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We present a lattice model of water confined in a hydrophobic nanotube. Using analytical methods and computer
simulation, we find conditions where filled and empty tubes can be degenerate in equilibrium. We further
find that flow of water molecules through a filled tube with appropriate but simple stochastic rules can be
interpreted as water conduction in a pulse-like fashion. These two results are consistent with an atomistic
molecular dynamics study of this system [Hummer et al.Nature2001, 414, 188-190]. Finally, we analyze
transitions between the filled and the empty tube, and find that density fluctuations at the entrances to the
tube play the rate-determining role in this process.

I. Introduction

The problem of water confinement in pores on the nanometer
scale is of importance to chemistry and biology1-6 and has
recently attracted attention in theoretical studies.7-11 Of specific
interest to us in this paper is the molecular dynamics study of
water penetration of a nanotube immersed in water.7 This work
by Hummer and co-workers reported that with reasonable
choices of intermolecular potential parameters, the free energy
of a full hydrophobic nanotube can be very close to that of the
empty tube. As such, one can view the filling and emptying as
collective phenomena, perhaps akin to a phase transition.
Hummer and co-workers also reported that water conduction
through a filled solvated hydrophobic nanotube occurs in bursts
persisting for about 1 ns each. One may wonder if these
behaviors are generic liquid-state phenomena or specific to liquid
water. To address this question, we have studied a lattice gas
model. We demonstrate numerically and analytically that the
behaviors reported in ref 7 can be understood from the properties
of this simplest and most generic coarse grained model of a
dense fluid near liquid-vapor phase equilibrium.

We use a coarse-grained lattice gas model on a cubic grid
with Ising variablessi ) - 1 or 1 (orni ) 0 or 1), coinciding
with cell i containing vapor or liquid, respectively.12 The energy
of the pure liquid in this model is

where the second summation is over nearest neighbor cellsi
and j, and the fieldh is, in effect, the chemical potential. We
are interested in a liquid that is cold (i.e., well below its critical
temperature), and at a low pressure (i.e., close to liquid-vapor
phase equilibrium). Water at standard conditions is such a liquid.
More details about watersconditions in addition to being cold
and at low pressuresare ignored by this description. Being a
cold liquid, the interaction parameterJ can be associated with
the surface tensionγ of the liquid viaγ ) 2J/l2, wherel is the
lattice spacing. Being close to phase equilibrium means thath
is very small compared to the thermal energy,kBT.

Since our goal is to study the behavior of the confined liquid,
we choose a set of lattice cells that are not accessible to the

liquid, corresponding to the wall of the nanotube. The chosen
confinement geometry is illustrated in Figure 1. As a result of
this choice, the liquid inside the tube is a one-dimensional
system. This is consistent with the atomistic simulation reported
in ref 7, where the translational motion within a hydrophobic
tube was also essentially one-dimensional.

The interaction energy between the tube and the liquid is

where the summation includes only lattice cells next to the tube
wall, and ε characterizes the strength of the interaction. The
sign convention is such that the tube repels the liquid ifε > 0.
We are interested in the number of filled cells inside the tube,
which is given by

To identify a reasonable strength of the tube-liquid interac-
tion parameterε, we contrast the energies of two specific
configurations. In the first, the tube is completely empty, but
all the sites surrounding the tube are filled (i.e.,si ) 1 for all i
outside the tube andsi ) - 1 for cells inside the tube). In the* Corresponding author.

E({si}) ) - h ∑
i

si - J ∑
i,j(nn)

sisj (1)

Figure 1. This arrangement of 4× 5 cells models the walls of a tube
of lengthL ) 5. The inside of the tube is accessible to the fluid, and
the numberN of liquid cells inside the tube can vary between 0 andL.

EI({si}) ) ε ∑
i(nn tube)

si (2)
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(si + 1)/2 (3)
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second, both the tube and its surroundings remain completely
filled (i.e., si ) 1 for all i). The difference in energy between
these states is

whereL is the number of cells (and therefore the reduced length)
of the tube. The two states are degenerate whenε ) J/(2L).
This degeneracy, we shall see, is important to understanding
the behavior of the atomistic simulation described in ref 7.
Notice that the value ofε needed to ensure degeneracy decreases
with increasingL.

In the next section, we present results for the equilibrium
statistics of the lattice model. With simulation, we find a free
energy as a function of the tube occupation number like that
found in the atomistic simulation. We analyze the effects of
fluctuations on this free energy function, and we show that these
effects are easily treated analytically. Then we turn to the
dynamics in Section 3. Here we consider two phenomena
separately: (1) the filling and emptying of the tube, and (2)
water conduction through the filled tube. These two phenomena
are characterized by fluctuations on different length scales. The
first is a large length scale dynamics not yet studied by atomistic
simulation. The second is a small length scale dynamics that
has been studied in ref 7. To study the first, we employ a
combination of single spin flip and nearest neighbor spin
exchange (Kawasaki) stochastic dynamics models,13 allowing
for fluctuations on the length scale of the lattice spacing. To
study the second case, water motion through a filled tube, we
consider a random walk model based on the diffusive motion
of water molecules inside the tube that maintain hydrogen
bonding with their adjacent neighbors.

II. Equilibrium Statistics

In their molecular dynamics simulation, Hummer and co-
workers found that a nanotube immersed in a bath of water can
have two stable states, corresponding to a filled and an empty
tube. In this section, we study whether our coarse-grained model
is able to capture this effect. We use a Monte Carlo computer
simulation algorithm, where a change of a single cell’s occupa-
tion number is accepted according to the Metropolis acceptance
criterion.14

Results for a system consisting of 103 cells that contains a
tube of lengthL ) 5 are given in Figure 2. Shown are the free
energy curves for the water occupancy numberN at different
temperatures. The tube-water interaction was chosen to be
ε ) J/(2L), and the external fieldh was set to zero. As
anticipated in the Introduction, this choice ofε causes the filled
(N ) L) and the empty (N ) 0) state to be degenerate.

When the system is cold, the free energy exhibits a maximum
at N ) 4 of height approximately 2.2kBT. This behavior
coincides qualitatively with the bimodal water occupancy found
by Hummer et al.7 for an atomistic simulation. Quantitative
differences could well be due to statistical uncertainties in the
results of ref 7. Further, the empty and full states of the bistable
atomistic model studied in ref 7 are not exactly degenerate.15

From our calculations we see that the height of this free
energy extremum decreases with increasing temperature, until
eventually the free energy curve assumes a convex shape with
a broad minimum at an intermediate value of the occupation
number N. The shape of the free energy curves (or the
probability distribution functionsP(N)) can be used to classify

the equilibrium behavior of the system as a function of the
governing parameters, as shown in Figure 3.

The maximum at intermediateN in the low-temperature free
energy is indicative of two stable statessempty and full. One
should not, however, confuse this maximum with the dynamical
bottleneck that separates these two states. That bottleneck
involves a different variable thanN, as we shall show in Section
III.

The low-temperature bimodal behavior is not correctly
captured by the simplest of mean field treatments. Such a
treatment corresponds to solving the coupled equations

wheremi ) 〈si〉 is the equilibrium average of theith spin, under
the boundary conditionm0 ) mL+1 ) 1. This equation can be
solved by iteration, starting with an initial estimate for themi.
The corresponding probability forN, P(N), can then be
constructed frompi((1) ) (1 ( mi)/2, the probability that the

E(filled) - E(empty)) - 4J + 8Lε (4)

Figure 2. Free energy functions in units ofkBT (i.e., -log Z) for the
water occupancy inside a tube of lengthL ) 5 at different temperatures.
The solid lines connect the simulation results; the dashed lines connect
the results calculated using the single pair of interfaces approximation.
The tube-water interaction is given byε ) J/(2L) in all cases. With
lattice spacingl ) 3.7 Å, âJ ) 1.2 coincides with water at room
temperature, since the liquid-vapor surface tension isγ ) 72 mN/m.

Figure 3. Behavior of the occupation number distribution function
for a tube of lengthL ) 5 at coexistence (h ) 0): If the probability
distribution P(N) has only one maximum atN0, the system is called
“empty” if N0 e 1, “full” if N0 g 4, and “entropic” otherwise. The
latter corresponds to a state where entropic effects, which favor the
half-filled tube, dominate the equilibrium behavior. If the distribution
function has two distinct maxima, the system is classified as bistable.
The dashed line shows where the two peaks in this case have equal
heights. For low temperatures, this line approaches the limitε ) J/(2L)
(thin solid line).

mi ) tanh[â(h - 4ε + Jmi-1 + Jmi+1)] (5)
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ith cell is liquid or vapor, respectively. In particular,

Here, δ is the Kronecker symbol. The resulting probability
distributions together with simulation results are shown in Figure
4 for three different values of the interaction parameterε. The
mean field prediction coincides closely with the simulation result
far away from the bimodal behavior (top panel). Approaching
the bimodal behavior withε ) J/(2L), however, we see that
the mean field treatment fails to properly predict the existence
of two free energy minima. Rather, it predicts one of two
solutions to the mean field equations, depending upon the initial
value of themi used to solve eq 5 by iteration. In other words,
mean field theory predicts coexistence of two different phases.
For the one-dimensional finite system, therefore, accounting for
fluctuations is important.

We can compute the effects of fluctuations in an approximate
but accurate way by assuming the density field outside to be
constant, i.e.,si ) 1 for all i outside the tube. The only remaining
degrees of freedom are then the states of the cells inside the
tube, which can assume 2L different configurations. The partition
function for those degrees of freedom is

For any modest sizeL, all equilibrium quantities can therefore
be calculated by simple enumeration.

More physical insight can be obtained by noting that the
tube-water interaction (together with a possibly nonzero
external fieldh) acts like a chemical potential of magnitude
µ ) 8ε - 2h, which is the energetic cost for changing an empty
cell inside the tube into a filled one. The second contribution
to the energy comes from the formation of interfaces. The
completely filled tube does not have any liquid-vapor inter-
faces. If an inner celli changes its state, there will be a pair of
interfaces along the tube axis, the energetic cost of which is
4J. If another cellj empties out, there will be either no change
in the interfacial energy ifj is next toi, or an additional energy
cost of 4J otherwise. We can estimate the free energy by

assuming that configurations with more than one pair of
interfaces do not contribute significantly to the partition function.
In this approximation, only those configurations are considered
where all empty cells (if any) are next to each other. This
procedure leads to the expression

whereδL,N is the Kronecker symbol, andΩ(L, N) is the number
of configurations withN filled cells in a tube of lengthL and
no more than one interface pair:

Results obtained in this approximation are compared to simula-
tion data in Figure 2. It shows very good agreement for low
and intermediate temperatures, while for high temperatures the
assumptions of vanishing fluctuations outside the tube and
contributions from single interface configurations only lose their
validity. This interpretation explains both the location of the
free energy barrier atN ) L - 1 and the almost linear shape
for N < L at cold temperatures.16 In view of this analysis, the
finding in ref 7 that water can and does fill a hydrophobic tube
is not surprising.

III. Dynamics

Since this simple lattice model can reproduce the bimodal
behavior of the more detailed atomistic simulation, one might
hope to go one step further and investigate the dynamics of
this system.

A. Filling and Emptying of the Tube. When a completely
filled tube empties (or vice versa), the density field changes
over a length scale given by the tube volume. It should be
therefore possible to study this process with our model, where
the minimum length scale for density fluctuations is given by
the lattice spacing.

We begin with the definition of appropriate dynamical rules
for these fluctuations. A familiar choice for the time evolution
of an Ising system is the nearest-neighbor spin exchange
(Kawasaki) dynamics:13 in every Monte Carlo step, a pair of
neighboring cells is chosen at random. The energy change that
would occur if the two spins were switched is calculated. This
trial move is accepted according to the Metropolis acceptance
criterion.

This kind of dynamics conserves the number of filled and
empty cells in the system, and hence samples a different
ensemble than considered in Section 2. We therefore partition
the system into two parts: an inner part of cubic shape that
contains the tube and its surroundings, and an outer shell. We
are interested in the dynamics only in the former, hence we
employ the conservative Kawasaki dynamics there. In the
surrounding shell we use the single spin flip dynamics that was
used in the previous section. This part of the system acts as a
bath for liquid and vapor cells, which can diffuse across the
boundary into the core region. This partition of the system allows
us to investigate the movements of individual cells, while still
sampling the grand canonical ensemble. During the simulation,
one of the two possible trial moves is chosen with equal
probability at every time step.

With these dynamical rules, the emptying of the tube is
naturally related to rare density fluctuations outside the tube.
Consider a completely filled tube, i.e., a configuration whereN
) L. Since the tube lies completely within the core region of
the system where spin exchange dynamics is used, the occupa-

Figure 4. Probability distributions for the number of liquid cells inside
the tube for three different values of the interaction parameterε as
obtained from simulation and mean field treatment. The latter depends
on the initial conditions under which the mean field equations (5) are
solved. In case 1, the initial conditions weremi ) 1, andmi ) - 1 in
case 2. The remaining parameters wereh ) 0 andâJ ) 1.2.

F(N) ≈ µN + 4J(1 - δL,N) - kBT ln Ω(L, N) (8)

Ω(L, N) ) {N + 1 if N < L
1 if N ) L

(9)

P(n) ) ∑
s1)(1

‚‚‚ ∑
sL)(1

δN({si}),n ∏
i)1

L

pi(si) (6)

Z ) ∑
s1)(1

‚‚‚ ∑
sL)(1

exp[- â((4ε - h) ∑
i)1

L

si - J ∑
i)1

L-1

sisi+1

- Js1 - JsL)] (7)
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tion numberN can change only by an exchange of a water cell
at one end of the tube with a vapor cell right in front of it.
Thus, a low-density fluctuation at the mouth of the tube is
required for a filled cell to leave the tube. Due to the low
concentration of vapor cells in the bulk liquid, this constitutes
a rare event in the time evolution of the system.

The analysis is different for the reverse process, the filling
of an empty tube. This asymmetry in the analysis originates
from the fact that the spin field outside the tube is strongly
biased toward the liquid phase. Consider an empty tube (N )
0) immersed in a constant field of water cells. In this case, the
filling of the tube, i.e., the exchange of an empty cell at one
tube end with the water cell outside, could occur at any time.
However, this process is energetically costly; the energy increase
is ∆E ) 8ε + 12J. A rare energy fluctuation is therefore required
for this event.

The importance of the density field at the tube openings can
be illustrated by examining the free energy as a function of
two coordinates: the number of water cells inside the tube, and
the number of water cells at the tube mouths. The latter can
take values between 0 and 2. Such a free energy surface is
shown in Figure 5. Configurations that have one vapor cell at
the tube mouth have a free energy on the order of 10kBT higher
than those where the immediate environment of the tube is
simply the bulk liquid. Due to the nature of the dynamics of
the system, these configuration form a bottleneck in the
emptying and filling of the tube. The pathway that leads from
a filled to an empty tube is shown in Figure 5: one of the cells
in front of the tube has to become vapor before a water cell
can leave the tube. This corresponds to a large increase in the
free energy, and is therefore a rare event.

Our lattice model demonstrates that a low-density fluctuation
in front of the tube is necessary for the tube to empty. But by
limiting these fluctuations to length scalesl or larger, the model
will likely overestimate the free energetic cost for attaining this
fluctuation. The kinetics for the atomistic model10 is in qualita-
tive accord with our demonstration. Namely, ref 10 reports that
the number of molecules inside the tube,N, is by itself not
sufficient to characterize the transition state between empty and
full states. The additional variable employed in ref 10 to
characterize the transition state ensemble in effect controls
density fluctuations directly in front of the tube.

B. Conduction of Water Molecules. Hummer and co-
workers7 investigated the flow of water molecules through a
nanotube, with conditions chosen such that the tube is always
completely filled. A water molecule is said to have crossed the
tube at timeti if it leaves the tube at that time, provided that it

had entered the tube on the opposite end at an earlier time. As
we shall see below, many of the seemingly interesting phe-
nomena arise simply from this definition. Processing their data
with a triangular filter, they find that the water flow shows sharp
peaks as a function of time. These maxima are interpreted as
“bursts” of water conduction, perhaps caused by collective
fluctuations outside the tube. In this section, we show that a
similar flow pattern can be obtained by a simple random walk
model of water molecules inside the tube.

As before, we consider a tube on a discrete lattice that isL
cells long. However, since the tube is always completely filled,
we cannot use dynamical rules that are based on density
fluctuations on the order of the lattice spacingl. Instead, we
specify a configuration by the side on which each of theL water
molecules had entered the tube. Since water molecules cannot
pass each other inside the tube, there are onlyL + 1 possible
configurations:

0. All L water molecules entered the tube from the left side.
1. The leftL - 1 water molecules entered from the left side,

and the rightmost water molecule entered from the right
side.

2. The leftL - 2 water molecules entered from the left side,
and the rightmost two water molecules entered from the
right side.

l
L - 1. The leftmost water molecule entered from the left

side, and the rightL - 1 water molecules entered from
the right side.

L. All L water molecules entered the tube from the right side.
Moving from configurationi to i + 1 corresponds to a shift

of all water molecules inside the tube by one lattice spacing to
the left, with a new water molecule entering on the right-hand
side. Similarly, a movei f i - 1 is a collective translation to
the right. These moves are consistent with motion of hydrogen-
bonded water chains.

Our model of water conduction through the tube is random
walk between theseL + 1 configurations. Starting from a
configurationi, a new configurationi ( 1 is assigned with equal
probability. Such a move corresponds to the one-dimensional
diffusive motion of the water molecules inside the tube, and
occurs on a time scaleτ which remains to be established.

The set of possible moves is different for the first and the
last of the listed configurations. Possible moves from config-
uration 0 are 0f 0 or 0 f 1. The former corresponds to the
leaving of the rightmost water molecule, which had entered from
the left side, on the right-hand side of the tube, thus contributing
to the water conduction through the tube. Similarly, if the system
is in configurationL, the two possible moves areL f L - 1
andL f L, and the latter corresponds to the conduction of a
water molecule from the right to the left side of the tube.

We simulated the random walk model for a tube of lengthL
) 5. The time scaleτ can be estimated by comparing the total
number of conducted water molecules as observed by Hummer
and co-workers7 with the number of crossing events in our
model. An average of 17 water molecules per nanosecond is
obtained by lettingτ ≈ 10 ps.

Following the same procedure as in ref 7, we process the
time series of crossing events by a triangular filter of widthw
at half-maximum. Figure 6 shows the simulation result of a 60
ns long trajectory, to which filters of various widthsw were
applied. The top panel corresponds to the filter used by Hummer
and co-workers, and the water flow as obtained from our model
indeed shows peaks of comparable width and magnitude as
found in the atomistic simulation. Here, these “bursts” follow

Figure 5. The free energy as a function of the number of water cells
inside the tube and at the tube openings, obtained for a tube of length
L ) 5 andh ) 0, âJ ) 1.2, âε ) 0.12. The arrows show the typical
pathway leading from a filled to an empty tube. Before a water cell
can leave the tube, a vapor cell has to appear at the tube mouth. This
is a dynamically rare event, and corresponds to a high free energy barrier
in the emptying process.
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only from the diffusive random movement of the chain of water
molecules inside the tube.

The middle and bottom panel of Figure 6 illustrate that the
appearance of “bursts” depends strongly on the data processing.
With decreasing filter widthw, the curves become steeper and
more rugged. Width, magnitude, and location of the peaks
change asw is varied. In particular, thew ) 1 ns filter used in
ref 7 is very wide compared to the time scale of conduction
events, so that flows in opposite directions can contribute to
the same peak in the crossing number. This fact is illustrated
by the dashed line in the top panel of Figure 6, which shows
the net flux through the tube. It vanishes whenever the flow
changes its direction.

As this work was being submitted, a paper appeared11 with
an analysis of the apparent bursts through a nanotube that is
equivalent to our analysis. Curiously, this recent publication11

focuses upon the success of the interpretation rather than its
implications. As the “bursts” arise from a simple random walk,
we see that they are a mere consequence of the definition of a
conduction event: if a water molecule was conducted from the
left to the right end of the tube, the probability of another
molecule being conducted in the same direction in the next time
step is one-half. But a conduction event in the opposite direction
cannot occur for anotherL + 1 time steps. This accumulation
of conduction events of the same directionality lead to the
seemingly burst-like flow of water molecules through the tube.

IV. Conclusion

A simple coarse-grained model of a nanotube immersed in
water exhibits two principal phenomena observed in the
atomistic molecular dynamics study by Hummer and co-work-
ers.7 With a properly chosen strength of the tube-water inter-
action, the filled and the empty tube can be energetically de-
generate or nearly so, corresponding to two separate minima in
the free energy distribution function. This effect is understood
in terms of the energetic cost of creating a liquid-vapor inter-
face along the tube axis, and the corresponding increase in
entropy.

The appearance of a density fluctuation at the tube mouth is
necessary to facilitate the emptying of a filled tube, and this
facilitation is associated with a large entropic barrier. The filling
of an empty tube, however, is associated with a large energetic
barrier. Unlike the large length scale emptying and filling, the
transport of water through a full tube does not involve largely
activated events. Rather, its behavior can be understood in terms
of a simple diffusive motion of the whole water column inside
the tube.

These results were obtained with the simplest possible
description of a cold liquid. Other than our choice of random
walk steps that maintain a hydrogen-bonded chain inside a filled
tube, none of our results depend on specific small length scale
details of liquid water.
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