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We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids
in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas
model. The approach reproduces all major features observed experimentally. We show that the simple
van der Waals picture of metastability fails due to the appearance of a complex free-energy landscape
with a large number of metastable states. In particular, hysteresis can occur both with and without an un-
derlying equilibrium transition, and thermodynamic consistency is not satisfied along the hysteresis loop.
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Capillary condensation of a gas inside a mesoporous
material refers to the rapid change to a liquidlike state
that occurs at a pressure (or chemical potential) lower than
the bulk saturation value [1,2]. This phenomenon is often
thought of as a shifted gas-liquid transition. Theoretical
studies of fluids confined in single pores of ideal geometry
have clarified the mechanism for such a shifted transition
and introduced the concept of capillary criticality that de-
scribes the fact that the liquid-vapor critical point in a pore
occurs at a lower temperature than in the bulk [2,3]. How-
ever, the situation in real mesoporous materials, such as
porous glasses and silica gels, that consist of an intercon-
nected network of pores of varying shape, curvature, and
size is not as clear. With the possible exception of fluids
in aerogels of very high porosity (95%—-98%) for which
a bona fide liquid-gas phase transition has been reported
with no sign of hysteresis [4], there is no direct evidence of
a first-order phase transition characterized, say, by a jump
in the adsorbed amount of fluid, nor of true criticality sig-
naled by density fluctuations on very large length scales.
The typical experimental observation is the presence of a
hysteresis loop in the sorption isotherms, a loop that is re-
producible and vanishes at a temperature lower than the
critical temperature of the bulk fluid [1,2,5]. The main
questions raised by this phenomenology are: Is there a
true phase transition associated with capillary condensa-
tion in disordered materials? What is the connection be-
tween this transition and the observed hysteresis? What
are the sources of hysteretic behavior? No satisfactory an-
swers have been provided so far.

In this Letter, we present a mean-field density functional
theory of a disordered lattice-gas model. This model,
introduced in a previous paper [6], incorporates the main
physical ingredients characterizing fluids in disordered
mesoporous media: preferential adsorption of one phase
of the fluid, connectivity of the pore space, geometric
and energetic disorder, exclusion effect due to the matrix.
The present approach allows us to study for the first
time the interplay between out-of-equilibrium (hystere-
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sis) and equilibrium behavior associated with capillary
condensation in a disordered matrix. We show that the
theory captures the main aspects of the phenomenology of
capillary condensation in real systems. The combination
of disorder and interconnectivity of the pore network
drastically alters the picture of capillary condensation built
upon the independent-pore model [1,2,7] or the simple van
der Waals description of metastability because it generates
a complex free-energy landscape characterized by a large
number of metastable states. In particular, we show that
(i) hysteresis can occur with or without an underlying
equilibrium phase transition, (ii) the disappearance of the
hysteresis loop is not associated with capillary criticality,
and (iii) thermodynamic consistency is not satisfied along
the hysteresis loop.
The model is described by the following Hamiltonian:

H = —WffZTi’fliTj’flj
€ij)

- WmfZ[TiTli(l =) + 7im;(1 = n)], (1)
(ij)

where 7; = 0,1 and (1 — n;) = 0,1 denote the fluid and
matrix occupancy variables, respectively, and the sums run
over distinct pairs of nearest-neighbor (n.n.) sites. Al-
though different disordered microstructures of the matrix
may be considered [8], we choose here the simplest non-
trivial case, a random matrix. The model is thus specified
by two parameters, the average matrix density p,, that fixes
the porosity (equal to 1 — p,,) and the ratio of the matrix-
fluid over the fluid-fluid interactions, y = wy;/wys, that
determines the “wettability.” In the following we con-
sider only attractive matrix-fluid interactions [9] and we
set p, = 0.25. Most of the results are illustrated for a
bece lattice with linear size L = 48. When necessary, e.g.,
to check the existence of phase transitions, we have per-
formed a finite-size analysis after averaging over several

hundreds of matrix configurations.
The mean-field density functional theory (or equiva-
lently for a lattice, the local mean-field theory) starts with
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the formulation of a free-energy functional of the fluid den-
sity field for a given matrix realization {n;}:

Flipi}) = é

- Wit Z PiP;
(ij)
— Wmf Z[Pi(l =) + p;(1 = n)], )
(ij)
where B = 1/(kgT) and p; = (n;7;) is the average fluid
density at site i. (The overall fluid density is then p, =
(1/N)Y; pi, where N = 2L3 is the total number of
sites.) For a given chemical potential x, minimization
of Q({p:}) = F({p:}) — w2 pi with respect to the p;’s
provides the grand potential () of the adsorbed fluid. The
corresponding equations for the fluid density on each
site are

Z[Pilnpi + (i — pi)In(n; — pi)]

pPi =
ni
1+ exp{—Blu + X weepj + wime(1 — p)]}
3)

where the sum is over all n.n. of site i.

The above set of nonlinear coupled equations has been
solved by means of a simple iteration algorithm according
to two different protocols: (1) to mimic the experimental
procedure, we follow continuously the solutions under
small variations of the chemical potential w (typically,
Aw/wg = 1073) and (2) to search more exhaustively
the solution of Eq. (3) for a given u, we repeat the itera-
tion procedure with a large number of initial conditions
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FIG. 1. Theoretical sorption isotherms for y = 1.5 at T* =
kgT /wg = 0.6,0.8,0.95, 1.1, and 1.25 (from left to right). The
mean-field bulk critical point is at 7% = 2.
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(typically, 10%) corresponding to uniform fillings of the

lattice at different overall fluid densities (i.e., p ;O) = p(o)).

We show in Fig. 1 typical isotherms obtained by in-
creasing continuously w from —oo (adsorption branch)
and decreasing continuously w from -+ (desorption
branch). They look qualitatively similar to the experi-
mental isotherms of fluids adsorbed in porous glasses and
silica gels [1,2,5], with an asymmetric hysteresis loop
characterized by a steep desorption branch and a smoothly
increasing adsorption branch [9].

An important test for the relevance of any model of cap-
illary condensation in disordered porous materials is the
shape of the so-called “scanning curves,” i.e., curves that
are obtained by reversing the sign of the evolution of u
at different points along the adsorption or the desorption
branches [7]. It has been stressed that these curves are not
properly reproduced by the widely used independent-pore
model [1,2,7]. Anillustration of the scanning curves on ad-
sorption and desorption obtained within the present theory
is shown in Fig. 2. They look strikingly similar to those
observed experimentally, with an upward curvature on ad-
sorption and a downward curvature on desorption. When
varying the chemical potential up and down along different
paths we find a hierarchy of inner scanning curves, in close
analogy to the hysteretic behavior displayed by a variety of
systems [10—12]. Note that in contrast with network per-
colation models [12], we do not presuppose any rules for
the evolution of the fluid configurations in the pore space
and we need not introduce a specific description of the ge-
ometry at the junctions between pores.

The above results confirm that the present approach re-
produces qualitatively the phenomenology associated with
capillary condensation in porous glasses and silica gels.
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FIG. 2. Theoretical desorption (a) and adsorption (b) scanning
curves (open circles) for y = 1.5 and T* = 0.8.
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This indicates that, despite its simplicity, our model Ham-
iltonian does capture the main physical features of fluids
adsorbed in real mesoporous systems and that equilibration
via thermally activated processes, processes that are absent
in the mean-field description, does not substantially mod-
ify the picture. Indeed, the implicit assumption behind the
direct comparison of the theoretical sorption curves with
the experimental ones is that the system does not have time
to equilibrate at constant 7 and u and that adsorption/
desorption only proceeds under the influence of chemical-
potential changes. (This assumption may break down
when the perturbation induced by the matrix is small as
in very dilute aerogels.)

Hysteresis and scanning curves are manifestations of
out-of-equilibrium behavior. This is well understood for
instance in systems such as athermal martensites and
low-T ferromagnetic materials whose transformations
are driven by an external field; these systems are well
described by the 7 = 0 limit of models with quenched
disorder [10] (models somewhat related to the lattice gas
studied here). On the other hand, in the case of capillary
condensation one often assumes that hysteresis is also
the signature of a true equilibrium phase transition with
two possible metastable states, gas and liquid, as in the
standard van der Waals loop for bulk fluids and fluids
confined in a single pore. However, this simple van der
Waals picture fails for the present system because this
latter has (in the region where capillary condensation
occurs) a complex free-energy landscape with a large
number of metastable states, as can be seen from studying
the solutions of the local mean-field equation, Eq. (3).
For each T, u and each matrix realization, we have in-
vestigated 50 to 100 different initial conditions to Eq. (3).
When plotted as in Fig. 3 on the py — u diagram (for
a typical matrix configuration of the L = 48 system),
all solutions fall inside the major hysteresis loop that is
found to coincide with the curves of extremal solutions
obtained from an initially empty lattice (lower branch)
and an initially filled lattice (upper branch).

The most significant finding of our study is that hystere-
sis occurs with as well as without an underlying equilib-
rium phase transition, the existence of this latter depending
on the strength of the perturbation induced by the matrix.
For a given matrix configuration we have computed the
(approximate) equilibrium isotherms by taking at each u
the solution of the mean-field equations that gives the low-
est (). (We have also considered a weighted mean-field
approach as in Ref. [13]: in all the cases studied here,
the isotherms are virtually indistinguishable from that
obtained by the first method.) For a large matrix-fluid
interaction, e.g., for y = 1.5, there is no equilibrium phase
transition, as can be seen in Fig. 3a where the equilibrium
isotherm at 7* = 0.8 is perfectly smooth (it stays so
at lower temperatures). On the other hand, in Fig. 3b,
the same isotherm for y = 1 is discontinuous. This
absence or presence of a true transition is supported by
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FIG. 3. Multiplicity of local mean-field solutions obtained

from solving Eq. (3) at 7* = 0.8 with many different initial
conditions for each value of w: (a)y =15, (b)y =1.
The solid lines represent the equilibrium curves obtained by
connecting the states of lowest grand potential.

the finite-size scaling analysis presented in Fig. 4. For
y = L.5 the average equilibrium isotherm does not change
with L whereas it becomes steeper as L increases for
y = 1. In the latter case, the data can be fitted to the
scaling form p; = atanh{BL[u — u,(L)]} + b with
6 = 1.5; indeed, in such an asymmetric model, the expo-
nent 6 characterizing a first-order transition in dimension
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FIG. 4. Equilibrium isotherms for 7* = 0.8 and L = 8,10, 12,
and 16: (a) y = 1.5, (b) y = 1. An average over 125 (L = 16)
to 400 (L = 8) matrix realizations has been performed. In (b),
the solid lines indicate the fit discussed in the text.
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d is d/2 instead of d because u at the transition in each
realization fluctuates around its average value u,(L) with
width du ~ L~9/2. (These results will be discussed in
detail elsewhere [14].)

When the capillary critical point exists, it occurs at a
T significantly below the temperature Thys at which hys-
teresis first appears. This result is at odds with the behavior
predicted for a fluid confined in a single pore [2,3] and is
a consequence of the quenched disorder; on the other
hand, the fact that true capillary criticality may still occur
in disordered porous media is at odds with the prediction
based on the independent-pore model [1,2,7] and results
from the connectivity of the void space accessible to the
adsorbed fluid.

The breakdown of the simple van der Waals picture of
metastability in the present problem shows up distinctly
when considering thermodynamic consistency along the
sorption isotherms.  Since the theory provides both
the grand potential and the fluid density, one can study
the validity of the Gibbs adsorption equation, (9€)/
dm)r = —Npy, along particular isotherms. As shown
in Figs. 5a, and 5b, the equation is not satisfied, neither
along the adsorption isotherm nor along the desorption
one. This results from the fact that the system often jumps
from one grand potential minimum to another along these
two isotherms and then loses thermodynamic consistency.
An important consequence is that the thermodynamic
integration procedure used for building equilibrium phase
diagrams [2] is no longer valid for this model. For
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FIG. 5. Check of thermodynamic consistency [(0Q/du)r =

—Npy] along the adsorption (a), desorption (b), and equilib-
rium (c) isotherms (y = 1.5, T* = 0.8). Filled symbols: aver-
age fluid density obtained from the solution of Eq. (3). Open
symbols: quantity obtained by differentiating the corresponding
grand potentials.
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instance, in the case y = 1.5, this latter procedure predicts
a capillary phase diagram whereas, as already discussed,
no equilibrium phase transition takes place. We believe
this may also be true more generally for other models
of fluids in disordered porous materials. Note that the
Gibbs adsorption equation is obeyed along the equilibrium
isotherm, as illustrated in Fig. Sc.

As a final remark, we mention that the mean-field
density functional theory also predicts the occurrence
of out-of-equilibrium phase transitions similar to the
macroscopic avalanches observed in low-7 ferromagnetic
materials [10] (see the desorption isotherm in Fig. 1
for T* = 0.6). Whether or not these transitions can
be observed in capillary condensation of fluids in real
mesoporous materials depends on the efficiency of the
thermally activated processes.
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