Fluids in narrow pores: Adsorption, capillary condensation,
and critical points
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By means of a density functional approach the phase equilibria of a simple fluid confined by two
adsorbing walls have been investigated as a function of wall separation H and chemical potential
for temperature T corresponding to both partial and complete wetting situations. For large values
of H and small undersaturations Ay = p,, — 1, we recover the macroscopic formulas for the
undersaturation at which a first order phase transition (capillary condensation) from dilute “‘gas”
to a dense “liquid” occurs in a single, infinitely long slit. For smaller H we compute the lines of
coexistence between gas and liquid in the (Au, 1/H') plane at fixed values of T. The adsorption
I'(Au), at fixed T and H, is characterized by a loop. At the first order transition I" jumps
discontinuously by a finite amount; however metastable states exist and these could give rise to

hysteresis of the adsorption isotherms obtained for the single slit. The loop disappears at a
capillary critical point (Ax., 1/H,) at each T. For H < H_, or Au > Ap,., condensation can no
longer occur and no metastable states are present. The location of the critical points is described
and for a complete wetting situation we find that these lie outside the bulk two phase region.
Our theory provides a simple explanation of phase transitions observed in earlier computer
simulations and mean-field lattice gas calculations for confined fluids and suggests that
measurements of the forces between plates, either by simulation or in real fluids, should provide
rather direct information about capillary condensation and, possibly, capillary critical points.
The relevance of our results for adsorption experiments on mesoporous solids is discussed briefly.

I. INTRODUCTION

Capillary condensation is the name given to the pheno-
menon whereby a fluid whose chemical potential, or pres-
sure, is less than its value at saturation and is, therefore, a gas
in bulk, condenses to form a dense liquid-like state inside a
narrow capillary or in the pores of a solid. A physicist might
view this phenomenon as a shift of the bulk coexistence
curve (line of first order transitions) arising from confine-
ment of the fluid. Chemists have long used the notion of
capillary condensation to interpret the measured adsorption
isotherms of gases in mesoporous solids." These are charac-
terized by steeply varying portions and pronounced hystere-
sis loops (see Fig. 1). The rising part (adsorption) is associated
with condensation while the decreasing part (desorption) is
associated with evaporation of the condensed liquid. Zsig-
mondy? appears to have been the first to apply the macro-
scopic Kelvin equation to the interpretation of such data.
This equation relates the relative pressure p/ p,,, of gas in
equilibrium with a liquid meniscus to the mean radius of
curvature R,, of that meniscus

ksT(p) — pg)n( psac/ P) = 271 /R ..,
where p, and p, are the number densities of coexisting liquid
and gas and y,, is the liquid—gas surface tension at tempera-
ture T. Condensation, or more frequently, evaporation of the
fluid in the pore is assumed to occur when the bulk pressure p
satisfies this equation. Indeed the Kelvin equation is often
used to infer the pore radius from the measured isotherms.’
Such a procedure is beset with difficulties. Should the equa-
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tion be applied to the adsorption or desorption branch? Is it
valid when wetting films develop? Does the first order transi-
tion persist to very small radii or is there a capillary critical
point? How should one take into account the nonuniformity
of pore size? What is the origin of hysteresis? There is a large
literature' describing attempts to answer such questions
and to provide a more satisfactory theory of adsorption and
capillary condensation in narrow pores. We mention below
what we believe are the more relevant contributions, concen-
trating on the idealized case of a single, infinitely long, model
capillary.

Cohan* proposed a modification to the Kelvin equation
which allowed for the presence of thick wetting films intrud-
ing between the gas and the walls of the capillary. In the
absence of wetting films, corresponding to contact angle
6> 0, the mean radius of curvature of the meniscus R,, is
taken tobe H /cos @ or R /cos 8 for aslit or cylinder, respec-
tively.! Here H is the separation of the parallel walls and R is
the interior radius of the cylinder. When @ = 0 wetting films
of thickness ¢ develop and Cohan argued that the effective
mean radius of curvature of the cylindrical meniscus in the
slit should be reduced to H-2¢ and that of the hemispherical
meniscus in the cylinder to R-t. A more systematic treatment
of the influence of wetting films on capillary condensation
was contained in a remarkable pioneering paper published
by Derjaguin® in 1940 who showed that the correction to the
Kelvin equation depends on the form assumed for the attrac-
tive part of the solid-fluid potential function; replacing H by
H-2t or R by R-t, is not generally valid.® The significance of

© 1986 American Institute of Physics

Downloaded 05 Feb 2007 to 144.74.27.1. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Evans, Marconi, and Tarazona: Fluids in narrow pores

Adsorbed

€
=)
o
E
<
1
0 1-0

P
/Psat

FIG. 1. A typical adsorption isotherm for a mesoporous solid. The rising
part of the hysteresis loop corresponds to adsorption while the decreasing
part corresponds to desorption. Isotherms of this type (Ref. 1) are often re-
ferred to as type IV.

Derjaguin’s paper does not seem to be recognized in the
Western literature. Most subsequent attempts'>’~ at im-
provements on the Kelvin equation have either ignored or
failed to make direct connection with Derjaguin’s results
and, consequently, the status of the subsequent theories re-
mains somewhat obscure. This work was, in the main, based
on macroscopic or semimacroscopic concepts. Microscopic
theories, based on lattice models of the adsorbed fluid, were
developed by Hill'® and Nicholson.!! Hill!® studied the ad-
sorption between two parallel walls using a generalization of
the well-known B.E.T. treatment and obtained isotherms
characterized by loops. He showed that a first-order transi-
tion, corresponding to capillary condensation, was associat-
ed with a jump in adsorption from one branch of the loop to
another. Hill also proposed a mechanism for the observed
hysteresis of the isotherms which involved metastable por-
tions of the calculated loops. Nicholson'! performed de-
tailed mean-field calculations for a lattice gas confined in a
single cylindrical capillary and found jumps in the adsorp-
tion isotherms for large radii and small undersaturations
which could be attributed to capillary condensation. For
small radii the adsorption increased monotonically with in-
creasing p/ p,,,. Neither paper appears to have made signifi-
cant impact on the subject but we consider these to be impor-
tant contributions. Similar remarks apply to the paper by
Derjaguin and Churaev'2 who discussed the behavior of wet-
ting films and their effect on adsorption and condensation in
a slit-like capillary.

Computer simulations might be expected to shed some
light on these phenomena. There are two simulations which
are directly relevant. Very recently van Megen and Snook'?
observed jumps in the adsorption isotherms in grand canoni-
cal Monte Carlo calculations performed for an undersatur-
ated Lennard-Jones fluid confined in a slit-like capillary.
They interpreted their results in terms of condensation to a
liquid, but did not attempt to relate them to the classical
formula for capillary condensation. Earlier simulations by
Lane and Spurling'*'> for the same type of model system
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computed the adsorption, density profiles, and other proper-
ties as a function of H the separation of the walls. Ata certain
separation these authors found a first order transition from a
gas configuration, stable at large H, to a dense liquid config-
uration, stable at small H. They termed this “a new type of
surface transition.” Freasier and Nordholm'® have carried
out density functional calculations for the same model and
found the same transition. We shall see in Sec. III that the
results of Refs. 14-16 are consistent with ‘“conventional”
capillary condensation; the observed transition is well de-
scribed by a simple theory which makes strong appeal to
macroscopic arguments.

During the last few years several theoretical papers have
been concerned with the phase equilibria of fluids, or mag-
nets, between parallel plates. A large fraction of these deal
with critical point shifts, i.e., the shift and modification of
bulk critical behavior resulting from the finite thickness of
the sample and from interactions between the fluid and the
plates. Mean-field theory, in discrete and continuum ver-
sions, has been applied to the three dimensional problem and
powerful scaling theories exist.'” Nakanishi and Fisher'” ad-
dress themselves to the general problem of critical points in
confined Ising/lattice-gas models, but they do not make con-
tact with earlier work on capillary condensation so the sig-
nificance of their results for adsorption in pores is not imme-
diately apparent. A few authors have discussed the shift of
the bulk coexistence curve in terms of Landau theory.'8-2°
Chalupa and Huberman'® speculate on the nature of the ca-
pillary phase diagram but do not present any detailed results.
Lipowsky and Gompper'® derive an expression for the shift
in the coexistence curve at large H. Although they do not
recognize it, their result'? is equivalent to the Kelvin equa-
tion. These authors also make some important remarks
about the thickness of wetting films in capillaries and on the
presence of metastable states. Sornette’® derives a similar
result for the shift of the first order transition and argues that
for H smaller than some critical value no transition should.
occur. Again no attempt is made to connect the results with
earlier macroscopic arguments. Finally we should note that
Sheng?! has calculated phase diagrams for models of nema-
tic liquid crystals confined by parallel walls. The first order
transition between nematic and paranematically ordered
phases is shifted by confinement and critical points arise at
small H. Sheng does not relate his results to capillary con-
densation.

The purpose of this lengthy introduction has been to
show that, in spite of its importance for adsorption experi-
ments in porous solids, the phase equilibria of fluids in nar-
row capillaries remains poorly understood. Researchers in
one branch appear to be unaware of closely related work in
other branches of physics and chemistry. Given the current
upsurge of interest in the statistical mechanics of inhomo-
geneous fluids?? and its applications to adsorption and wet-
ting phenomena?® it would seem appropriate to bring some
of the more modern theoretical techniques to bear on this
problem. In this paper we present some results of a study of
the possible phase equilibria of a simple model fluid confined
by two adsorbing parallel walls. Our theory is based on a
mean-field density functional approach introduced original-
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ly by Sullivan®*?® in his studies of adsorption and wetting at
the interface between a fluid and a single wall. While this
approach gives a rather crude description of correlations in a
bulk liquid it has provided a great deal of insight® into the
various factors that determine adsorption isotherms and the
systematics of wetting transitions. We shall see that the ex-
tension of the theory to the two-wall case provides new in-
sight into the physics of capillary condensation, critical
points, and the nature of adsorption in narrow pores. The
theory has the merit of yielding useful (approximate) analyti-
cal results as well as being very well suited to numerical
work. These features are especially advantageous when one
is attempting to calculate a complete capiliary phase dia-
gram.

Our paper is arranged as follows: In Sec. II some general
considerations concerning phase equilibria of fluids con-
fined in a slit are presented. Derivations of the macroscopic
Kelvin and Cohan equations are given and analogies made
between bulk liquid—gas coexistence and coexistence in a ca-
pillary. The concept of a capillary critical point is intro-
duced. Section III describes the theory. In Sec. III A the
extension of Sullivan’s approach to two walls is described
and the differential equation for the density profile of the
fluid is derived. A graphical construction for determining
possible solutions is presented in Sec. III B. Wetting films
arise naturally in our analysis. For a given wall separation H,
at fixed chemical potential u and temperature, different so-
lutions, corresponding to liquid and gas configurations may
exist. The solution with the lowest interfacial free energy
y(H ) is the equilibrium one. The procedure for calculating
y{H } is described in Sec. III C. Capillary critical points and
spinodals are analysed in Sec. III D; the divergence of the
local compressibility and the implications for critical trans-
verse correlations are also discussed here. In Sec. II1 E the
form of the adsorption isotherms for fixed H is described,;
these exhibit loops. At a first order transition, the adsorption
I" jumps in a characteristic fashion, whereas at a critical
point I" remains continuous but (dT'/du), - diverges. We
also consider the adsorption and the force on the walls as
functions of H at fixed 2 and 7. This allows us to make
contact with the simulations of Lane and Spurling’*'®> men-
tioned above. Qur theory provides a direct physical explana-
tion of their results and makes specific predictiors for the
variation of various properties at first order and critical tran-
sitions.
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FIG. 2. Schematic density profiles p(z) for (a) gas and (b} liquid configura-
tions in a partial wetting situation. p}f and p} are the densities at midpoint
z=H/2.
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Section IV contains the results of numerical calculations
of adsorption isotherms for various separations H in both
partial and complete wetting situations. Results for capillary
phase equilibria, plotted as H vs pressure isotherms,?¢ are
presented for a specific choice of fluid-fluid and solid—fluid
potentials. The trajectories of the lines of critical points are
shown to be accounted for, approximately, by a simple slab
approximation for the density profiles. We conclude in Sec.
V with a discussion of our results and their possible rel-
evance for adsorption and other experiments. Appendices A
and B contain the derivations of equations that determine
capillary spinodals and critical points.

Il. GENERAL CONSIDERATIONS

We consider a model capillary consisting of two parallel
adsorbing walls located at z = 0 and z = H and unbounded
in the x and y directions. The system is in contact with a
reservoir of fluid at temperature T and chemical potential .
For a given wall separation H the fluid in the slit will adopt
the configuration that minimizes the grand potential
Q(u,H,T). Itis convenient to divide Q) into a bulk and surface
contribution

Q= —pV+rH,p, (1)
where p is the (bulk) pressure corresponding to the state
(,T), A,, is the total area of the solid-fluid interface,
V = HA, /2 is the interior volume of the slit, and /{(H ) is the
interfacial free energy per unit area. We suppose T'< T, the
bulk critical temperature, and u <y,,,, the chemical poten-
tial at saturation, so that the fluid is gas in bulk. The case
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FIG. 3. Schematic plots of (a) the chemical potential and (b) the pressure of
the bulk fluid as a function of density p at fixed 7< T,. We consider a fluid
with u <., at pressure p and with density p, . The metastable liquid with
the same chemical potential bas density p * and pressure p;* <p. p, and p,
are the densities of coexisting gas and liquid, respectively. If u <z, there
is no metastable liquid.
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&> Ha » cOTTesponding to a liquid in bulk, will be mentioned
Iater.

In the limit H — oo, the phase equilibria of the fluid will
be determined by macroscopic considerations. For sufficient-
ly large H we may envisage a gas configuration [see Fig. 2(a)]
which is, essentially, a superposition of two semi-infinite sol-
id-gas configurations. If the undersaturation Au =pu,,,

— pis small Y(H ) = ¥, the solid—gas interfacial tension de-
fined for 4 = u,,, and H = «. The grand potential of such a
configuration is then given by

Q= —pV+yu4,,

- If the walls exert sufficiently attractive forces on the mole-
cules of the fluid, and Ay is not too large, the fluid in the slit
may condense to a liquid configuration [Fig. 2(b)] for which
YH )=v4, the solid-liquid interfacial tension again defined
foru = u,,, and H = «. The corresponding grand potential
is

Y= —ptV+vyud,;, )

Here p;* is the pressure of the liquid that has condensed in
the slit. Since the chemical potential u is constant (equal to
that of the reservoir) p;* is the pressure of the metastable
bulk liquid with density p,* at the same value of x. This
argument clearly requires a van der Waals loop in the (bulk)
4 vsp relation (see Fig. 3). A first-order phase transition from
one configuration to the other will occur when , — 2, =0,
or when the pressure p satisfies

P—pi" = (Vg — Valdsf/V.
Introducing Young’s equation for the contact angle & at a
single wall :

ysg =V¥Yu + YIg cos 0: (3)
the last equation reduces to
p—p;t =2y, cos 6/H, (4)

where y,, is the liquid—gas surface tension at temperature 7.
For values of p smaller, or values of H larger, than those
given by Eq. (4) the gas is the stable configuration, whereas
for larger values of p or smaller values of H liquid is stable.
The two configuration coexist when Eq. (4) is satisfied. All
the quantities appearing in Eq. (4) are macroscopic (thermo-
dynamic). Indeed the right-hand side is simply the macro-
scopic pressure difference that would arise across the con-
cave cylindrical meniscus between liquid and gas in a
vertical slit; the mean radius of curvature entering Laplace’s
formula is H /cos 6.

For small undersaturations p and p;* can be expanded
about p,,, and, to first order in Au, p — p;i* = Au(p; — p,),
where p, and p, are the number densities of coexisting liquid
and gas (see Fig. 3). Equation (4) reduces to the more familiar
Kelvin equation for the pressure at which condensation oc-
curs if we make the additional assumption that the gas is
close to ideal so that

Ap=k,TIn(p,,/ p) =2y, cos 8 /H(p, — p,). (5)
This derivation differs from the conventional argument’
which invokes directly the pressure difference across a
curved meniscus. Our treatment clarifies the status of the
Kelvin equation; this should constitute a rigorous asympto-
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FIG. 4. Schematic density profiles p(z) for (a) gas and (b) liquid configura-
tions in a complete wetting situation. The gas has wetting films of thickness ¢
at each wall. p}‘ and p}* are the densities at midpoint z= H /2.

tic result for the condensation pressure in the limits # — o«
and Ay — 0, provided the bulk gas is sufficiently dilute to be
treated as ideal. We remark that it is not necessary to intro-
duce a meniscus into the problem nor is it necessary to make
specific assumptions about solid—fluid contributions to the
grand potential. The latter are included via the interfacial
tensions y,, and ¥,;. For smaller H and larger Au, y(H ) will
differ significantly from y,, or y,, and Egs. (4) and (5) will
become less accurate. Indeed it is of considerable interest to
determine the regime of validity of these asymptotic results.
The situation we have described above corresponds to
partial wetting, i.c., > 0. In the limit Ay — O only a thin
{(microscopic) film of liquid-like density is adsorbed on the
solid. For a complete wetting situation, with 8 =0, very
thick liquid-like films intrude between the bulk gas and the
solid as Ax — 0. Such wetting films also play an important
rolein capillary condensation. For large H and small Ay, the
density profile of the gas configuration in the slit has the
form shown in Fig. 4(a). Nearz = rand z = H — ¢, where tis
the thickness of a single wetting film, the profile resembles
that of a free liquid—gas interface. Thus we might argue that
a sensible approximation for the grand potential should be
ng = _pVg _pl+ Vl + YSIAsI + YIgAlg’
where V, is the volume occupied by gas, ¥, the volume occu-
pied by the wetting film of metastable liquid, and 4,, is the
area of the liquid—gas interface. The profile of the liquid con-
figuration is sketched in Fig. 4(b). This has an approximate
grand potential given by Eq. (2) with V=¥, + ¥, and
A, ;= A,. Condensation will occur when

P—pi" =vpA/Vy =2y, /\H — 2t). (6)

The right-hand side is the Laplace expression for the pres-
sure difference across a cylindrical meniscus whose mean
radius of curvature?’ is (H — 2t ); in the limit H > ¢ Eq. (6)
reduces to the macroscopic limit Eq. (4). It is important to
note that Eq. (6) is inapplicable for models in which the sol-
id-fluid attractive potential exhibits algebraic decay with
23S If this potential decays as — z ™~ ™(m»2), for large z, the
denominator must be replaced by H — 2t, — 2t,/(m — 1),
where #, is the equilibrium film thickness as determined from
a self-consistent minimization of Q,. For nonretarded van
der Waals (dispersion) forces, m = 3 and H — 2t is replaced
by H — 3t,. Only for exponentially decaying or finite-ranged
potentials is Eq. (6) recovered from a microscopic treatment
of thick films.®

-J. Chem. Phys., Vol. 84, No. 4, 15 February 1986

Downloaded 05 Feb 2007 to 144.74.27.1. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2380 Evans, Marconi, and Tarazona: Fluids in narrow pores

}

1

L

a

3 |gas’

0 "Liquid’ ! -
YHe  WH

FIG. 5. A possible first-order transition line for a fluid in a capillary at a
fixed temperature. The slope of this line near the origin is 2y, cos 6/
{1 — py) [sec Eq. (5)]. The line is assumed to end at a capillary critical point
at a wall separation H, and chemical potential ...

The form of Eq. (5) suggests the construction of a capil-
lary phase diagram using Au and 1/H as variables. For a
given temperature, capillary coexistence between liquid and
gas configurations is denoted by a line in the (Ag,1/H ) plane
(see Fig. 5). This line has a limiting slope 2, cos 6 /( p; — p,)
as H — . The continuation of the line to larger Ay and
1/H is not immediate. It is tempting to speculate that 1/H
plays a role analogous to that of temperature in determining
the bulk vapor pressure p,,,(T') [or 4, (T'})] curve. Then one
might argue that for sufficiently large 1/H and Ay the line of
capillary coexistence should end in a capillary critical point
beyond which there is only one fluid configuration in the slit.
Such a possibility is indicated in Fig. 5. The analogy is made
clearer by introducing an appropriate order parameter to
characterize the phase transition. An obvious choice em-
ploys the difference A p™ = p — p between the midpoint
densities p™ = p(H/2) of distinct liquid and gas configura-
tions.?® In Fig. 6 we sketch a possible capillary coexistence
curve, for fixed 7, in the (1/H, p™) plane. This should be
compared with a bulk coexistence curve in the (T, g) plane.
At a capillary critical point H = H_, A p", vanishes. At
H = o, we recover bulk coexistence A = 0, and pyf = p,
andp}’ = p,, the bulk coexisting densities. The other coexist-
ing states in Fig. 6 correspond to Au > 0.

There are, of course, other possible choices of variables
for illustrating capillary coexistence and critical points. For
example, Nakanishi and Fisher,'” in a study of closely relat-

A
1/HC ~
0 > M
€s ¢ ¢

FIG. 6. Schematic capillary coexistence curve for a fixed temperature. The
midpoint densities p2f and p} of coexisting configurations are plotted for
different wall separations H.

ed problems, chose to fix the separation H and vary the tem-
perature rather than construct isotherms. The choice of var-
iables is sometimes dictated by the experimental situation
under investigation, but is often a matter of taste.

That there should be a critical point in a diagram such as
Fig. 5 is not immediately evident. The argument presented
above is based on a somewhat tenuous analogy with the bulk.
As Tincreases in the bulk fluid the effects of attractive forces
between the molecules are reduced and eventually these be-
come insufficient to produce two distinct phases leaving only
a single symmetric fluid state for 7> T. In the capillary
increasing 1/H allows the effects of the attractive external
(solid—fluid) forces to become progressively stronger; these
tend to increase the effective chemical potential. The reduc-
tion in H also reduces the net amount of fluid-fluid attrac-
tion and the combined effect is the disappearance of the two-
phase coexistence when H is reduced to H,. “Criticality”
now means that two hitherto distinct fluid configurations,
characterized by distinct density profiles, but with the same
grand potential become indistinguishable. One of the aims of
this paper is to elucidate the factors which bring about criti-
cal points in capillaries and to determine their location. We
do not, however, place emphasis on small “shifts” of the bulk
critical temperature arising from finite size and wall effects
as this subject already has a large literature.'” We emphasize
rather the first order transition, with its accompanying capil-
lary coexistence, and the critical points that occur at tem-
peratures well below 7.

ill. THEORY

In order to obtain detailed information concerning cap-
illary coexistence and critical points a quantitative or semi-
quantitative theory of the inhomogeneous fluid confined in
the capillary is required. The theory must be able to account
for wetting films and provide a realistic description of bulk
coexistence. We have developed a suitable theory by general-
izing the approach used by Sullivan?*?° in his elegant mean-
field treatment of adsorption, wetting transitions, and con-
tact angles at a single wall.

A. Equation for the density profile

We consider a model intrinsic Helmholtz free energy
functional

F1p1 = [ de fatpte) +4] [ ar dr'p(r)p(r')w:(lr—r':;- |
a

The free energy arising from repulsive interactions between
fluid molecules is treated in local density approximation:
Z(p) is the Helmholtz free energy density of a uniform
hard-sphere fluid of density p. Attractive forces are treated
in mean-field fashion—uw,(r) is the attractive part of the pair-
wise potential between two fluid molecules. It is well known
that functionals of this type omit short-ranged correlations
arising from excluded volume effects so that the resulting
density profiles p(r) do not exhibit the oscillations which oc-
cur for fluids near repulsive walls.?*?* We return to this de-
fect of the theory at a later stage. The equilibrium profile is
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obtained by minimizing the grand potential functional®®

Q,[pl =F1p] —Jdrw— V(x) plr), (7b)
where V'(r) is the total solid—fluid potential, i.e., p(r) satisfies
p=V0+mlpl) + [ dr ol —r) @

with u,(p) = d/,/dp the hard-sphere chemical potential.
4, ( p)is a monotonically increasing function of p. For special
choices of w,(r) and V(r), Eq. (8) can be transformed into a
nonlinear differential equation. Following Sullivan® we set

wyfr) = — ad e~ */4mAr (9a)
and the solid-fluid potential due to a single wall

z<0

z>0. (%)

Az

_ [°°
v =ve={", -
The parameters a and €, are positive; they are measures of
the strength of the attractive fluid—fluid and solid—fluid po-
tentials, respectively. A ~! is the decay length of both poten-
tials. The total solid—fluid potential for the slit-like capillary
is

Vi)=Ve) =V, + V,(H—2z)

I z<0
=1 —€,le " +e -9 Q0«z<H
) z>H.
(10)
From Egs. (8) and (9a) it follows that the profile p(z) satisfies
AH

#=#;.(P(X))+V(x)—-€2!- 5 dx' plx'le~==*1 (11)

with x = Az, a dimensionless length. Differentiating Eq. (11)
twice with respect to x, and using the fact that d 2V (x)/
dx? = V (x) for 0 < x < AH, we find that the profile obeys

d? x

N (12)
While this equation is identical to that derived by Sullivan®*
for a single wall, the boundary conditions are different. In
the present case symmetry dictates that dp/dx =0 at
x = AH /2, whereas in the single wall problem both d p/dx
and d ?p/dx? vanish as x — «, i.€., in the bulk fluid. Never-
theless, it is convenient to consider the function #{u, ) intro-
duced by Sullivan

¥a) = o —p)? — 2a(py —p), (13)
where p, = p,{ p(x)) is the local hard-sphere pressure and p
is the pressure of the reservoir. Using the relation
(@ py/3u;) = p it follows that Eq. (12} is equivalent to

2
() =gt - 40, (14
X

where A p is a constant, independent of x, whose value de-
pends on u, 7, and H. In the limit H — 0, A p(H) — 0 and
Eq. (14) reduces to the single-wall result.2* In this case there
is bulk fluid in the center of the slit with density p, . Since the
pressure and chemical potential are given by

P=Du(ps) —api/2 (15a)

and

b= py(py) — apy, (15b)
respectively, ¥{i,(p,)) = 0. But du, /dx — 0 as x — « so
Eq. (14) implies A p = 0 in this limit. A p takes on nonzero
values for finite H. The function A p{H ) may be determined
from

AH_ (% 1

d 16

2~ by L =P 1)
and

Yur)—Ap=0, (17)

both of which follow from Eq. (14), together with Eq. (19)
given below. u = u,(p™) is the hard sphere chemical po-
tential at the midpoint density p* =p(AH /2) and uy
is the corresponding quantity at the wall uj
= u,(pl0)) = p,( p(AH ). The choice of sign is Eq. (16) de-
pends on whether u,, or, equivalently, p(x), is a monotonical-
ly increasing or decreasing function of x in the range
0 <x <AH /2. This depends, in turn, on the boundary condi-
tions at both x =0 and x = AH /2. The “wall” boundary
condition is obtained by differentiating Eq. (11) with respect
to x and using Eq. (10),

dp,, ) (d.“h )
—p—p—2e, = — :
( dx x=0 a k © dx x=AH
(18)

This is identical to the single wall condition.** It may be
reexpressed as

Y(pi) —Ap= (s —p—26,)" (19)
Once A p(H ) is determined, u,(x), and hence p(x), can be
obtained by integrating Eq. (14). Later we shall see that the
grand potential for a given configuration can be expressed
simply in terms of A p(H ).

B. Graphical construction for A p(H)

The function #{u,) has its extrema where
By =1 +aplp,). It takes its minimum value of zero at
nh=p,(p,). A second minimum ¢¥*>0 occurs at
uit >ph, provided 4 >y, in Fig. 3, so that the equation
= p p) = p,(p) — a p still has three roots. u," refers to
the metastable liquid at chemical potential ;2. From Eq. (13),

Y=y ) =a’p*’ - 2a(p —p)
which can be written as

pr=2«(p—-p"), (20)
wherep,t =p,t — a p*?/2is the pressure of the metastable
liquid of density p*. In the limit Au — 0, p, — p,, the sec-
ond minimum deepens ¥* — 0 and u,;" — u), the hard-
sphere chemical potential appropriate to the coexisting lig-
vid of density p,. A sketch of ¥{u, ) is given in Fig. 7(a) along
with the parabola I (u,) = (4, — ¢ — 2¢,,)>. The difference
between these functions ¥ — Iis also plotted. We denote this
Ap” [see Eq. {19)]. Ap” has its maximum at u,(p) with
p=2,/a. On the other hand, Eq. (17) implies
A p = ¢ (u') >0. The nature of the graphical construction
for A p(H ), or more accurately H (A p), is apparent now. Set
A p = ¢, a constant. Choose ¢> 0, but < the maximum of
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o Ap=c
0 KR Be2ew uh T,
(b)
Apy
‘gQS’
s . ‘Liquid} -
Hmin H
Y(H)A (c)
=
I i .
0 Hmin Ht H

FIG. 7. (a) Sketch of the functions ¥{ u,), 7{u,), and Ap* =y — I for a
partial wetting situation and a small undersaturation Au. Ap* meets ¢ tan-
gentially at hard sphere chemical potential z, = u + 2¢,,, the minimum of
I(p,,). Thecircles correspond to midpoint value u and wall value u¥ fora
gas configuration while the crosses correspond to uy and ¥ for a liquid
configuration with Ap = ¢, a constant (see the text). (b) Sketch of Ap{H ) as
obtained from (a) Both liquid and gas branches extend to H = o, but only
liquid extends to H = 0. (c) Sketch of the interfacial free energy ¥ ) as ob-
tained from (b). #{H) increases linearly with H as H — o on the liquid
branch. The gas is the stable configuration for separations H > H,, whereas
liquid is stable for H < H,.

A p*. The intersections of the horizontal line A p = ¢ with
the curves ¥ and A p* determine u}f and uY, respectively.
This is indicated in Fig. 7(a). Performing the integration in
Eq. (16) then yields a value for H.

It is evident that there are several possible intersections
for a given A p. In Fig. 7(a), we have marked with circles the
intersections that correspond to a gas like configuration; u¢
is small, as is appropriate to a dilute gas in the center of the
slit uy > u¥, du,/dx and, hence, d p/dx are negative for
0 <x <AH /2 and the minus sign must be taken in Eq. (16). A
liquid configuration occurs if we consider the intersections
marked by crosses. In this case both ¥ and u are large,

0 Hy Hinin

FIG. 8. (a) The same as in Fig. 7(a), but for a large undersaturation Ay; the
minimum ¢* is much higher than in Fig. 7(a). (b) Sketch of Ap{H ) obtained
from (a). The gas configuration now extends to H = 0 and exhibits a loop.
Spinodals occur where (9H /dAp) = 0. (c) Sketch of Y{H ) obtained from (b).
Liquid is never stable but two distinct gas configurations corresponding to
different values of Ap, coexist at H = H,.

consistent with a dense liquid state. However, u} <u? and
du,, /dx is positive for 0 <x <AH /2, requiring the positive
sign in Eq. (16). Not all integration paths are allowed; the
choice is restricted by Eq. (18) and the requirement that u,, (x)
be a monotonic function for 0 < x <AH /2. It can be shown
that the vanishing of the denominator of Eq. (16} at the upper
limit 4} does not cause the integral to become singular un-
less dy/du,, is zero at this point. This implies H — oo for the
gas configuration if and only if A p — 0. In this limit we
recover the single wall solution. For the liquid configuration
H— o if and only if A p — ¢+ from above. When A p is
chosen so that uf — u¥, i.e., to coincide with the point
where the curves A p* and ¢ touch H — 0. [These curves
meet tangentially when u, = u + 2¢,, the position of the
minimum of 7 (i, ).] This situation corresponds to a limiting
liquid configuration in Fig. 7(a). By varying A p and calculat-
ing H it is possible to obtain the curves for A p(H ) sketched in
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Fig. 7(b). The liquid branch exists for all values of H while
the gas branch only exists for H> H,,;,. If two, or more,
branches exist at a given value of H the one with the lower
grand potential is the stable one [see Fig. 7(c)].

These results refer to fixed » and T and to given poten-
tial functions. If we keep T fixed but reduce u (increase the
undersaturation ), we move to the situation described by Fig.
8(a). Here the minimum at ;" is much less pronounced and
¢* is much larger. The gas branch of A p(H) exists for all H
whereas the liquid only exists for H > H,,,,, [see Fig. 8(b)].
On reducing u further H, ;. increases for the liquid branch.
A p(H) exhibits a “loop” for the gas configuration. Al-
though the size of this is exaggerated in the sketch, its pres-
ence shows that distinct gas solutions, both with d p/dx neg-
ative for 0 < x < AH /2, but corresponding to different values
of A p, can exist for the same value of H. We return to the
importance of such loops in Sec. III D.

When p <., in Fig. 3 so that g =pu,(p) — ap has
only one root, the minimum at x,+ disappears and no liquid
branch exists.

Itis clear that an interesting “cross-over’’ behavior must
occur for some value # intermediate between those appropri-
ate to Figs. 7 and 8. When u is such that A p* has its maxi-
mum precisely at the maximum of ¢ the liquid branch and
the uppermost gas branch of A p(H ) meet contiguously at a
certain cross-over value H_. This occurs®® when
B = i, ( p) — a p with p = 2¢,,/a. Such behavior does not
correspond to a critical point. There is another gas state, on
another part of the loop in A p(H ), with a lower grand poten-
tial that is the stable solution.

The examples described so far correspond to partial
wetting situations. In the limit H — oo, the gas configura-
tions do not exhibit thick wetting films at the walls. Such
films will only develop when the minimum of I(z,), at
By =M + 2€,,, is larger than u;" . This case is illustrated in
Fig. 9. Gas configurations occur for A p<¢™. As is usual
H— o as A p— 0, but now H also diverges in the limit
A p — ¢* from below since the integration path in Eq. {16)
then approaches the minimum at g, . For sufficiently small
undersaturations (small ¢ ) wetting films occur on both the
upper and lower gas branches of A p(H ) in Fig. 9(b); both
solutions have u¥ > u¥f and du, /dx negative. The wetting
films can be identified by Taylor expanding the denominator
in Eq. (16) about both minima of 3. Near the minimum cor-
responding to bulk gas

) =ag (B — i)+ -+
and

Ap=9() =a (1 —pr )’ +- -+
where a =} (d*y/du}), _ . While near the minimum
corresponding to the metastable bulk liquid

V) =9* +ai(uy —pit )2+

with af = §(d*y/dp}),, - - Dividing up the range of the
integral in Eq. (16) into appropriate intervals and performing
the integration we find that in the limits y* —0, Ap — 0,

(a)

FIG. 9. (a) The same as Fig. 7(a) but for a complete wetting situation so
that u + 2€,, >, . The horizontal dashed line corresponds to ApS ¢+
and the circles mark its intersections with ¢ and Ap®, i.e., u¥ and p¥. The
corresponding density profile exhibits thick wetting films. (b) Ap(H) ob-
tained from (a). The upper gas and liquid branches both approach ¢+ as
H— . As Ay is reduced, ¢ is lowered and H_,, increased. (¢) y(H)
obtained from (b). Both the liquid and upper gas branches have constant
slope ¢+ /4a as H — . A first order transition from gas to liquid occurs as
H is reduced to H,.

and H — o0:
AH —iln( AP(H))W_LM( Y~ ApH) )
27 a, a2 @? a, 4430? ’

(21)

where @ is a constant. The first term is associated with the
bulk gas; it is not specific to the wetting situation but indi-
cates that A p decreases exponentially with increasing H on
the lower gas branch in Fig. 9(b). The second term is associat-
ed with the metastable liquid at u, = u;t. It is of precisely
the same form as the quantity' that determines the thick-
ness of a wetting film at a single wall, except that ¥ is now
replaced by ¥* — A p(H ). Thus the film thickness in the slit
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t(H ) is given, approximately, by

__ 1. (y"—ApH)
At(H )= : ln( o ) (22)

InthelimitA p — 0, H — o and? (H ) — ¢ (0 ), thethickness
at a single wall. For finite H,A p(H ) is greater than zero so
t(H)>t{cw) for a given ¢y*. That wetting films should be
thicker, for a given undersaturation, in capillaries than at a
single wall follows from general considerations.*!> On the
lower gas branch dA p/dH is negative so the film thickness
increases as H is reduced towards H_,;, . On the upper gas
branch, which corresponds to an unstable solution, ¢ (H ) in-
creases as H — o in such a manner that H-2¢ (H ) remains
roughly constant. This follows by rewriting Eq. (21) as

AH—2t(H)] = —lln(-‘lfl’i)m (23)
a, a0’

and recognizing that as H — co on thisbranch A p — ¢, a
constant. For H < H,,,.,, no gas configuration exists; a simi-
lar result was obtained earlier by Derjaguin and Churaev'?
based on a model for the disjoining pressure. Note that as
¥t —0,H_, — «.Weshall seethat this has repercussions
for the form of adsorption isotherms.

A separate liquid configuration exists for A p>¢*. Un-
like the partial wetting case )’ > u» and dy,, /dx is negative
now. The branch exists forall Hand H— « as Ap — ¢+
from above—provided ¢ exhibits the second minimum at
;. If the undersaturation is increased sufficiently so that
U <M in Fig. 3 there is no metastable bulk liquid at that
value of 2. In these circumstances (see Fig. 10), the upper gas
branch does not extend to H = o, but reverses direction at
H = H_,, and continues to H = 0. Thus the loop in A p(H )
becomes closed. The uppermost branch which extends to
H = 0, could be regarded as liquid as u¥ and u2 take on large
values, but it is important to recognize that this no longer
extends to H = o.

Finally, we remark that it is also possible to consider
situations for which i + 2¢,, <4 . No liquid configurations
exist now but the gas exists for all values of H.

(a}

0
{b)
Aph
‘gas’
0 ] H
Hmin Hmux
(c)
¥(HY
'gas‘
[ ]
—» H
0 Hmin Ht Hmax

FIG. 10. (a) The same as in Fig. 7(a), but for a case where the fluid is strongly
undersaturated so that ¢ has no second minimum (no metastable bulk lig-
uid). (b) Ap(H ) obtained from (a). Spinodal points occur at H,;, and H,,,,, . If
Ay is increased further the loop shrinks. (c) y{H ) obtained from (b). Cusps
occur at the spinodal points. Two distinct fluid configurations coexist at
H = H,. The loop in y{H ) shrinks on increasing A and disappears at the
capillary critical point.

C. The interfacial free energy on different branches of 4 p(H)
The interfacial free energy {H ) can be expressed rather simply for the present model system. From Egs. (1) and (7) we have

A
218) = [ del o+ At ot + 10t [ drpl e — )+ play ) — ).

Using Eq. (11) and following the procedure employed by Sullivan®” for a single wall this can be reduced to

2yH)=HAplH )/ 20 +Z,11_ [(#'5’—# ~26,)* —26(1 —e~ ) 4 Zﬁh dpy (Vus) — AP(H))‘”]. (24)

where the choice of sign outside the integral is determined by the same considerations as previously. In the limit A p — 0,

H — « and Eq. (24) reduces to Sullivan’s formula® for #{ ), the surface tension of the solid—fluid interface at a single wall.

For a configuration to remain stable as H — o, A p(H ) must vanish exponentially. For finite H, however, it is necessary to

evaluate Eq. (24) for the various possible branches of A p(H ) to determine the stable solution, i.e., the one with the lowest y{H ).
The derivative (3y/dH ), ; is related directly to A p(H ). Differentiating Eq. (24) with respect to A p, we obtain
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2_27_=_1_( oH
dAp 2a aA

where it is understood that u and T are fixed. The terms in
duy/3A p cancel by virtue of Eq. (19) while the term in
Jdu™ /A p vanishes as a result of Eq. (17). The integrand in
the last term can be reexpressed as T 4(d,, /dx) ' by virtue
of Eq. (14) so the integral reduces to - AH /4. Combining
terms, we find

o _ 1 o8 an
Z38p 3 anp AP TAET)

or
) _ L (ant) - dcte= ). 2

The asymptotic behavxor of ¥{H ) is determined by that of
A p(H). On a stable branch we find from Eq. (21) that as
H— c0:

A p(H)~Ce ™ %", (26)

where C is a constant. Since 4, increases monotonically
with p it follows that a2 = }(d*y/du; =
=1—aldp/du, )” ik is < 1. Thus A p(H) decays more
slowly than the other exponential term in Eq. (25) and, as it is
positive, this implies ¥(H ) — ¥{ ) the solid gas surface ten-
sion as H — . On a metastable liquid branch A p — ¢ as
H — « and Eq. (25) yields

Vi(H )~y H /4a + v, + O e ") + 0 (e~ *¥), (27)

where 7, is the solid-liquid surface tension at saturation.
Inserting this result into Eq. (1), ignoring exponential terms
and using Eq. (20) for ¥, we recover the macroscopic
expression (2) for the grand potential of a liquid configura-
tion in a wide capillary.

Using Eq. (24) or Eq. (25), we can construct #{H ). In
Figs. 7-10 we sketch this function for the four examples dis-
cussed in the previous section. {H ) for the gas configuration
in Fig. 7(c) exhibits a cusp at H = H_,,, where A p/3H di-
verges. The gas has the lower interfacial free energy for
H> H,, but the liquid becomes the stable configuration for
H < H,. Since dy/JdH is discontinuous at H = H, a first or-
der transition occurs at this separation. This transition cor-
responds to condensation from the gas shown in Fig. 2(a) to
the liquid configuration sketched in Fig. 2(b). It arises from
the mechanism described in Sec. II. As Ay is reduced, so that
Y decreases, H, is shifted to large values and the macro-
scopic formula (4) becomes rather accurate. For larger Ay,
however, the macroscopic argument fails. This becomes
clear in Fig. 8(c). Here the liquid branch is not the stable
branch for any value of H, so the picture of the metastable
liquid becoming the stable configuration at small H is no
longer appropriate. The liquid branch is removed from the
gas branch which now exhibits a loop with two cusps corre-
sponding to two singularities of JA p/dH in Fig. 8(b). At the

Ap+H +——[2(/t;. —p— 2€w)

Iy JH
— 2 e M —
w® dAp

"y Ap)"’xz (¢(uh) Ap)‘”izﬂ dph%;wh)—Ap)"Z],

|

value of H where the loop in y{H ) closes, two distinct gas
configurations have the same grand potential, i.e., they coex-
ist in the capillary.

For some intermediate value of Ax the cross-over situa-
tion described earlier will occur. The cusp in the liquid
branch of y(H ) at H_,, then touches the upper cusp in the gas
branch. However, the stable solution at that value of H is on
the lower gas branch (as stated previously).

Figure 9(c) shows ¥(H ) for a complete wetting situation.
For large H, the lower gas branch of A p(H ) is stable and
NH)—> Y(w)as H — «.Since A p(H)— ¢+ as H — e on
the upper gas branch, y(H ) has a positive slope, equal to
y* /4a at large H. The liquid branch has the same slope but
corresponds to a lower free energy. Thus the liquid can be
regarded as metastable at large H. It becomes the stable con-
figuration for H < H,. The two configurations that coexist at
H = H, have density profiles of the type shown in Fig. 4.

For small % it is possible to recover the approximate
result of Eq. (6). This is achieved most easily by considering
the surface tension in the limit H = «, where A p = 0. The
main effect of a small undersaturation is to raise the mini-
mum of ¢ at u;+ from zero to ¢*. If we assume Y and ul
remain unchanged and we Taylor expand y near i1t , we find
from Eq. (24) that

1 P +0e
!
ai ny —®

Xdp, [ (¥ +af (1,

ﬂw):YXg

-#h)()z)w—“l(.uh —ﬂlf)]’

where ¥, is (o) evaluated at saturation (Ax = 0)and @isa
constant. The second integral is zero and the first can be
transformed to

f dy (4 +ay*)"”
_®(¢+ +a2®2 1/2 ¢ J@ dy(¢++a )_1/2

But the last integral is 1dent1ca1 to that which determines
t (o0 ), the thickness of the wetting film at a single wall,>' so we
may write

NV +¥71{(w)/ 22

which states that the interfacial tension is increased by an'
amount proportional to the film thickness. Integrating Eq.
(25) and making use of Eq. (21) for A p(H ) we find
Yoee (H) ~Ye + 9 t(H)/2a
+O0(e~AH-2EDY) L O(e~4H)  (28)

for a gas configuration with wetting films. Condensation will
take place to the liquid when y, (H,) = 7,(H,). Ignoring ex-
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ponential contributions this requires
Vg = Yu =Vig = V7 (H, — 2t(H,))/4a.

Using Eq. (3) and (20) this result reduces to Eq. (6). It can be
combined with Eq. (22) to provide an approximation for the
thickness of the wetting film in the gas configuration that
coexists with the liquid. We find

At(H,)~ — ;1— In(ay, /a0%H,),
]

i.e., the thickness increases logarithmically with wall separa-
tion.>? In order that thick films may exist as the stable config-
uration it is necessary to have very wide capillaries. This has
important repercussions for the observation of wetting films
in pores and in computer simulation.

When the bulk fluid is at the spinodal, x = u_,;,, in Fig.
3, 5o that the minimum of ¢ at 4+ becomes a point of inflec-
tion, the upper gas and “liquid” branches of A p(H )and ¥{H )
meet at H = . For larger undersaturations, y(H ) takes the
form shown in Fig. 10(c). A first order transition from a gas
to a denser fluid configuration occurs at H = H,. However,
the asymptotic analysis given above is no longer applicable
since there is no metastable bulk fluid and no wetting films.

It is evident that a first order transition between two
distinct configurations can arise from two rather different
mechanisms. The first, which occurs for small undersatura-
tions, is equivalent to the macroscopic argument given in
Sec. II and involves the condensation of the metastable bulk
liquid. The second, which occurs at larger undersaturations,
involves the loop in A p(H ). We examine this second case
further.

D. Loops, capillary spinodals, and the origin of critical
points

Whenloopsarisein A p{H ) itis possible to determine the
value of H for which coexistence occurs by means of a con-
struction analogous to the Maxwell construction employed
for bulk coexistence. This is illustrated in Fig. 11. From Eq.
(25), we have at fixed u and T:

y(H)—_-_l_fHdH’(A (H') — 42 e= ') — 4(0).
4a Jo P ¥ '

If the two configurations corresponding to A p, and A p,
have equal interfacial tension /{H, ), at H = H, it follows that

fﬂ dH'Ap(H')=0,

a

where the integral is taken along the curve between A p,, and

Ap u<uc

Evans, Marconi, and Tarazona: Fluids in narrow pores

A ps. This implies that the areas in the figure satisfy

—(B+ D)+ (B+ C+A4)— A =0,where the sign is taken
to be negative if dA p/dH is negative on the appropriate part
of the curve. Thus the areas C and D must be equal for coex-
istence. Note also that the portions with dA p/dH positive
correspond to unstable portions (between the cusps) of Y{H ).

Critical points are associated with the disappearance of
theloopsin A p(H ) as the undersaturation is increased. In the
partial wetting situation depicted in Fig. 8, a small increase
in Au rapidly decreases the areas C and D and the density
profiles of the coexisting configurations become closer. At
the critical point the areas vanish [see Fig. 11(b)] and the
profiles are identical. Eventually, A p{H ) becomes a mono-
tonically decreasing function of H and there is only one solu-
tion for a given H [see Fig. 11(c)]. The same mechanism oc-
curs for the complete wetting situation.

The important difference between the two different wet-
ting regimes is that the loops are much larger for a complete
wetting. (This also facilitates numerical work.} In the case of
partial wetting the loops are already very small at the cross-
over situation so that the critical point lies close to the cross-
over point. Indeed, in our earlier paper,?® we identified the
critical point with the crossover. More accurate calculations
show that the coexistence lines extend beyond those given in
Ref. 26; we discuss this later.

The critical point corresponds to the conditions

(%7).~ (e )= @

together with the constraint that H be given by Eq. (16).
Alternatively we can require

JH )" ( d°H )°
= =) =0 (30)
(a”:{ wT a/‘:{ uT

since plots of u¥(H ), the hard-sphere chemical potential at
midpoint, have the same form as those of A p(H ) shown in
Fig. 11. Equation (29) or Eq. (30) determine the critical val-
ues of u and H for a fixed T. Noting that u}! can be replaced
by p™, the density at midpoint, in Eq. (30) the genesis of a
capillary coexistence curve like that sketched in Fig. 6 be-
comes apparent.

Making a further analogy with the bulk fluid it is perti-
nent to enquire about the nature of capillary spinodals. For
fixed u and T, the spinodal midpoint densities are defined by

JH ) ( JH )
=0= . 31)
( aﬂ:{ By —I“::.ll alu:l ey —I‘ﬂ,‘z

Since (@Ap/Iuy),r = (OPuer)/ur’), r is nonzero in the

(c)

FIG. 11. Sketch of Ap(H) for three
different chemical potentials u and
fixed temperature. (a) g, > >4..
An equal area construction (C = D)
yields the values of Ap, and Ap g of
the two configurations coexisting at
H = H, (seethetext). (b) u = pu_, the
critical value. (¢) u <.

{a) (b)
W -
*——Apa
0
2
cle sog
AL = 1 P
0 Hy no ° He H

J. Chem. Phys., Vol. 84, No. 4, 15 February 1986

Downloaded 05 Feb 2007 to 144.74.27.1. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Evans, Marconi, and Tarazona: Fluids in narrow pores

range of interest Eq. (31) is equivalent to (3H /dAp), r = 0.
Thus the singularities in dAp/dH and therefore the cusps in
V{H ) correspond to spinodal points. By differentiating Eq.
(16) with respect to u}f and using Eq. (19) it is possible to
derive an equation for the capillary spinodal points (see Ap-
pendix A). For large H (small Ay) closed loops in Ap(H ) no
longer occur and (GH /dAp), r exhibits only one zero, which
can correspond te liquid or gas.

For bulk coexistence we require the pressures and
chemical potentials of liquid and gas to be the same for a
given T. The corresponding spinodal densities p, and p, are
then given by (dp/dp), _ ,, = 0 = (dp/p), . ,,. For capillary
coexistence we require ¥(H ) to be the same for both phases; p
and p are fixed by the reservoir. It is natural then to seek
spinodal midpoint densities from the condition

) (32)
M= p” M = g}

( InH) ( INH) )
g and Since  (3v/p™)

ap™ ap™
fixed T.

= (Gy/3H )(OH /oul)du¥/dp™), Egs. (31) and (32) are
equivalent. The unstable portion of the bulk isotherms is that
for which (dp/dp)r < 0. In the capillary the unstable portion
has (GH /3Ap)> 0, or alternatively, (GH /du3f)>0. More-
over, as (dy/AdH ) is positive in the relevant region, it follows
that (3y/dp™) > 0.

It is more natural perhaps to consider derivatives with
respect to u. In Appendix B we derive expressions for
(O, (2)/3u); starting from Eq. (14) for the density profile.
We show that this quantity diverges for z = H /2, when
(OH /3u3!), r =0, i.e., at a spinodal or critical point. The
latter will occur when

) —o0.

().~ (G
At i
This condition,?® which is an alternative to Egs. (29) or Eq.
(30), is now closely analogous to that employed to locate a
bulk critical point; recall that x4} measures the midpoint
density p™.

Our final analogy with the bulk involves the behavior of
pairwise correlations at a critical point. In the bulk fluid the
long-wavelength limit of the structure factor S (g) diverges at

the critical point in the same fashion as the isothermal com-
pressibility «,. This follows from the relation

k .
B T (é&) == pk B TKT
du/r

lim S(g) =
q9—0 P
with S(g) =14 pfdr & "k (r). The total pair correlation

M

at

(33)

(34)

|

- !

" m

[

Heot M

B, u'scut
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function 4 (r) becomes long ranged at the critical point. What
is the analog of this behavior for a fluid at a capillary critical
point? Since the fluid is inhomogeneous /4 (r) must be replaced
byh (r,r') = h(2,2',R )WithR = [(x' — x)* + (¥’ — yJ]*/% the
mutual separation of particles measured parallel to the walls.
It is convenient to define a transverse structure factor S (z,Q )
via

SzQ)=1+ fdz’p(z’) dee‘Q"‘h (zz',R), (35)
where Q is a two-dimensional wave vector parallel to the
walls. The Q = 0 limit of this function is given by>*

lim 5(20)= (z) (a”(z))

where the derivative is performed with fixed external poten-
tial and temperature. The close similarity between Egs. (34)
and (36) allows us to treat S (z,0) as being proportional to a
local compressibility or susceptibility. At the capillary criti-
cal point the local compressibility at midpoint (dp™ /du),
diverges and we expect (dp(z)/du)y to be singular for other
values of z. Such behavior will be accompanied by the
growth of long-ranged transverse correlations in 4 (z,2',R ).
While the precise nature of these transverse correlations and
their variation with z remains to be investigated, it is clear
from Appendix B that such correlations afford a signature of
the approach to capillary criticality and are associated with
the vanishing of the order parameter Ap*. This divergence
of the local compressibility is #ot associated with the capil-
lary wave-like fluctuations that give rise to the divergence of
S (2,0) at the edge of a wetting film in the approach to com-
plete wetting.>! The latter divergence can only occur for
an infinite system (H = o) (see Appendix B).

(36)

E. Adsorption and the force between walls

The total adsorption I' (or coverage) in the capillary is
conveniently defined by

H
M) = [ delpt) — )

with p, the density of bulk fluid at chemical potential u and
temperature 7. In the limit H — o I'(H)— 2T, ,, where
T, is the adsorption at a single wall. I'(H ) is related to the
interfacial free energy y{H ) via the Gibbs adsorption equa-
tion

TH) = —2nH)/ )y

(37)

(38)

{c)

H<H . FIG. 12. Sketch of the adsorption I'(u)

for three different values of H and fixed
temperature in a complete wetting situa-
tion. (a) H> H_. T exhibits a loop with
spinodal points at u, and u, At
4 =p,,I' jumps discontinuously from
small gas-like values to large values
characteristic of the liquid. (b) H = H,
the critical value. (c) H < H_.

P
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Within our present model I'(H ) is particularly simple. Using
Eq. (14), this quantity can be expressed as

nH)=+ > f " sl ol ) — ol ) — AP)
(39)

which reduces to twice the single wall result* in the limit
H — . Itis straightforward to show that differentiation of
Eq. (24) with respect to u yields Eq. (39), i.¢., these formulas
are consistent with Eq. (38). The latter can be used to infer
the behavior of I'( ). Numerical results for I as a function of
D/ Do at several values of H will be presented in Sec. IV. For
a large value of H it is readily shown that I"( iz} exhibits a
loop; this is sketched, for a wetting situation, in Fig. 12(a).
When Ay — 0, H,;,, — o (see Fig. 9). Thus no gas configu-
ration will exist if H < H,,,, (). As Ap is increased H,,,, is
reduced and at a certain chemical potential u = x,, where
H_ . (u,)=H, a gas solution will appear. On further in-
creasing Au both upper and lower gas branches exist for that
value of H and it is this mechanism which gives the lower
part of the loop in Fig. 12(a). The liquid exists for all these
undersaturations. Upon increasing Ay further H_,, is re-
duced and eventually coincides with H. At this value of
#{ = 1) we lose the dense fluid configuration and only gas
persists for u < u,. This construction implies that the two
singularities in (JT'/du), at 1, and u, correspond to spino-
dal points where (0H /dAp), _,, =0 and
(OH /3Ap), _ ., = O, respectively. The argument can be for-
malized if we note that Eq. (37) implies that a divergence of
(0T /Ju)y is equivalent to a divergence of &dz(dp(z)/u) and
we have shown already that (dp(z)/du) is singular at a spino-
dal point. The first order transition will occur at some inter-
mediate value of the chemical potential 12, , i.e., , <p, <y,
and I" will jump discontinuously from a small value charac-
teristic of a gas to a large value characteristic of adsorption
from a metastable liquid. The portion of the curve with (3T"/
du) <0 in Fig. 12(aj corresponds to an unstable region.

If H is chosen to be smaller y,, — ., and p,, — 1, are
correspondingly larger; the loop is shifted and reduced in
extent. Eventually the critical value H = H, is reached for
which I'(u) no longer exhibits a loop, but rather adopts the
form shown in Fig. 12(b) with (Ju/dT) = (3%u/dT%° = 0.
This behavior is associated with the condition expressed in
Eq. (29) or Eq. (33) and and corresponds to Fig. 11{b). For
H < H_ T increases monotonically with u [see Fig. 12(c]].

A similar analysis can be carried out for a partial wetting
situation, but the case which is probably most relevant for
adsorption experiments on mesoporous solids is that de-
scribed in Fig. 12(a). This corresponds to “conventional”
capillary condensation. If the capillary is sufficiently wide so
that condensation occurs at a small value of Az we may
analyze the adsorption using approximations developed ear-
lier. The interfacial free energy of the liquid configuration is

VilH)~(p—p/ Y H /2 + vy

which follows from Eq. (2) or Eq. (27). Using Eq. (38), the
adsorption in this configuration is

CiH)~(p™ —py)H + 2T, (40)
wherep ™ is the density of the metastable bulk liquid and T,

Evans, Marconi, and Tarazona: Fluids in narrow pores

is the adsorption at a single solid-liquid interface. The inter-
facial free energy of the gas with wetting films is given by Eq.
(28). On differentiating with respect to i, or from direct anal-
ysis of Eq. (37), we find for small Ay and large H:

Cou(H)~2p™ —pp)t(H) + A, (41)
whereA depends weakly on H and u2. At thislevel of approxi-

mation, condensation occurs when the pressure p satisfies
Eq. (6). The adsorption jumps by an amount

AT, = [H—2(H}l(p™ ~p,) + 20, — 4 (42)

at the transition. Alternatively using Eq. {6), this can be reex-
pressed as

AT, =2y,(p™ —pu )P —pPi"), (43)
where we have ignored the last two terms of Eq. (42). In the
same spirit as the derivation of the Kelvin equation [see Eq.
(5]], we can expand the various quantities in Eq. (43) about
their values at saturation to obtain

AT, =2y, /A =2y, /kp T In( pout /P). (44)

This asymptotic (large H and small Au) argument as-
sumes the existence of the gas configuration. Our previous
discussion showed that for a fixed finite H the latter does not
extend tou = u,,,; the adsorption isotherm ends in a loop at
1 =l <M, in Fig. 12(a). We can estimate 4, by recalling
that gas first appears when H_;, (u,) = H, where H,,, satis-
fies (JH /9Ap)y . i, = 0. For small undersaturations, we
can employ Eq. (21) for H (Ap) appropriate to a wetting situa-
tion. We find Ap(H,,,,, ) satisfies

1 2

0= —
0ty ol —bp)

or
Ap(Hmin) = ¢+al/(2ag + al)‘

Substituting this result back into Eq. (21) we obtain
AH =~ — (1/a, + 2/a,)n(p*/©?), (45)

where we have ignored terms that remain finite in the limit
¢+ — 0. Thus H,,, increases logarithmically as u — u,,,
and the gas first appears for fixed H when the undersatura-
tion is such that

@2
p—pit = Z— exp] —AHa,a,/(a, + 2a,)]. (46)

This equation determines g,. On the other hand, the chemi-
cal potential at the first order transition for the same value of
H, u,, corresponds to Eqg. (6).

In the partial wetting situation, a similar asymptotic ar-
gument yields in place of Eq. (41), I', (H )~ 2T, and in place
of Eq. (42),

AL, =H(p™ ~pp) + 2T, — T'y) (47)
for the jump in adsorption at the transition. Here I, is the
adsorption at a single solid—gas interface.

So far we have considered the adsorption isotherms ['{u)
at fixed separation H. Sometimes it is useful to calculate I as
afunction of H at fixed » and T. This quantity was calculated
by Lane and Spurling' in a grand canonical Monte Carlo
simulation of a Lennard-Jones fluid between two adsorbing
walls and, more recently, by Freasier and Nordholm'® in a
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FIG. 13. Sketch of the adsorption I'(H ) for four different chemical poten-
tials # and fixed temperature in a complete wetting situation. (a) s,
> > fin > fh. T jumps discontinuously at H = H, from small gas values
to values appropriate to a liquid. On the liquid branch "' ~ (p* — p, }H for
large H. The dashed lines mark metastable or unstable solutions. (b)
Hemin > 4> 4. . The jump in T at H = H, is smaller now and the metastable
solution ends at H = H,,,. . (c) # = p. the critical value. (d) 2 <.

density functional treatment of the same system. The form of
I'(H ) depends on 1« and 7" and can be ascertained from Figs.
7-10. In Fig. 13 we sketch I'(H ) for four different values of 1
and a fixed temperature, corresponding to a complete wet-
ting situation. For small Ay and large H, the adsorption on
the lower gas branch is given by Eq. (41) and that on the
liquid branch by Eq. (40). The gas branch is stable at large H
and we expect I, (H ) toincrease slowly as H is reduced; the
film thickness ¢ (H ) increases slowly with decreasing H [see
Eq. (22)]. At H = H_;,, Ap(H ) exhibits a turning point [Fig.
9(b}] and this leads to an equivalent turning point in T'(H)
where (OT'(H)/dH )y _ 5, is singular. This can be under-
stood by writing

(@), -(),. (),
~(Z) () )

and noting that (3T"/du) and (9Ap/du) are finite and non-
zero at H = H, ;. . Beyond the turning point I'(H ) increases
with increasing H as shown by the dotted line in Fig. 13(a).
The variation is linear at large H since this corresponds to
the unstable gas branch. On the liquid branch I'(H ) also in-
creases linearly with H for large H with a slope equal to
{p* — p»)- This branch is metastable until H = H, [see Fig.
10(c)] but becomes the stable branch for H < H,. Thus I'(H )
jumps discontinuously by the amount AT, given by Eq. (42),
or Eq. (43) or Eq. (44), if the conditions for the validity of the
latter are met at H = H,. Such a jump, from low values of T'
characteristic of adsorption from a gas, to large values, in-
creasing linearly with H, characteristic of adsorption from a
metastable liquid, is a clear signature of capillary condensa-
tion. Lane and Spurling found this behavior>® in their simu-
lations (see Fig. 3 of Ref. 14). Freasier and Nordholm calcu-

2389

lated I'(H ) similar® to that shown in Fig. 13(a), but without
the unstable portion. Neither group appears to have made
the connection with the *“classical” treatment of capillary
condensation that we present here.

For a larger value of Au: u_,, >4 >pu, the dense fluid
branchof I'(H )endsat H = H_,,,, where (3T /dH )is singular
[see Fig. 13(b)]. H, is smaller than previously and the magni-
tude of the jump is reduced, but I, (H ) should retain a rough-
ly linear dependence on H. Wetting films will no longer arise
for these undersaturations. When u = ., the critical value
for the given 7, the loop in I'(H ) disappears and (3T /0H )
diverges at H = H, [see Fig. 13(c)]. If £ <., we expect ad-
sorption of the type shown in Fig. 13(d).

The case of partial wetting has some features in common
with that of complete wetting. For small Ay the jump in
adsorption is now given by Eq. (47) with H, determined,
approximately, by Eq. (4) or Eq. (5). T', still increases linearly
with H.

A quantity which is closely related to the adsorption is
[ (H), the force per unit area of wall arising from solid—fluid
and fluid-fluid interactions. We apply this force externally
to the walls and adopt the convention that f is positive when
the walls repel each other.!* f(H ) is sometimes called the
solvation force. It is obtained thermodynamically from the
relation

O/ )14, = —p— fIH). | {48)

Inabulk system the derivative must reduce to — p, the nega-
tive of the pressure so the surface contribution f(H ) must
vanish as H — «. Using Eq. (1) it follows that

SfH)= —2[orH)/6H ], r (49)
which is consistent with Ref. 15. A surface Maxwell rela-

tion'>37 can now be obtained by use of Eq. (38), i.e.,
2
GE) = 26, =(5) 0
OH/ 1y OHou) r ou/ra

In our present theory, f(H ) reduces to
SUH) = =~ (8plH) — 46k =) (51)

where we have used Eq. (25). Thus a knowledge of Ap(H ) is
sufficient to determine the force. Of course our theory will
not produce the oscillatory forces'* characteristic of dense
liquids held between two plates at small separation. Oscilla-
tionsinf (H )arisefrom the short-ranged correlations'® which
are absent from our theory. Nevertheless, our approach
should be sufficiently realistic to provide useful information
about the variation of f expected at a phase transition or for
large H. _

For example on the stable gas branch Ap(H ) decays ex-
ponentially as H — o [see Eq. (26)], so the force is small and
negative (weakly attractive) at large H. By contrast
on the liquid branch ApH)— ¢+t as H— o so
SIH)— — (p —p;*), a negative constant. If capillary con-
densation occurs at a large value of H then the force should
be reduced discontinuously by an amount Af, =p;* —p,
which is given in turn by Eq. (4) or Eq. (6). This situation is
described in Fig. 14; it corresponds to the adsorption shown
in Fig. 13(a). In their calculations, Lane and Spurling'’ and
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£UH))

o
-

‘gas’

FIG. 14. Sketch of the force per unit area f(H ) corresponding to Fig. 13(a). f
falls discontinuously by an amount ~ (p;* — p) at H = H,. The dashed lines
indicate metastable solutions.

Freasier and Nordholm'® find a discontinuity in f(H) at
H = H,,and Af, = fi(H,) — f,(H,) is negative, as is predict-
ed here. We believe that this argument lends further support
to our suggestion that these authors were indeed observing
the same phenomenon, i.e., capillary condensation.

S(H ) can be calculated for all the other examples. At a
capillary critical point, — f(H ) would be similar to Ap(H )
plotted in Fig. 11(b); (3H /df) = (02H /df*) =0foru =p,
and H = H,. In reality singularities in (df/dH ), may be
masked by the presence of oscillations at small H.

IV. RESULTS OF CALCULATIONS

In this section we present some numerical results for a
model capillary characterized by a wall potential with
€, = 2.114k, T.. This is the model system considered ear-
lier.2® Qur calculations were based on the Carnahan and
Starling equation of state for hard spheres

pulp) =ksT,(1 + 7 +7° — )/ (1 — 9P’
and

pn(p)V/kyT=1n9 + 5(8 — 97 + 39%)/(1 —n)’, (52b)
where 57 = mpd >/6 is the packing fraction and d is the hard

sphere diameter. The critical density p, and temperature T,
of the bulk fluid then satisfy**

p.d?=0249, a=11.102k,T,d". (53)

The transition from partial wetting to complete wetting
(6 == 0) occurs (for a single wall) when the minimum of the
function I (4, ) coincides with the second minimum of ¢, i.e.,
U, at bulk coexistence (see Fig. 7 and 9). Thus,
2¢, = ap,(Ty) determines the wetting temperature.”* For
the above choice of €,,, Ty, = 0.967,. The wetting transition
is a second order phase transition in Sullivan’s model*® so
there is no thick-thin film (prewetting) transition.?* Increas-
ing €, at fixed a reduces Ty, /T,. We chose a small value of
€, and hence a high value of T, /T, in order that we could
investigate easily the phase equilibria over a large tempera-
ture range in particular temperatures near 7, where the con-
tact angle @ = 7/2, i.e., ¥, (T,) = ¥4(T;). In these circum-
stances, liquid and gas coexist at u = u,,, and H = 00.%¢
T, =0.57T, for the above choice of €,. (The triple point
temperature for an argon-like fluid is roughly 0.57,.)

All the features described in Figs. 2, 4, and 7-11 were
confirmed by the numerical results. Capillary coexistence
curves such as that sketched in Fig. 6 were also computed.

(52a)

[~ 52

L 48
— T/ =o0-99
T

- us ©

— 40
- 36
— 32

T/T =0-967| |28

-0:3 -02 -01 8} 04 P 0-2__1 0-3
(/psot )

FIG. 15. Capillary coexistence curves, at different reduced temperatures 7/
T,, as a function of the gas pressure p. The results for 7= 0.997, and
0.967T, are plotted on an expanded pressure scale. For the supersaturated
fluid at T'=0.45T, p is p,;*. V denote the end of bulk two phase region.
X denote the cross-over points. The dotted line marks the line of critical
points (.

The phase equilibria for this model is summarized in Fig. 15
where we plot lines of coexistence of two fluid phases in the
(H,p) plane for several different temperatures, above and be-
low Ty,. These lines terminate in capillary critical points at
H=H,T)andp=p,(T). If p<p.(T)or H<H(T), only
one fluid phase can exist in the capillary. For very small
undersaturation, the lines follow the prediction of the Kelvin
equation (5) or Laplace equation (4), so that
(p = Pest) < — 1/H, provided T>T,. If T<T,, then
cos 8 <0 and the Laplace equation is replaced by

p—p; = —2y,cos8/H, (54)

where p.* is the pressure of the metastable gas, with density
ps", at the same chemical potential x as the bulk liquid
(& > los;)- The right-hand side of Eq. (54) is then the pressure
difference across a convex meniscus in the slit. The analog of
the Kelvin equation is

kpTln(py" /pui) = — 2y, cos 0 /H{p; —pg),  (55)

where we  have  approximated u—pu,, by
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where we have approximated u — u,,, by kpTIn(p," /p,)
=kpTIn(p,;" /p,,.) and the coexistence curve for T = 0.45T,
in Fig. 15 follows this prediction®® for very smallp,;t — p,,,.

For T50.7T,, the Kelvin equation is accurate to a few
percent for AH R 14 corresponding to undersaturations of

5% or less (see also Ref. 26). For higher temperatures the
Laplace form is more appropriate since the gas is no longer

closetoideal and, for T < Ty, thisis fairly accurate for AH 2
25, or undersaturations of 3% or less. In the complete wet-

ting regime T'> Ty, the deviations of the numerical results
from those predicted by the unmodified Kelvin or Laplace
equations are rather large even for AH ~ 100 or undersatura-
tions of about 0.3%. Including the effects of wetting layers
via Eq. (6) reduces the discrepancies, but it is clear that mac-
roscopic or semimacroscopic equations are quantitatively
accurate only at very small undersaturations in a complete
wetting situation.>® In this context it is important to recall
that the macroscopic description is only appropriate when
I < i, in Fig. 3(a) so that a mestatable bulk liquid exists. At
high temperatures, the van der Waals loop in y( p) shrinks
and (g, — lmin) — 0. This automatically restricts the use of
the Laplace and Kelvin equations, or their modifications, to
small undersaturations. The pressure corresponding to 2,
is indicated by a triangle for 7= 0.967T, and 0.97T, in Fig.
15.

At lower temperatures T < Ty, the cross-over mecha-
nism described in Sec. III comes into play and we have indi-
cated the cross-over values® H_, by crosses. As mentioned
earlier, in Ref. 26 we identified the cross-over points with the
capillary critical points for 77$0.67T .. In reality the coexis-
tence lines extend to smaller H and p, as is shown in Fig. 15.

The line of critical points, marked by dots, has an inter-
esting shape which can be explained by means of a simple
slab approximation for the density profiles of the fluid in the
capillary. We digress a little to elucidate this.

. In the neighborhood of the capillary critical point we
find from our numerical results that the profiles p(z) have
similar shapes but different midpoint densities p™. Often the
profiles are rather flat. These considerations lead us to a
crude slab approximation in which we take the profile to be
constant: p(z) = p™ for 0<z< H. Clearly such a model is inap-
propriate for describing coexistence of liquid and gas at large
H—especially in the case of complete wetting but becomes
more realistic for small separations. The grand potential, per
unit area of a single wall, follows® from Eq. (7):

wlp™) = H (4, (™) — ap™’/2 — pp™)
+pMlap™ — 4€,)(1 — e~ *H)/24. (56)

The equilibrium solution is that which minimizes o at fixed
4, T, and H. Thus we require

dw ) M M
e =0=H —ap” —
( 3 ),z &4 (0™) — ap™ — p)

+ (a@p™ — 2¢,,)(1 — e~ *H)/A. (57)
For a bulk fluid only the first ferm is relevant and the bulk

density p, is determined, as usual, from the roots of
B = ,(p,) — ap,. Inthe capillary, the second term becomes

2391
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FIG. 16. Sketch of various terms in Eq. (58). Solid curve: u(p™)
= u,(p™) — ap™. Dashed curve: u(p™) + ap™{1 — e~ **)/AH. The inter-
sections of the dashed curve in (a} with the horizontal line
#+ 2€,(1 — e~ *#)/AH give possible equilibrium values of the density o .
In (b) the intersection at the point of inflection yields the critical density p
and chemical potential u. . These plots refer to a high temperature. At low
temperatures the loop in p(p™) is more pronounced and g, > g4, -

important. It is convenient to rewrite Eq. (57) as
1, (p¥) —ap™(1 — (1 —e—*)/AH)
=u+26,(1—e *H)/AH (58)

and plot the various terms as a function of p™ (see Fig. 16).
The fluid-fluid contribution ap™(1 — e ~*#)/AH reduces
the net attraction so that the effective value of @ is smaller in
the capillary. This terms acts to smear out the minimum in
the van der Waals loop [Fig. 16(a)] and for smaller values of
H will remove the minimum, driving the fluid towards criti-
cality [Fig. 16(b)]. The solid-fluid contribution
2¢,(1 — &¥)/AH shifts the effective chemical potential.
Thus it is possible to choose it < g, , 50 that the bulk fluid is
outside the two-phase region, and still find multiple roots of
Eq. (58), as illustrated in Fig. 16(a). If the solutions have
equal grand potential they correspond to coexisting fluid
configurations with distinct values of p™. For a certain value
of H( = H_) the multiple roots merge into a single critical
value p¥ as shown in Fig. 16(b). The corresponding critical
value of u( =p,) is determined by Eq. (58); this may also
satisfy pt; <fimin-

The critical density and separation are determined, fora
given temperature, by the conditions

a My M
5;,7(#;,00 ) —aqH)p™)

2
=#w,.<p")—a,,ma")=o.

Since a4 (H) = a(l — (1 — e~*#)/AH ) does not depend on
pY, the second of these conditions reduces to
(82w, /3p™") = 0, which is identical to that which deter-
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mines the bulk critical density p.. It follows that
pY =p, =0.249d 3 is independent of T and H in this slab
approximation. The critical separation follows from the first

condition:
kT(52) ,—aulH)=0,
dp /p=p
where M (p) = p,(p)/ks T is a function of p only. But the
bulk critical density satisfies

(59)

kT, (‘9— —a=0, (60)
dp Jo=p.
so we combine these results to obtain
(61)

; —ag(H)a=1—(1—e 1K
which determines H, for a given 7. Alternatively, this equa-
tion determines the capillary critical temperature 75 for a

given separation H.
In the limit AH> 1, Eq. (61) implies

T, — T
< T _1/iH, (62)

i.e., the critical temperature is reduced below its bulk value
by a term inversely proportional to the wall separation.
However, as mentioned above, our slab approximation is not
reliable for very large H. As H-— « and T2 — T, the
effects of bulk criticality will manifest themselves and the
details of the shape of the profile become important. Conse-
quently, Eq. (62) may not give the correct asymptotic behav-
ior.>® This could be obtained from a detailed analysis of the
full differential equation for the density profile. From their
mean-field treatment of critical temperature shifts, Nakani-

shi and Fisher'” predict

T. T 1
—r & (H— o) (63)

but this might not be the only possibility.>' It is interesting to
note that shifts of the type indicated by Eq. (62) were found
for films of intermediate thickness by Nakanishi and Fisher
(see Fig. 10 of Ref. 17).

The chemical potential at the capillary critical point is

pe =pn(p¥) — apl + (@ p¥ — 26, )1 — e~ V/AH,,
which, using Eq. (61), reduces to

M =.U'I|(P£l —api‘{ T/Tc - 2€w(1 - T/Tc)
or, in terms of the bulk critical chemical potential u? (T,):

e = (T.) + 26,)T /T, — 2, (64)
Again this result may not give the correct limiting behavior
at T— T.. We have used Eq. (64) along with Eq. (61) to
construct the line of critical points shown in Fig. 17. Al-
though the slab approximation tends to underestimate the
length of the coexistence lines, it is clear from a comparison
with the dotted curve in Fig. 15 that the overall shape of the
line of critical points is well represented. Moreover, the pre-
diction that p d® = 0.249 is reasonably well obeyed; the
critical midpoint densities obtained from the full calcula-

tions are roughly constant and take values close to the above
for a wide range of temperatures and different choices of €,, .
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FIG. 17. The line of capillary critical points ¢ calculated from the slab
approximation for various temperatures T' /T, . The dotted curve is a guide

to the eye. For the supersaturated fluid p is p,",

At low temperatures and small AH there is a turning
point in the line of critical points; this occurs for 7 /7T,
~0.65. At lower temperatures p,,,(T) —p.(T) decreases
and eventually becomes positive. Such behavior can be un-
derstood from Fig. 16. The van der Waals loop becomes
more pronounced as T is lowered so criticality cannot be
achieved if pu<u,,. (AH is already very small.) Thus
U, — i, and, eventually at very low temperatures,
K. > e - Note also that for T— T, = 0.57T,, cos 8 — 0 s0
that Eq. (4) predicts that coexistence can only occur for very
small undersaturations.

We return finally to the isotherm 7'=0.45T, <7, in
Fig. 15. This exhibits a loop for small values of H; other
isotherms for T /T, show similar structure.’® As mentioned
above, the coexistence line follows the prediction of the ap-
propriate Kelvin equation (55) at large H, but for smaller
separations the H dependence of y(H ) becomes very signifi-
cant and produces the loop. The interfacial free energy of the
liquid, 7, decreases as — e ~**, whereas that of the gas 7,

decreases as — ¢~ **", From its definition, it is straightfor-
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¥{H)

11 ]
Hm'nth Hh H

Y

0

FIG. 18. Sketch of y{H ) for a supersaturated fluid at temperature T < T.
The pressure is chosen so that two first order transitions occur at separa-
tions H,, and H,,.

ward to show that a;, = (1 + ax; p?)~'/%, where x; is the

isothermal compressibility of the bulk liquid. The corre- -

sponding relation holds for the gas. Since p;>p, at low tem-
peratures it follows that a, <a, and ¥, decreases much more
rapidly than y,. A sketch of ¥{H ) is shown in Fig. 18. The gas
is now supersaturated so y{H ) increases linearly with H at
large H on this branch. Liquid is stable for H> H,, and a
first order transition to gas occurs at H = H,,. The gas re-
mains the stable configuration for H,, <H < H,,, butthena
further first order transition to liquid occurs at H=H,,.
Such behavior will occur if T< T, provided p(T)> p,..(T')
and p,,...(T)>p(T) > p.(T), where p,.. (T') is the pressure at
which dH /dp = « and p,(T') is the pressure at the capillary
critical point. If p(T) > p.... (T), the liquid remains stable for
all H. If p,(T)>p(T) > P, (T), there is a single transition
from liquid to gas as H is reduced. The asymmetry of the
isotherms in Fig. 15, as a function of p — p,,,, is a conse-
quence of the difference in densities between liquid and gas
and of the exponential-type forces assumed in our model.
The adsorption was calculated as a function of u for
different values of H and several temperatures. Specimen
results are plotted in Figs. 19 and 20. In order to display the
condensation and its dependence on H, we found it conven-

035

03

I-0:25

l-o2

015

1-0 cb/Cg

FIG. 19. Adsorption I',, vs undersaturation, expressed as a ratio of densi-
ties, for three different separations H and a fixed temperature "= 0.97T,,
above Ty, . The vertical lines represent the jump in adsorption at the first
order transition. Note the small metastable portions of I"y,.

ient to plot a modified adsorption

d* (#
L= dopta

rather than the excess function I'(H ) defined in Eq. (37). Ty,
is dimensionless. We also found it convenient to measure the
degree of undersaturation by the ratio of densities p, /p,; p,
is the density of the bulk gas at the given chemical potential
and p, is the density of the gas at saturation. Figure 19 shows
the results for T'slightly greater than Ty, ; this corresponds to
the situation described schematically in Fig. 12. For the
smallest separation AH = 14,T,, increases monotonically

FIG. 20. The same as in Fig. 19 but for
T =0. 8T,, which is below T'y,. The
metastable portion of '), on the gas
branch extends to supersaturation
now. For the supersaturated fluid p,, is

AR
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withp, /p, as is appropriate to a supercritical isotherm. The
other values of AH correspond to subcritical isotherms and
exhibit loops. The metastable portions of the latter are
shown. 'y, and, hence I, jump by a finite amount at the first
order transition. The larger the value of H the closer is the
transition to saturation and the larger is the jump AT’,, as is
indicated by Egs. (42){44). In Fig. 20 results for T < T, are
plotted. These are similar to those for 7> Ty, except that the
gas branch now extends to u = u,,, and beyond. The iso-
therm should be contrasted with that sketched in Fig. 12(a)
which has a spinodal point at 4 = i, <., and with those
shown in Fig. 19. Examination of Fig. 7 shows that a gas
solution persists to u = g, . Only upon supersaturating the
bulk fluid is it possible to reach the spinodal point of the gas
branch, beyond which it is no longer possible to find gas
configurations for the given H and 7. This is indicated for
AH = 10and 20in Fig. 20. The liquid is stable for all e > 1z,,,,
for this temperature.

V. DISCUSSION

Our model, which is probably the simplest realistic
model for an inhomogeneous three-dimensional fluid that
one might contemplate, provides considerable insight into
the phase equilibria of a fluid confined in a narrow capillary.
We expect that many of our results will have validity beyond
this particular model whilst others are certainly specific to it.
The overall shape of the lines of coexistence (Fig. 15) is prob-
ably generic—with the possible exception of the low tem-
perature region. Whether or not loops in the coexistence
lines should occur for supersaturated fluids depends on the
details of ¢(H ) at small H. These depend, in turn, on the
choice of solid—fluid and fluid—fluid potential functions. It is
feasible that for certain choices loops would arise for an un-
dersaturated fluid but this remains to be investigated. Our
identification of two separate mechanisms for first order
transitions should also be rather general. At small undersa-
turations the transition is from gas to the metastable bulk

liquid with the relevant branches of ¥{H ) being unconnected.

Such a transition is well-described by the classical, macro-
scopic arguments for capillary coexistence. The second
mechanism does not follow from any macroscopic treatment
but occurs at larger undersaturations and requires a loop in
y(H ) and in other quantities. The subsequent description of
the first-order transition is then closely akin to the classical
van der Waals treatment of bulk liquid—gas coexistence—
provided the correct variables are chosen. The two mecha-
nisms merge smoothly into each other, however, by closure
of theloopin ¥{H )at H = « at the bulk spinodal for T'> T,
and by the cross-over mechanism for T' < T',. Consequently,
the lines of coexistence in Fig. 15 continue smoothly through
these points to terminate at capillary critical points. The lat-
ter are always associated with the vanishing of loops, irre-
spective of whether 7> or < T,. As expected!” for a system
of finite thickness the wetting transition that occurs for a
semi-infinite system at bulk coexistence, has no direct rel-
evance for the line of critical points which varies smoothly
with temperature. Indeed for T'> Ty, the critical point al-
ways occurs for a chemical potential u, <., (see Fig. 16
and the discussion of Figs. 9 and 10), i.e., outside the bulk
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FIG. 21. Capillary phase diagram in terms of temperature 7, pressure p, and
the inverse of the wall separation H. The solid curves are coexistence curves
at fixed T. The dotted curve marks the line of critical points (). For the
supersaturated fluid at the lowest temperatures p is p," .

two-phase region (spinodal).*® Thus no thick wetting films
can be present at a capillary critical point; there is no metas-
table bulk liquid at u = p_. Stable wetting films will occur in
capillaries but, as shown in Sec. III C, only for very large H
and very small undersaturation. These conditions can be re-
alized in experiments on capillary rise,>%'%*! but are unlike-
ly to be realized in most adsorption experiments on mesopor-
ous solids. Condensation to the liquid will usually occur at
undersaturations greater than those required for the forma-
tion of thick wetting films.

The surface of first-order transitions is drawn in the
phase diagram (Fig. 21}; it is bounded by the line of critical
points. By choosing as ordinate 1/4H, rather than AH, we
emphasize the low 7, small H portion of the diagram. The
coexistence lines shrink to zero as 7—T,. Can Fig. 21 be
regarded as generic? While we have not made an exhaustive
study, covering all possible choices of the parameter €,,, we
believe Fig. 21 is properly representative*? of a system that
undergoes a second-order (critical) wetting transition. In less
restricted model systems and at real solid—fluid interfaces
the wetting transition is more likely to be first-order, as pro-
posed originally by Cahn** and by Ebner and Saam.** Ac-
companying such a transition is a thick—thin film or prewet-
ting transition which occurs for weakly undersaturated
fluids and T> T,. The prewetting transition will certainly
occur in a capillary’” when H is sufficiently large. At smaller
H it will be in competition with capillary condensation. We
are currently investigating models for which the fluid—fluid
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and solid-fluid potentials have different range and which
yield prewetting transitions, in order to determine the influ-
ence of prewetting on the form of the capillary phase dia-

gram.** Long-ranged (algebraically decaying) forces are

known to play a crucial role in wetting transitions and relat-
ed phenomena.?>#¢ It is unlikely that they will drastically
alter the general features of the capillary phase diagram, but
they might introduce important quantitative changes in the
coexistence line, as discussed in Sec. Il and Refs. 5, 6, and 12,
for T> Ty, and large H.

We are not the first to find capillary critical points.
Nicholson'! determined a critical radius in his lattice-gas
calculations of adsorption in cylindrical pores. He did not
emphasize the importance of loops and metastable states,
however. The latter were discussed earlier by Hill,'° but he
did not mention criticality. Our work clarifies the nature of
the critical points and makes connection with the studies of
Nakanishi and Fisher.'” Although these authors employ dif-
ferent models and different methods of analysis their critical
points are also associated with shrinking loops and merging
capillary spinodals. One important difference between our
mean-field density functional and Nakanishi and Fisher’s
Landau free energy functional is that the latter has lattice-
gas symmetry. Our results, especially at low temperature,
depend strongly on the asymmetry between liquid and gas
arising from the large difference in density between the two
bulk phases. It is this which determines the interesting shape
of the coexistence lines near T = T,. By contrast, lattice gas
symmetry implies ¥, = ¥, or cos 8 =0, for all tempera-
tures when the surface field or contact interaction A, = 0.

Our simple free-energy functional, like continuum Lan-
dau theory, omits short-ranged correlations; the density pro-
files do not mimic the local ordering that occurs in more
realistic treatments®®™ of fluids near walls. For wall separa-
tions H>d, the hard sphere diameter, we do not expect the
phase equilibria to be strongly dependent on the approxima-
tion used to treat short-ranged correlations and the present
local density treatment should be adequate. When H>d,
however, packing considerations become dominant, the lo-
cal approximation is very poor and more sophisticated treat-
ments are required.*’ At low temperatures, but still above
the bulk triple point, crystalline ordering may occur. In ad-
dition two-dimensional-like phase equilibria should develop
when the wall separation becomes sufficiently small. Our
present model functional is not designed to tackle such prob-
lems; a discrete lattice gas model is probably better suited.
How realistic then are our results for small AH ? We are of
course at liberty to choose A arbitrarily small which corre-
sponds to infinite ranged potential functions. In practice it is
difficult to contemplate a range A ~! much greater than two
or three hard sphere diameters if one is attempting to model
a real fluid. Thus the details of the phase equilibria for
AH %2 could certainly be altered in a more realistic theoreti-
cal treatment.

Do our results have any consequence for adsorption ex-
periments on real porous solids or for computer simulations
of adsorption between two walls? From our calculations it is
evident that the macroscopic Kelvin equation, and simple
extensions of this, give an inaccurate estimate of the pressure
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at which capillary condensation occurs except for very small
undersaturations and, hence, large H. The deviations are
especially large for T'> T, the complete wetting situation.
Near a capillary critical point the macroscopic description of
the first order transition as condensation to a metastable
bulk liquid is invalid. Further work is required, with more
realistic potential functions and model capillaries, e.g., cyl-
inders, to determine the systematics of the corrections to the
classical formulas, but our present estimates (see Sec. IV)
should provide useful guidelines.

Several of our theoretical predictions could be tested by
simulation. We have already mentioned the work of Lane
and Spurling’*"* who found the first order transition. The
adsorption I'(H ) and the force f(H ) must vary in the charac-
teristic fashion described in Sec. III E and Figs. 13 and 14 at
such a transition. A critical point might be more difficult to
locate [Fig. 13(c)]. An interesting case arises for the supersa-
turated bulk fluid at low temperatures T < T,. Now one is
adsorbing from a dense liquid at large H. Figure 15 suggests
that for an appropriate fixed: p > p,,., fwo first-order transi-
tions can occur as H is reduced, i.e., from liquid to gas to
liquid. I'(H'} and f(H ) would jump discontinuously twice.
van Megen and Snook'* have obtained adsorption isotherms
similar to those plotted in Figs. 19 and 20, but without me-
tastable portions, in Monte Carlo calculations. It would be of
some interest to examine the accuracy of approximations for
the jump in adsorption AT, such as those given by Egs. (42)-
(44) and the corresponding formulas for the change in f(H ).

Jf(H )is animportant quantity because it can be measured
for fluids between mica “plates” using the technique devel-
oped by Tabor, Israelachvili and others.*® It should be possi-
ble to study first order transitions in weakly undersaturated
gasesby monitoringjumpsin f{H ). In principleitshould also
be feasible to search for capillary critical points, at which
(OH /3f ), = (8*H /3f?), = 0, provided these occur at large
H so they are not masked by oscillations. This requires high
temperatures and small undersaturations.

Finally we return to real porous material and the ad-
sorption isotherm sketched in Fig. 1. While such behavior is
found for a wide variety of materials the detailed shape of the
(reversible) hysteresis loop often differs significantly between
different materials.! It is often the case that the hysteresis
loops disappear at high temperature so that I then increases
monotonically with p/p,,,. Explanations of the hysteresis
abound,'* most of which we find unconvincing. For the
idealized single slit-like pore we considere here, the equilibri-
um adsorption isotherm simply exhibits a vertical jump at
the first order transition, but hysteresis could certainly be
associated with the metastable portions of the loops in I'( 1)
shown in Fig. 12(a). Thus one might find adsorption along a
path ABCD and desorption along DCEA. Other, similar,
paths are possible, but in each case the unstable region with
(AT /3u) <0 is excluded. The desorption path would always
lie above the absorption path, as is found in experiment (see
Fig. 1). This mechanism for hysteresis is equivalent to that
described by Hill.’° Our numerical results (Figs. 19 and 20)
show that the loops in T take a different form above and
below T'y.. In the complete wetting case (Fig. 19) the capil-
lary spinodal point x = u, occurs for p <p,,,, whereasin a
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partial wetting case (Fig. 20) the loop extends to p > p,,.** In
almost all experimental studies of gas adsorption in meso-
porous solids complete wetting is assumed, i.e., the contact
angle @ = 0, so that the first case is probably more relevant to
experiment. The adsorption loops need not be symmetrical
~ about the first-order transition; there is no equal area con-
struction for I'( u) or I'( p). Figure 9 suggests that the low
pressure (density) metastable portion can be smaller than the
high pressure (density) metastable portion, implying that de-
sorption from liquid to gas can only occur close to the equi-
librium transition, whereas adsorption can occur for pres-
sures substantially in excess of that associated with the
transition. Such asymmetry could lead to hysteresis loops
with the shape sketched in Fig. 1. Moreover increasing the
temperature, at fixed H, will drive the system to the line of
critical points and, eventually, into the supercritical one-
phase region with no loops and, therefore, no hysteresis.
Thus it is tempting to infer that the hysteresis observed in
experiments does arise from the mechanism we have out-
lined. In practice the solid will contain pores with a distribu-
tion of sizes and complex connectivity and presumably this
smears out the hysteresis loops. While particular geometries
(curious conical and “ink-bottle” capillaries are described in

Evans, Marconi, and Tarazona: Fluids in narrow pores

the literature’) might favor the development of certain me-
tastable states and influence the shape of the loops, the un-
derlying physical mechanism should remain the same as that
described here for a single slit.*® Cylinders should constitute
a more realistic model for pores and density functional cal-
culations are in progress for these. Preliminary results’*sug-
gest some important quantitative differences between cylin-
ders and slits, but the qualitative features of the adsorption
isotherms are the same. It is likely that fairly detailed com-
parison between theory and experiment will soon be possible
and this should shed more light on the origin of the hystere-
sis.

In conclusion we believe we have provided satisfactory
answers to several of the questions posed at the beginning of
this paper.
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APPENDIX A: DERIVATION OF EQUATION FOR THE CAPILLARY SPINODAL
Differentiating each side of Eq. (16) with respect to 7' at fixed 1 and T we obtain

2 \duy du

i( ""L) — () — Ap) M2 — (ai,t,) (W) _A,,)—m+l(%)

[ i) — 017> (A1)

2 \d

where there is an implicit + or — sign associated with each square root. We note that the first and third terms on the right-
hand-side of Eq. (A1) are singular, but their sum is regular. Using the identity

9 -1
) = 89177 = =22 (9 — 1 (T (A2)
9 d
we can integrate by parts in Eq. (A1) to obtain
A (SH = My _ —1/2_(%) wy _ —1/2__(‘152_)[ My —1/2(‘9'/’(“;:[))_1
¢ (522) = wemty —apyn (S0 cwiun) — gy~ — () |t — = (Z5 2
L (BT (anpN (M a2 97 (3Cpa))
_ wy _ ) l/2< ) ]_(_)J d ( (M _ ) 1/2 ( .
(¥(uy) —bp T 20) ).s pn () — Ap Ep au, .
(A3)

Since ¢(u2) = Ap [Eq. (17)], the singular first and third terms on the right-hand-side cancel. The derivative (3 u}/3 u2)
can be obtained by differentiating the boundary condition (19),

A py) (au}f) _ (aAp) A —p—2e,) (ay,'f

)-o

duy \owi/ \ou uy
Thus,
ap,":) aAp) /(aqb(u:) o g )
= —2ur—p—26,)). (A4)
(au:' (Gl Car 200 =
Substituting this result in Eq. (A3) we find
e e
2 (=)= 1) — Ap) +
2 \9ui) \omy ! Apy —p—ap)  2ap” —2€,)
u 32 b -2
~ [ dmn) - a2 L] (B ] (a3)
“y duy, auy,

where p“=p( u}) is the density at the wall. The vanishing of the right-hand-side then determines the capillary spinodal.
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APPENDIX B: DERIVATION OF EQUATION FOR 3, (x)/9u
Equation (14) may be reexpressed as

#y(x)

x=+ | dup,)—8p)7"" (B1)

where u,(x)= u,(p(x)). We consider the total derivative

dx _ dx +( ax) (auh)+( ax) (8#':) +( ax) (auf,‘)+( ax) (8;:?) (3#2‘)

dp ap \du,), \ap duyl \op/mt \oui), \ du pil. \ow), \ du
where the third term on the right-hand side refers to fixed u}. Using Eq. (B1) it follows that for fixed distance x and
temperature 7

a w
9x (M. m) (P py) —Ap) V2 — (—"i) L (Bup) —ap)~'72
du du au /uk

duy\[1 (dAp J""‘(") —3/2 (3#1".') _1/2]
Il )2 (2P d _ —_[Z£n wy __ =0, B2
+(a )[2 (a 2,)# G —bp) 3 2,“('/’(#;.) Ap) (B2)

Again the + or — sign is implicit in each square root. As in Appendix A certain terms in Eq. (B2) are singular in the limit
x — AH /2. Using Eq. (A2) and integrating by parts, we obtain

2 1 (C) i) — 02— () it~ o+ (&5)[- (32, {wmn— 2o (7)™

du h
—1y2 (O 1k ))“l “"‘x)d A2 {3Y VAN ]
— W) — Ao) (8#;. + [ du ) - 20 (3#§)(3,u;.)
ad
(aﬂh) ('p( w) Ap)—l/z] =0. (B3)
7
Using Egs. (13) and (17) we find
ax 1 %) —3/2 a My #a —~3/2 M;
.- "3 d py (Y a) — Ap) —(¢(m)—¢(m))—f d pa (W pen) — BP) ™" pon — ) (B4)
7 2 Jur du uy

« which is regular as x — AH /2. We note that the fourth term in Eq. (B3) reduces to — (9 u2/3 p)(¥{ u¥) — Ap)~'/?in the limit
x — AH /2 and that this cancels with the second term in the same limit. By comparing Eqgs. (A3) and (B3) we find that in the
limit x — AH /2 the coefficient of (J u4/3 ) is precisely A (OH /3 p),, . Equation (B3) then reduces to

(gﬁ) (?f) (Pl up) — Ap)™' + (:Z ) (aal:; "M)=o (BS)

which is equivalent to dH /du = 0. The derivative (9 ), /9 p) e TAY be evaluated by differentiating the boundary condition
Eq. (19):

a w _ al‘h_
3o A wE) = )= 2t — s — 26,) (2 = 1)-

The left-hand side is (/9 u)(Y( ) — ¥( ,uf,‘)“ —t (‘;‘uh) (/au, ) which reduces to
h = Fh ﬂ h h
—2(up — ) +2(py —p —ap”) O py/dp).

It follows that
(W:’) _ s —p—2, (B6)
du ap” — 2¢,, ’

where p” is the density at the wall. Equations (B4) and (B6) indicate that the first two terms in Eq. (B5) are finite but nonzero.
[We do not consider the special cases that arise when the numerator or denominator of Eq. (B6) vanishes.] Consequently, if
(@H /3 p3"), = 0, as occurs at a capillary critical point or spinodal [Eq. (B5)] implies that (3 3/3 1) — 0. This is equivalent
to a divergence of the midpoint compressibility or susceptibility.

Equation (B3) can be rewritten as '
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] M_u—2
( l“h(x)) (w( ) Ap)_.l/z___ (ﬂl;pwﬁ_lzewew) (w(/‘f) )_1/2_+_J1 (/‘l’h) Z)):”z
Rpp— [(w(m.(X))—Ap)‘”2 (¥l pi) — Ap)~'/?
Hy(x) — p — aplx) My —p—ap®

+ 2f”’;”(")dm(¢<uh) — a2 0¥ (& )‘}

(' —p—ap™)

ap” — 2¢,
where we have used the result (JAp/3d u) = 2( u!
hard sphere chemical potential so that w2

dui \du,

(P puy) — Ap)"”’] , (B7)

— p — ap™)and Eq. (A4). In the limit H — o (Ap — 0) 2 — p2, the bulk
—p — ap™ — 0, and the term in square brackets vanishes provided x remains

finite. The sum of the first two terms on the right-hand side can be shown to be equivalent to the right-hand side of Eq. (A6) of
Ref. 31. It is these terms which give rise to a divergence of (J 1z, (x)/dy) in the limit of complete wetting. For finite H the wetting
film is of finite thickness and this type of divergence does not occur. The divergence of (3 u/du) at the capillary critical point
is associated with the vanishing of the sum of the other terms in Eq. (B7).
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