlation length lc in the fourth-order
operator might also complicate the convergence property and hence should be multiplied by a similar continuation param-
eter kF .

We summarize the above numerical methods in the following algorithm.

1. Solve nonlinear PB �r � �r/ð Þ ¼ qð/Þ with the steric functional S = 0.
2. Solve nonlinear PB �r � �r/ð Þ ¼ qð/Þ with kSS – 0 and set /0 ¼ /.
3. Solve linear PF1 �r � � kF lcð Þ2rWþ �W ¼ �qð/0Þ.
4. Solve linear PF2 �r2/þ q0ð/0Þ/ ¼ �Wþ q0ð/0Þ/0. Go to 3 until convergence.

The solution of any step will be used as an initial guess for the next step. The very first initial guesses are / ¼ 0 for potential
and Ci ¼ CBulk

i for concentrations. In Step 1, there is a loop of Newton’s iteration since the PB is nonlinear. Similarly, there is a
Newton loop in Step 2 for each continuation parameter kS. The continuation loop thus embodies the Newton loop. The last
loop in Steps 3 and 4 is a Newton loop, which is also contained in an outer continuation loop due to the continuation param-
eter kF .

It should be emphasized that the total number of iterations in Newton and continuation loops can be extremely large or
even infinity from the biological point of view since both local potentials and transmembrane potentials are almost never
small enough to guarantee that the sequence of approximate solutions generated by Newton’s method definitely lies within
the convergence ball of the exact solution in the solution manifold [86]. In fact, most mathematical and numerical analyses
of the PF equation concerning, for example, analytical solutions [87], existence and uniqueness [88], error estimates [89–91],
and nonlinear solvers [78,80,92–95] remain to be investigated.
4. Numerical results

The Poisson, Poisson–Boltzmann, and Poisson–Fermi equations are applied to four model problems. First, the GA channel
model in [79] is used to verify the optimal convergence of the SMIB method. Second, the Born ion model in [75] is used to
validate the potential decomposition and SMIB methods. Third, the Poisson–Fermi equation is fully tested by two charged
wall model problems in [45,81], where the Monte Carlo results are available for comparison. Fourth, an L type calcium chan-
nel model in [82] with MC data is used to verify the Poisson–Fermi equation.
.1
n L1 norm.

MIB SMIB

Å Error Order Error Order

0.4466
0.1400 0.0922 2.28
0.0271 2.36 0.0228 2.02
0.0152 0.84 0.0057 2.00



Table 4.2
DG.

h in Å PBEQ APBS MIB SMIB

1.000 �83.57 �83.44 �81.95 �82.06
0.500 �85.78 �85.85 �81.98 �81.98
0.250 �82.84 �82.58 �81.98 �81.98
0.125 �82.49 �82.27 �81.98 �81.98
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Example 1. Defined on the realistic GA channel domain as illustrated in Figs. 1 and 2, where the enclosing box
X ¼ ð�20 Å;20 Å) �ð�20 Å;20 Å) �ð�20 Å;20 Å), the Poisson equation is solved by the SMIB method with the exact solution
/ðrÞ ¼ cos x cos y cos z constructed in [79], �m ¼ 1, and �s ¼ 80. The atomic data of the channel protein is downloaded from
the Protein Data Bank [96] with PDB ID: 1MAG [97]. The PDB2PQR software [98] is used to get partial charges and radii of the
atoms. The molecular surface C of the channel is generated by rolling a probe ball (water molecule) with radius 1.4 Å over a
total of 554 spherical atoms in the GA protein [77]. The membrane part as shown in Fig. 2 is taken as a uniform and
continuous dielectric substrate without charges and is not processed by PDB2PQR. The optimal Oðh2Þ convergence in the
maximum error norm L1 ¼maxijk /ðxi; yj; zkÞ � /ijk

�� �� is obtained by this method as shown in Table 4.1. The Poisson equation
is linear and does not include singular or surface charges. Newton’s method and the potential decomposition method are
thus not needed for this example. Under the assumption (3.3), the molecular surface C is not fixed and is adaptively
determined by the grid size h ranging from 2 Å to 0.25 Å. For h ¼ 0:25 Å, the dimension of the matrix A in the linear system
A/
!¼ f

!
is 4,096,000 for which it requires about 300 MB memory to store the compressed matrix system with double

precision. It took about 2 min and 47 s on a laptop computer equipped with 1.3 GHz Intel CPU and 2 GB RAM to solve the
linear system by the SOR method with the relaxation parameter being set to 1.9 and error tolerance set to 10�6. The main
purpose of this example is to show the simplicity and effectiveness of the SMIB method.
Compared with the MIB results [79] as duplicated in the table, the SMIB method is in general more accurate since it
does not require any local transformation as that of Eq. (18) in [79] for handling the outward unit normal vector n in
(2.15) at interface points. The normal vector for the SMIB method is always defined as n ¼ 1=

ffiffiffi
2
p

;1=
ffiffiffi
2
p

;0
D E

, for example,
if the molecular surface passes through any two neighboring points of xi; yj;0

� �
as shown in Fig. 3. Consequently, there are

no geometric singularities such as kinks that would lead to ill-defined normal vectors under the assumption (3.3). On the
other hand, the MIB method requires more technical schemes to deal with local partial derivatives associated with the
transformation between the local coordinates and the actual coordinates since it uses the molecular surface generated
by the above mentioned packages that often give very irregular interface points. The additional schemes certainly incur
more errors in approximation and implementation. Of course, the SMIB and MIB methods are completely the same if
all interface points for the MIB method satisfy the condition (3.3). They are different only in the way how the molecular
surface is generated and utilized.
Fig. 4. C2 concentration profiles obtained by PF and MC methods for a 1:1 electrolyte at 1 M with r ¼ 0:1 C/m2 and d = 2 Å.



Fig. 5. Normalized [81] concentration profiles obtained by PF and MC methods for a 2:1 electrolyte at 1 M with r ¼ �0:3 C/m2 and d ¼ 3 Å.

Fig. 6. A cross section of the cylinderical shaped channel model. The length and radius of the filter are H and R, respectively.
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Example 2. The Born ion model is a classic example of a point charge in a spherical cavity of radius a solvated in water. With
a ¼ 2 Å, �m ¼ 1; �s ¼ 80; qj ¼ q1 ¼ þe, and r1 ¼ 0 in (2.2), the solvation energy is given exactly as DGEx ¼ �81:98 kcal=mol½ �.
This model can be described by the Poisson equation with a singular charge term. By the potential decomposition method

(2.10), it is shown in [75] that the solvation energy can be approximated by DG ¼ q1
e/ð0Þ þ /0ð0Þ
� �

=2. The interface of this

model problem is C ¼ @Xm ¼ rj j ¼ af g, which is a sphere in X ¼ ð�20 Å;20 Å) �ð�20 Å;20 Å) �ð�20 Å;20 Å). In order to
approximate the exact solvation energy more accurately, the assumption (3.3) should be modified according to the nonlinear
extrapolation scheme in [75] for calculating the derivative of /0 in (2.15). The SMIB method essentially gives the same
results as those by the original MIB method [75] as shown in Table 4.2 along with the results duplicated from [75] by the
well-known software packages PBEQ [99] and APBS [100].
Example 3. We next consider electrolytes in the box X ¼ ð0 Å ;40 Å) �ð0 Å;40 Å) �ð0 Å;40 Å) and a surface charge density
r being uniformly distributed on one wall (corresponding to the y-axis in Figs. 4 and 5) of the box. The boundary condition
for the potential function / is of Neumann type on the four walls adjacent to the charged wall and is of Dirichlet type on the
opposite wall. For a 1:1 electrolyte with r ¼ 0:1 C=m2; d ¼ d1 ¼ d2 ¼ 2 Å, and � ¼ 78:5, the concentration profile of the neg-
ative ion species C2 predicted by the PF equation with the correlation length lc ¼ 0 is in good agreement with MC results [45]
as shown in Fig. 4. For another 2:1 electrolyte with r ¼ �0:3 C/m2 and d1 ¼ d2 ¼ 3 Å, a triple layer (Stern, diffuse, and oversc-
reening layers) structure shown in Fig. 5 is captured by the PF equation with the correlation length lc ¼ 0:6 Å and well
matched to that of MC results presented in Fig. 4(a) in [81]. The overscreening layer, where the normalized concentration
profile is below 1 M in Fig. 5, is unattainable by the standard PB equation even with the steric functional in our experience.
The correlation length lc is the only tuning parameter to fit MC data with the mesh size h ¼ 0:5 Å.



Fig. 7. The average number of Ca2+ and Na+ in the selectivity filter calculated by PF and MC.
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Example 4. The EEEE calcium channel geometry in [82] is depicted in Fig. 6 that shows a cross section of the cylindrical
channel. The channel is placed in the central part of the domain box X as shown, where the solvent domain Xs consists
of the channel pore and two baths and the molecular domain Xm consists of the channel protein and the membrane. The
solvent domain is further partitioned into the filter region Xf , the channel pore region Xp, and the bath region Xb such that
Xs ¼ Xp[Xb;Xp \Xb ¼£, and Xf � Xp. The lengths of the filter and channel pore are H ¼ 10 Å and L ¼ 20 Å, respectively, as
considered in [82]. The radius of the pore is R ¼ 3:5 Å.

All parameter values in [82] are used here, i.e., d1 ¼ dNaþ ¼ 1:9 Å, d2 ¼ dCaþ ¼ 1:98; d4 ¼ dCl� ¼ 3:62; d4 ¼ dO1=2� ¼ 2:8; �s ¼80,
and�m ¼ 10. The occupancy of Ca2+ and Na+ calculated by PF with the correlation length lc ¼ 0:577 Å and by MC is shown in Fig. 7,
where the MC data is taken from [82]. The results of PF are again in good accord with those of MC. More detailed analysis, method
description, and results for this problem by PF will be reported elsewhere.

5. Conclusions

The literature on the Poisson–Boltzmann equation and its modifications is enormous for its simple, elegant, and yet often
inadequate description of electrostatic interactions in a variety of physical, chemical, and biological systems. The Poisson–
Fermi equation is an analytical modification with both steric and correlation effects being taken into account. It has been
shown to match molecular dynamic simulation results in ionic liquids and is shown in this paper to do well with Monte Carlo
simulation results in electrolytes. This fourth-order PDE is reformulated here to two second-order PDEs to which the stan-
dard finite difference approximation is hence more feasible and manageable for handling geometric singularities of molec-
ular surfaces in 3D implementation. Numerical results obtained by a simplified matched interface and boundary method
presented here for treating these singularities confirm the theoretical and optimal convergence. Newton’s method and
the continuation method are used to handle the nonlinear problems associated with the steric and correlation terms. Four
model examples are extensively tested by the Poisson–Boltzmann and Poisson–Fermi solvers developed in this paper.
Numerical evidence has been provided to attest the numerical methods and the novelty of the Poisson–Fermi equation.
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