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 I thought it would be useful to describe a canonical all spheres channel model that we have 

studied in something like 40 papers (peer reviewed journals, not counting invited reviews, etc.) with 

many different mathematical methods (Metropolis Monte Carlo, MSA (mean spherical approximation), 

solvent primitive model, DFT-PNP, EnVarA, steric PNP, geometric perturbation theory, singular 

perturbation theory, inverse problem theory (Tikhanov regularization), Brownian-Poisson dynamics, 

several related methods of Gillespie and Boda extending MC, DFT to nonequilibrium systems, PNP-F 

(with Fermi distribution). References and PDF files are available on request and can be found in my CV. 

The CV contains live links which should allow easy download of whatever you wish to read.  

https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/Webpages/Full.CV.pdf 

We think we have gone down many false paths and wasted much time learning to deal with the 

all spheres model of calcium channels. I write this so you (all) do not have to go down those paths, 

unless you want to. You may want to try paths we think are false ones because you think you can do 

better than we did. That is GOOD and I encourage you to do that. Just don’t ignore our mistakes, lest 

you waste a lot of taking making and then correcting them.  

 The RyR receptor so well analyzed by Dirk Gillespie is an alternative system to study with an all 

sphere model. You are should contact Dirk directly at dirk_gillespie@rush.edu to get all the details you 

need. In my view, the key paper is the following. It is VERY important to read the supplementary 

material. 

Gillespie, D. 2008. Energetics of divalent selectivity in a calcium channel: the 

ryanodine receptor case study. Biophys J 94:1169-1184. 

 

Geometry and Parameters 

The “All Spheres Model” of the L type calcium channel is specified precisely (I think) in the Methods 

Section and Figure 1 AND CAPTION of the following paper. NOTE: the ionic radii are in the CAPTION. 

These are of course somewhat arbitrary so it is all the more important to stick exactly to these values, 

unless you have a specific reason to do otherwise. Comparisons of results of different methods are 

much more useful when exactly the same parameters are used. Note that in the very crowded confines 

of a calcium channel small changes in diameter can make large changes in binding. 

https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/Webpages/Full.CV.pdf
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/Webpages/Full.CV.pdf
mailto:dirk_gillespie@rush.edu
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2009/Boda_JGP_2009.pdf
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Boda, D., M. Valisko, D. Henderson, B. Eisenberg, D. Gillespie, and W. Nonner. 2009. 

Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion. 

Journal of General Physiology 133:497-509. 

This paper should be available for download from PDF  or by its PMCID: PMC2712969 

or from the Journal of General Physiology doi: 10.1085/jgp.200910211 

 

Side Chains are mobile!! 

Note how we deal with the side chains of the protein EEEE (glutamate residues as they are often called 

for historical reasons: the amino acids of proteins were originally identified in biochemistry labs as 

residues of a chemical procedure that degraded, i.e., hydrolyzed and depolymerized, the protein they 

were in, leaving behind residues of the original protein).  

The side chains of this calcium channel are known experimentally to mix with ions and to be accessible 

to reagents in the bathing solution—UNlike side chains in the famous KcsA channel for example—so we 

treat the side chains of calcium channels as MOBILE spheres (but of course the side chains are kept 

within the channel itself) that assume different locations when ionic solutions in the baths are changed, 

when transmembrane potentials (i.e., trans-channel, i.e., by changing the electrical potential specified 

by the Dirichlet boundary conditions) are changed, or ‘most anything else’ is changed either. 

In the MC calculations these side chains find their own location. They are in the locations that 

minimize free energy. Thus, our MC model is self organized and the protein has an induced fit to the 

‘substrate’, i.e., calcium ions. Of course, if the EEEE channel is in bathing solutions made of sodium 

ions, the locations are very different from the locations when the EEEE channel is in bathing solutions 

made of calcium ions. 

How to implement these mobile side chains is an issue that each model may do differently. Side chains 

may be kept in one location (i.e., immobile) if the computational complexity introduced is not thought 

to be worthwhile but that is a distinctly different model from the model we used in the paper below.   

The implementer should be warned that we have a number of MC papers that say it is important to 

allow the side chains to be in different positions in different conditions, e.g.,  

Mobility of Side Chains 

 Be sure to look at Fig. 7 and p. 3493-3494 of  

Boda, Dezső, Nonner, Wolfgang, Henderson, Douglas, Eisenberg, Bob, and Dirk 

Gillespie. (2008) Volume exclusion in calcium selective channels. Biophys. J., 94: 

3486–3496 BioFAST: January 16, 2008.  doi: 10.1529/biophysj.107.122796  PMCID: 

PMC2292364  [PDF] 

 

https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2009/Boda_JGP_2009.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2712969
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2292364
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2292364
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2008/Boda_BJ_2008.pdf
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Also relevant are  

Giri, Janhavi, Fonseca, James. E., Boda, Dezső, Henderson, Douglas, and Eisenberg, 

Bob. (2011) Self-organized Models of Selectivity in Calcium Channels. Physical Biology 

8 026004.  doi: 10.1088/1478-3975/8/2/026004  PMID: 21263167  [PDF] 

Boda, Dezső, Giri, Janhavi, Henderson, Douglas Eisenberg, Robert and Gillespie, 

Dirk. (2011) Analyzing the components of the free energy landscape in a calcium 

selective ion channel by Widom's particle insertion method. Journal of Chemical 

Physics. 134, 055102.  doi: 10.1063/1.3532937  PMCID: PMC3045419  [PDF] 

 

Dimensionality 

 It is obviously best to compute the model in full three dimensions. First of all that is the only way 

to specify the structure of the channel correctly. BUT EVEN MORE IMPORTANTLY the shape of the ions is 

different in different dimensions. One dimensional spheres, and two dimensional spheres, whatever 

they are, do NOT crowd against charged walls the same way three dimensional spheres do. This is a well 

documented fact in the MC world. It is also obviously true. Thus one expects that one and two 

dimensional spheres, whatever they are, will not pack into the confined space of a calcium channel the 

same way real spheres do. Thus reduction in dimensionality can be expected to have substantial effects 

because details of packing matter in highly crowded systems! What is amazing is that the one 

dimensional models do as well as they do even though they contain one dimensional spheres!! 

 Despite all these warnings, it has been and will be necessary to compute one dimensional 

models because they are likely to always be very much faster to compute than three dimensional 

models, and thus much more practical when for solving inverse problems. They are also much easier to 

program. A much wider parameter space can be investigated with one dimensional models. 

One dimensional models and baths. 

If you use one dimensional models, you might think that one could simply put Dirichlet boundary 

conditions at the ends of the channel but that is a catastrophe. The boundary layers inevitably 

associated with the boundary conditions then get into the channel and “all hell breaks loose”. 

Experimentalists (and evolution) go to GREAT lengths to avoid such effects. IT IS ESSENTIAL TO HAVE 

BATHS AS BUFFER REGIONS. 

It is CRUCIAL that baths be represented reasonably in a one dimensional model. As far as I know, this is 

impossible if the channel is one dimensional with constant radius. The reason is that the one 

dimensional cylinder outside the membrane has the same cross section as the channel itself. Thus its 

effect on current flow is roughly the same. In electrical terms, the resistance (per unit length) of the 

cylinder outside the channel is roughly the same as the resistance per unit length of the channel itself. 

The total resistance (ohms = resistance per unit length times length in the bath region) in the bath can 

then be much larger than the total resistance (ohms = resistance per unit length times length of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=21263167
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2011/Giri_PB_2011.pdf
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC3045419
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2011/Boda_JCP_2011.pdf
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channel) of the channel. THIS IS ENTIRELY DIFFERENT FROM THE REAL SITUATION. In the real situation, 

the resistance of the bath is FANTASTICALLY SMALLER than the resistance of the channel. The bath has 

almost no effect on current flow. The channel is the valve that has the big effect on current flow. That is 

why it is a valve. The ratio of resistances is typically 109 or larger for a single channel. 

Variable cross section. 

One way to deal with baths in a one dimensional model, introduced by Nonner and myself (and used 

even earlier by Duan-ping Chen and myself) is to use a channel with VARIABLE cross section. The region 

outside the channel is made to have MUCH larger cross section (it is “infinitely” wider) than the channel 

itself. The channel diameter is a realistic figure, something like 0.7 nanometers (but use the number in 

the Boda reference above unless you have a specific reason to use something different!!) Thus the 

potential drops in the bath of large diameter outside the channel are insignificant. The modified one 

dimensional model has a VERY LARGE cross sectional area outside the channel so the resistance of the 

bath is very very much less than the resistance of the channel, i.e., the potential drops in the bath are 

entirely negligible compared to the potential drop across the channel itself. 

The question then comes how does one increase the diameter of this one dimensional channel as one 

leaves the channel and moves into the bath. 

The connection between the real channel, with diameter of say 0.7 nanometers and the bath with 

“diameter” of say 10 CENTImeters is of course arbitrary. It is a property of our model but not a property 

of the real channel and surrounding baths. Thus, one must carefully check that the main conclusions of 

the analysis are NOT sensitive to the details of this connection. That is to say “the convergence” of 

current flow into the channel (think of lines of flow or field lines of Faraday) will not be dealt with 

realistically in this one dimensional model and the effects of that error must be tested empirically (by 

varying the parameters of the region connecting the “one dimensional bath” with the channel itself). 

Nonner and I originally used a taper, i.e., a diameter that very rapidly increased as soon as the 

coordinate was in the bath. This is a “horn” problem (meaning the horn of an orchestra like a trumpet or 

trombone) and was extensively studied in applied math with a variety of analytical treatments and 

approximations. Nonner and I just used an easy to compute numerical procedure. But our original 

description seems to confuse people so I recommend the more precise descriptions in Amit Singer and 

John Norbury’s papers (they are professional mathematicians of great talent and accomplishment) and 

Carl Gardner’s paper (a professional physicist from Arizona State).  

Singer, A. Gillespie, D., Norbury J., and Eisenberg, R.S. (2008) Singular perturbation analysis of 
the steady state Poisson-Nernst-Planck system: applications to ion channels. European Journal 
of Applied Mathematics  vol. 19, pp. 541–560.  doi: 10.1017/S0956792508007596  PMCID: 
PMC2756831  [PDF] 
 
Singer, A. and J. Norbury. 2009. A Poisson-Nernst-Planck Model for Biological Ion Channels---
An Asymptotic Analysis in a Three-dimensional Narrow Funnel. SIAM J Appl Math 70:949-968. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2756831
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2756831
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2008/Singer_EJAM_2008.pdf
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and 

Gardner, Carl, Nonner, Wolfgang, and Eisenberg, Robert S. (2004) Electrodiffusion Model 
Simulation of Ionic Channels: 1D Simulations. Journal of Computational Electronics 3: 25–31.  
PMCID not available  [PDF] 
 
Note that I am citing these papers ONLY ONLY ONLY for the way they deal with the baths. 
The rest of these papers address other issues!!!! The channel itself should be described as in 
the Boda paper (J General Physiology) cited above. 

 
Weishi Liu has in fact dealt with these issues in a profound way using geometrical perturbation theory 
and I attach a document he has written explaining that approach. The relevant paper is 
 

Eisenberg, Bob, Liu, Weishi (2007) Poisson-Nernst-Planck systems for ion channels with 
permanent charges.  SIAM Journal on Mathematical Analysis  38, No. 6, pp. 1932–1966.  
PMCID not available  [PDF] 

 
Our experience is that a substantial but not dominating fraction of the potential drop (i.e., of the 
effective resistance, unit ohms) of the system is in the access regions on either side of the channel. The 
figure might be 15%. The role of the potential drop and perhaps concentration changes in these regions 
is not known or clear so in each one dimensional simulation, parameters of this access region (which is 
the bath within say 10 nanometers of the ends of the channel) have to be varied to be sure interesting 
results are not sensitive to the crude approximation in this region. Note that results should be entirely 
insensitive to what goes on in the baths far (>10 nanometers) from the ends of the channel because 
results in experiments are insensitive to the properties of the bath. That insensitivity is carefully check in 
experiments. If sensitivity is in fact found in calculations, the only remedy that is convincing to me is to 
use full three dimensional calculations. 
 
Four electrode methods 
 
In my experience most mathematicians and physicists seek to study the potential on the Dirichlet 
boundaries (i.e., on the electrodes) and the current that flows through those boundaries. 
EXPERIMENTALISTS NEVER DO THIS (if they can possibly avoid it) because there are all sorts of 
complexities/artifacts (e.g. boundary layers of concentration and charge) near the electrode (i.e., near 
the Dirichlet boundary condition). These complex boundary layers near the boundaries are ENTIRELY 
IRRELEVANT TO BIOLOGICAL FUNCTION and so EXPERIMENTALISTS WORK VERY HARD TO AVOID these 
complexities and in fact view them as artifacts. 
 
Experimentalists use a four electrode method. That is to say they use two pairs of electrodes. One pair 
of electrodes measure potential. They have zero current through them. The other pair of electrodes 
implement the Dirichlet boundary conditions. These electrodes are further from the channel than the 
potential measurement electrodes. The more distant electrodes supply current and flux. Experiments 
use the two other (closer to the channel) electrodes to measure potential and there is no current of any 
kind across these other electrodes. These closer electrodes are voltage recording electrodes that simply 
report the potential at these locations. They are not boundary conditions. They are observation points. 
These electrodes are typically 10 nm away from the end of the channel or more. They can be modelled 
easily simply by evaluating the potential at those points. So current voltage curves would use the 

https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2004/Gardner_JCE_2004.pdf
https://ftp.rush.edu/users/molebio/Bob_Eisenberg/Reprints/2007/Eisenberg_SIAM_2007.pdf
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current at the electrodes (i.e., at the Dirichlet boundary conditions) but the ‘voltage’ in the graph would 
be   
 

potential DIFFERENCE V(end of channel + 10 nm)  —  V(other end of channel -10 nm). 
 
This potential difference is quite independent of boundary layers and other complexities/artifacts at the 
electrodes because there is no current across these voltage sensing electrodes. These electrodes are in 
fact connected to amplifiers that have infinite input impedance and thus draw zero current from the 
system, if you enjoy the precise electrical specification. 
 



Comments on Bob’s drafted article on 08/17/2014

Weishi Liu

One dimensional models and baths.

You made it clear that one dimensional models with constant radius
should not be used to model channels and baths. This statement is also
supported from a different angle – discussed below – by showing how variable
cross-section could address these issues that constant radius fails to.

Variable cross section.

The one-dimensional models with variable cross section do have the abil-
ity to address the concerns you raised in the article. This can be seen easily
and clearly from our paper:

[EL07SIMA] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for
ion channels with permanent charges. SIAM J. Math. Anal. 38 (2007),
1932-1966.

More precisely, the outer system, which is valid for flows in the baths, is

φ̇ =
βJ2 − αJ1

α(α+ β)h(τ)c1
,

ċ1 = − β(J1 + J2)

(α+ β)h(τ)
,

J̇1 =J̇2 = 0, τ̇ = 1,

(1)

together with αc1 − βc2 = 0. This is system (19) in above mentioned paper
[EL07SIMA], where α and −β are the valences of the two ion species, h(τ) is
the cross-section area over x = τ . The system clearly says that: the RATES
of changes of electric potential and concentrations are INVERSELY propor-
tional to the cross section area. That is, if one chooses large radius for
bath portion, then the changes of electric potential and concentrations over
the bath portion would be small; in particular, if the radius for the bath

1



portion is “infinity”, then the changes of electric potential and concentra-
tions over the bath portion could be ignored. There is more. Consider
the following expressions for fluxes (it is system (23) in [EL07SIMA])

J1 =
(cL1 − ca,l1 )∫ a
0 h

−1(s)ds

(
1 +

α(φL − φa,l)

ln cL1 − ln ca,l1

)
,

J2 =
(cL2 − ca,l2 )∫ a
0 h

−1(s)ds

(
1 − β(φL − φa,l)

ln cL2 − ln ca,l2

)
.

(2)

The denominator
∫ a
0 h

−1(s)ds says that, the bath portion over which the
cross-section area h(s) is large has small contributions to the integral and
hence to fluxes. Again, if the radius for the bath portion is “infinity”, then
the contribution of bath portion to the fluxes can be ignored; that is, the
fluxes are mainly characters of the channel portion.

Four electrode methods.

The experimental design using four electrode methods is perfectly consis-
tent with the analysis from the one-dimensional models with variable cross-
sections. More precisely, if the outer pair of electrodes were able to imple-
ment Dirichlet boundary conditions with electroneutrality, then there will
be NO boundary layers. Based on the above discussion, if the radius over
the bath potion (say, between the outer pair of electrodes and the inner pair
of electrodes) is large, then the potential difference between the inner pair
of electrodes (used for the ‘voltage’ for the current-voltage curve) would be
essentially the same as that between the outer pair of electrodes.

One cannot expect, for experiments, a perfect electroneutrality boundary
condition at the outer electrodes. In this case, the analysis shows that there
will be a boundary layer correction. The end point of the layer will provide a
REDUCED boundary condition that satisfies electroneutrality. If the radius
over the bath potion is large, then the potential difference between the inner
pair of electrodes (used for the ‘voltage’ for the current-voltage curve) would
be essentially the same as that of REDUCED potential – so the boundary
layer, if any, near the outer pair of electrodes becomes IRRELEVANT.

The design of four electrode methods is SO brilliant !!!

About n-dimensional spheres. Mathematically, an n-dimensional sphere
refers to the boundary of an (n + 1)-dimensional ball. When the ambi-
ent space is three-dimensional as all channels, a sphere S2 is really a 2-

2



dimensional sphere. A three dimensional sphere would be the boundary
of a 4-dimensional ball. In this fashion, a circle S1 is a 1-dimensional
“sphere” that is the boundary of a 2-dimensional disc; the boundary of
a 1-dimensional rod which contains two end points can be viewed as a 0-
dimensional ‘sphere’. Instead of giving a name for each dimensional ‘sphere’
like the circle for 1-dimensional, mathematically, one simply uses n-dimensional
sphere. To be consistent with the notion of hard-rod, a physical ion should
be called a hard-ball rather than a hard-sphere.

A minor comment: Is it a good idea to mention “Princeton and Oxford
if anyone wants credentials”?
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