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A Coarse-Grained Model of Water Confined in a Hydrophobic Tube
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We present a lattice model of water confined in a hydrophobic nanotube. Using analytical methods and computer
simulation, we find conditions where filled and empty tubes can be degenerate in equilibrium. We further
find that flow of water molecules through a filled tube with appropriate but simple stochastic rules can be
interpreted as water conduction in a pulse-like fashion. These two results are consistent with an atomistic
molecular dynamics study of this system [Hummer efNature 2001, 414, 188—-190]. Finally, we analyze
transitions between the filled and the empty tube, and find that density fluctuations at the entrances to the
tube play the rate-determining role in this process.

|. Introduction

The problem of water confinement in pores on the nanometer
scale is of importance to chemistry and bioldégyand has :
recently attracted attention in theoretical studigd.Of specific |
interest to us in this paper is the molecular dynamics study of i ! i
water penetration of a nanotube immersed in waféris work i I
by Hummer and co-workers reported that with reasonable i :
choices of intermolecular potential parameters, the free energy !
of a full hydrophobic nanotube can be very close to that of the I
empty tube. As such, one can view the filling and emptying as I !
collective phenomena, perhaps akin to a phase transition. 1
Hummer and co-workers also reported that water conduction i
through a filled solvated hydrophobic nanotube occurs in bursts
persisting for about 1 ns each. One may wonder if these
behaviors are generic liquid-state phenomena or specific to liquid rigyre 1. This arrangement of 4 5 cells models the walls of a tube
water. To address this question, we have studied a lattice gasof lengthL = 5. The inside of the tube is accessible to the fluid, and
model. We demonstrate numerically and analytically that the the numbeN of liquid cells inside the tube can vary between 0 &nd
behaviors reported in ref 7 can be understood from the properties ]
of this simplest and most generic coarse grained model of aliquid, corresponding to the wall of the nanotube. The chosen

dense fluid near liquigtvapor phase equilibrium. confinement geometry is illustrated in Figure 1. As a result of
We use a coarse-grained lattice gas model on a cubic gridthis choice, the liquid inside the tube is a one-dimensional
with Ising variabless = — 1 or 1 (orn; = 0 or 1), coinciding system. This is consistent with the atomistic simulation reported
with celli containing vapor or liquid, respectively The energy in ref 7, where the trgnslatlonal'motlop within a hydrophobic
of the pure liquid in this model is tube was also essentially one-dimensional.
The interaction energy between the tube and the liquid is
E{sh=-h)s-J3 > ss 1)
' M) Edsh=¢ > s 2

. . . . i(nn tube)
where the second summation is over nearest neighbor icells

andj, and the fieldh is, in effect, the chemical potential. We  where the summation includes only lattice cells next to the tube

are interested in a liquid that is cold (i.e., well below its critical wall, and e characterizes the strength of the interaction. The

temperature), and at a low pressure (i.e., close to liguapor sign convention is such that the tube repels the liquidf 0.

phase equilibrium). Water at standard conditions is such a liquid. We are interested in the number of filled cells inside the tube,

More details about waterconditions in addition to being cold  which is given by

and at low pressureare ignored by this description. Being a

cold liquid, the interaction paramet@rcan be associated with N= Z (s +1)2 3)

the surface tensiop of the liquid viay = 2J/12, wherel is the i(inside tube)

lattice spacing. Being close to phase equilibrium meansthat

is very small compared to the thermal enerigyT. To identify a reasonable strength of the tuttiguid interac-
Since our goal is to study the behavior of the confined liquid, tion parametere, we contrast the energies of two specific

we choose a set of lattice cells that are not accessible to theconfigurations. In the first, the tube is completely empty, but

all the sites surrounding the tube are filled (ig+ 1 for all i

* Corresponding author. outside the tube ang = — 1 for cells inside the tube). In the
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second, both the tube and its surroundings remain completely
filled (i.e., s = 1 for all i). The difference in energy between
these states is

glliled) _ gempy) — _ 43 4 gL 4)

whereL is the number of cells (and therefore the reduced length)
of the tube. The two states are degenerate whenJ/(2L).
This degeneracy, we shall see, is important to understanding
the behavior of the atomistic simulation described in ref 7.
Notice that the value of needed to ensure degeneracy decreases
with increasingL.

In the next section, we present results for the equilibrium
statistics of the lattice model. With simulation, we find a free Number of filled tube cells N
energy as a function of the tube occupation number like that Figure 2. Free energy functions in units &T (i.e., —log Z) for the
found in the atomistic simulation. We analyze the effects of Water occupancy inside a tube of lengtk 5 at different temperatures.
fluctuations on this free energy function, and we show that these The solid lines connect the simulation results; the dashed lines connect
effects are easily treated analvtically. Then we turn to the the results calcu!ated us'lng'the'smgle pair of |nte_rfaces approximation.

L y, y y . The tube-water interaction is given by = J/(2L) in all cases. With

dynamics in Section 3. Here we consider two phenomena |gttice spacing = 3.7 A, fJ = 1.2 coincides with water at room
separately: (1) the filling and emptying of the tube, and (2) temperature, since the liquicdvapor surface tension is = 72 mN/m.
water conduction through the filled tube. These two phenomena
are characterized by fluctuations on different length scales. The 02 '
firstis a large length scale dynamics not yet studied by atomistic
simulation. The second is a small length scale dynamics that
has been studied in ref 7. To study the first, we employ a
combination of single spin flip and nearest neighbor spin
exchange (Kawasaki) stochastic dynamics motfetdlowing
for fluctuations on the length scale of the lattice spacing. To
study the second case, water motion through a filled tube, we
consider a random walk model based on the diffusive motion
of water molecules inside the tube that maintain hydrogen
bonding with their adjacent neighbors.

Free Energy F(N) / (kgT)

Full

0.4 0.8 1.2
II. Equilibrium Statistics T/ (kgT)

. . . . Figure 3. Behavior of the occupation number distribution function
In their molecular dynamics simulation, Hummer and co- for a tube of lengtiL = 5 at coexistenceh(= 0): If the probability

workers found that a nanotube immersed in a bath of water candistribution P(N) has only one maximum afy, the system is called
have two stable states, corresponding to a filled and an empty“empty” if No < 1, “full” if No = 4, and “entropic” otherwise. The
tube. In this section, we study whether our coarse-grained modellatter corresponds to a state where entropic effects, which favor the
s able tocapture tis efect W use a Monte Carl computer 1A L0, St 1 b ner, | e devbuien,
§|mulat|on algorlthm, where a change of a single C.e”’s OCCUPA” The gashed line shows where tHe two peaks in this case have equal
tion number is accepted according to the Metropolis acceptanceneights. For low temperatures, this line approaches the dieaitl/(2L)
criterion14 (thin solid line).

Results for a system consisting of31€ells that contains a
tube of lengthL = 5 are given in Figure 2. Shown are the free
energy curves for the water occupancy numieait different
temperatures. The tubsvater interaction was chosen to be
e = J/(2L), and the external fielch was set to zero. As
anticipated in the Introduction, this choiceetauses the filled
(N = L) and the emptyN = 0) state to be degenerate.

When the system is cold, the free energy exhibits a maximum
at N = 4 of height approximately 2.XgT. This behavior
coincides qualitatively with the bimodal water occupancy found
by Hummer et al. for an atomistic simulation. Quantitative
differences could well be due to statistical uncertainties in the
results of ref 7. Further, the empty and full states of the bistable
atomistic model studied in ref 7 are not exactly degenéfate. m = tanhB(h — 4e + Jm_, + Im,,)] (5)

From our calculations we see that the height of this free
energy extremum decreases with increasing temperature, untiwherem; = [§Cs the equilibrium average of thth spin, under
eventually the free energy curve assumes a convex shape witithe boundary conditiomy = m 4+; = 1. This equation can be
a broad minimum at an intermediate value of the occupation solved by iteration, starting with an initial estimate for tine
number N. The shape of the free energy curves (or the The corresponding probability foN, P(N), can then be
probability distribution function®(N)) can be used to classify  constructed fronpi(£1) = (1 + m)/2, the probability that the

the equilibrium behavior of the system as a function of the
governing parameters, as shown in Figure 3.

The maximum at intermediaté in the low-temperature free
energy is indicative of two stable statesmpty and full. One
should not, however, confuse this maximum with the dynamical
bottleneck that separates these two states. That bottleneck
involves a different variable thaX, as we shall show in Section

The low-temperature bimodal behavior is not correctly
captured by the simplest of mean field treatments. Such a
treatment corresponds to solving the coupled equations
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- — assuming that configurations with more than one pair of
Simulation —*— . - L .. .
Mean Field (1) —-0-— interfaces do not contribute significantly to the partition function.
Mean Field (2) ——<— ] In this approximation, only those configurations are considered
where all empty cells (if any) are next to each other. This

g procedure leads to the expression
>
= F(N) ~ uN+4J(1 — 6, ) — kT In Q(L, N) (8)
<
=)
& . whered \ is the Kronecker symbol, ar@d(L, N) is the number
Be=0.12 e of configurations withN filled cells in a tube of length. and
0.5 e ey no more than one interface pair:
0 1 2 3 4 5 ={"
QLN) {1|fN=L )

Number of filled tube cells N

Figure 4. Probability distributions for the number of liquid cells inside  Results obtained in this approximation are compared to simula-
the tube for three different values of the interaction parametas tion data in Figure 2. It shows very good agreement for low
obtained from simulation and mean field treatment. The latter depends ;4 jntermediate temperatures, while for high temperatures the
on the initial conditions under which the mean field equations (5) are . S . .

assumptions of vanishing fluctuations outside the tube and

solved. In case 1, the initial conditions ware= 1, andm = — 1 in IR ! . ) " _

case 2. The remaining parameters were 0 andBJ = 1.2. contributions from single interface configurations only lose their

. o . . validity. This interpretation explains both the location of the

ith cell is liquid or vapor, respectively. In particular, free energy barrier &l = L — 1 and the almost linear shape

L for N < L at cold temperaturés$.In view of this analysis, the
P(n) = Z Z 5N({§})Yn pi(s) (6) finding in re.1c 7 that water can and does fill a hydrophobic tube
§=F1 g=%1 = IS not surprising.
Here, ¢ is the Kronecker symbol. The resulting probability 1. Dynamics

distributions together with simulation results are shown in Figure
4 for three different values of the interaction parameterhe
mean field prediction coincides closely with the simulation result
far away from the bimodal behavior (top panel). Approaching
the bimodal behavior witk = J/(2L), however, we see that
the mean field treatment fails to properly predict the existence
of two free energy minima. Rather, it predicts one of two
solutions to the mean field equations, depending upon the initia
value of them; used to solve eq 5 by iteration. In other words,
mean field theory predicts coexistence of two different phases.
For the one-dimensional finite system, therefore, accounting for
fluctuations is important.

We can compute the effects of fluctuations in an approximate

ing th ity fiel i . S ;
but accurate way by assuming the density field outside to be (Kawasaki) dynamic# in every Monte Carlo step, a pair of

constant, i.e.5 = 1 for alli outside the tube. The only remaining ; . .
degrees of freedom are then the states of the cells inside thene|ghbor|ng cells is chosen at random. The energy change that

tube, which can assumeé @ifferent configurations. The partition W.OUId oceur if the two spins were switched is cal_culated. This
function for those degrees of freedom is trial move is accepted according to the Metropolis acceptance

criterion.

Since this simple lattice model can reproduce the bimodal
behavior of the more detailed atomistic simulation, one might
hope to go one step further and investigate the dynamics of
this system.

A. Filling and Emptying of the Tube. When a completely
filled tube empties (or vice versa), the density field changes
jover a length scale given by the tube volume. It should be
therefore possible to study this process with our model, where
the minimum length scale for density fluctuations is given by
the lattice spacing.

We begin with the definition of appropriate dynamical rules
for these fluctuations. A familiar choice for the time evolution
of an Ising system is the nearest-neighbor spin exchange

L L-1 This kind of dynamics conserves the number of filled and
Z= Z Z exg—pBl(4e—h) Y s—J ) ss,; empty cells in the system, and hence samples a different
s=%1 s=*1 i= = ensemble than considered in Section 2. We therefore partition
the system into two parts: an inner part of cubic shape that
—=Js —Jg || (7) contains the tube and its surroundings, and an outer shell. We
are interested in the dynamics only in the former, hence we
For any modest sizk, all equilibrium quantities can therefore  employ the conservative Kawasaki dynamics there. In the
be calculated by simple enumeration. surrounding shell we use the single spin flip dynamics that was
More physical insight can be obtained by noting that the used in the previous section. This part of the system acts as a
tube—water interaction (together with a possibly nonzero bath for liquid and vapor cells, which can diffuse across the
external fieldh) acts like a chemical potential of magnitude boundary into the core region. This partition of the system allows
u = 8¢ — 2h, which is the energetic cost for changing an empty us to investigate the movements of individual cells, while still
cell inside the tube into a filled one. The second contribution sampling the grand canonical ensemble. During the simulation,
to the energy comes from the formation of interfaces. The one of the two possible trial moves is chosen with equal
completely filled tube does not have any liguidapor inter- probability at every time step.
faces. If an inner cell changes its state, there will be a pair of With these dynamical rules, the emptying of the tube is
interfaces along the tube axis, the energetic cost of which is naturally related to rare density fluctuations outside the tube.
4]. If another cellj empties out, there will be either no change Consider a completely filled tube, i.e., a configuration where
in the interfacial energy if is next toi, or an additional energy =~ = L. Since the tube lies completely within the core region of
cost of 4 otherwise. We can estimate the free energy by the system where spin exchange dynamics is used, the occupa-
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Figure 5. The free energy as a function of the number of water cells

Maibaum and Chandler

had entered the tube on the opposite end at an earlier time. As
we shall see below, many of the seemingly interesting phe-
nomena arise simply from this definition. Processing their data
with a triangular filter, they find that the water flow shows sharp
peaks as a function of time. These maxima are interpreted as
“bursts” of water conduction, perhaps caused by collective
fluctuations outside the tube. In this section, we show that a
similar flow pattern can be obtained by a simple random walk
model of water molecules inside the tube.

As before, we consider a tube on a discrete lattice thht is
cells long. However, since the tube is always completely filled,
we cannot use dynamical rules that are based on density

inside the tube and at the tube openings, obtained for a tube of lengthfluctuations on the order of the lattice spacingnstead, we

L =5andh =0, 8J = 1.2, 8¢ = 0.12. The arrows show the typical
pathway leading from a filled to an empty tube. Before a water cell

specify a configuration by the side on which each ofltheater
molecules had entered the tube. Since water molecules cannot

can leave the tube, a vapor cell has to appear at the tube mouth. Thispass each other inside the tube, there are bnly 1 possible

is a dynamically rare event, and corresponds to a high free energy barrie

in the emptying process.

tion numberm can change only by an exchange of a water cell
at one end of the tube with a vapor cell right in front of it.
Thus, a low-density fluctuation at the mouth of the tube is
required for a filled cell to leave the tube. Due to the low
concentration of vapor cells in the bulk liquid, this constitutes
a rare event in the time evolution of the system.

The analysis is different for the reverse process, the filling

of an empty tube. This asymmetry in the analysis originates

from the fact that the spin field outside the tube is strongly
biased toward the liquid phase. Consider an empty thbe (

0) immersed in a constant field of water cells. In this case, the

filling of the tube, i.e., the exchange of an empty cell at one

tube end with the water cell outside, could occur at any time.

'configurations:

0. All L water molecules entered the tube from the left side.

1. The leftL — 1 water molecules entered from the left side,
and the rightmost water molecule entered from the right
side.

2. The leftL — 2 water molecules entered from the left side,
and the rightmost two water molecules entered from the
right side.

L — 1. The leftmost water molecule entered from the left
side, and the right — 1 water molecules entered from
the right side.

L. All L water molecules entered the tube from the right side.

Moving from configurationi to i + 1 corresponds to a shift

However, this process is energetically costly; the energy increase®f all water molecules inside the tube by one lattice spacing to

is AE = 8¢ + 12J. A rare energy fluctuation is therefore required
for this event.

the left, with a new water molecule entering on the right-hand
side. Similarly, a moveé — i — 1 is a collective translation to

The importance of the density field at the tube openings can the right. These moves are consistent with motion of hydrogen-
be illustrated by examining the free energy as a function of Ponded water chains.
two coordinates: the number of water cells inside the tube, and Our model of water conduction through the tube is random
the number of water cells at the tube mouths. The latter can Walk between thes¢ + 1 configurations. Starting from a
take values between 0 and 2. Such a free energy surface isconfigurationi, a new configuration =+ 1 is assigned with equal
shown in Figure 5. Configurations that have one vapor cell at Probability. Such a move corresponds to the one-dimensional

the tube mouth have a free energy on the order &Tigher

diffusive motion of the water molecules inside the tube, and

than those where the immediate environment of the tube is ©CCUrs on a time scatewhich remains to be established.

simply the bulk liquid. Due to the nature of the dynamics of

The set of possible moves is different for the first and the

the system, these configuration form a bottleneck in the last of the listed configurations. Possible moves from config-

emptying and filling of the tube. The pathway that leads from
a filled to an empty tube is shown in Figure 5: one of the cells

uration 0 are 60— 0 or 0— 1. The former corresponds to the
leaving of the rightmost water molecule, which had entered from

in front of the tube has to become vapor before a water cell the left side, on the right-hand side of the tube, thus contributing
can leave the tube. This corresponds to a large increase in thdo the water conduction through the tube. Similarly, if the system

free energy, and is therefore a rare event.

is in configurationL, the two possible moves ate— L — 1

Our lattice model demonstrates that a low-density fluctuation andL — L, and the latter corresponds to the conduction of a
in front of the tube is necessary for the tube to empty. But by water molecule from the right to the left side of the tube.

limiting these fluctuations to length scalesr larger, the model
will likely overestimate the free energetic cost for attaining this
fluctuation. The kinetics for the atomistic moéfaks in qualita-

We simulated the random walk model for a tube of lerigth
= 5. The time scale can be estimated by comparing the total
number of conducted water molecules as observed by Hummer

tive accord with our demonstration. Namely, ref 10 reports that and co-workers with the number of crossing events in our

the number of molecules inside the tubé, is by itself not

model. An average of 17 water molecules per nanosecond is

sufficient to characterize the transition state between empty andobtained by lettingr ~ 10 ps.

full states. The additional variable employed in ref 10 to

Following the same procedure as in ref 7, we process the

characterize the transition state ensemble in effect controlstime series of crossing events by a triangular filter of width

density fluctuations directly in front of the tube.
B. Conduction of Water Molecules. Hummer and co-
workerd investigated the flow of water molecules through a

at half-maximum. Figure 6 shows the simulation result of a 60
ns long trajectory, to which filters of various widths were
applied. The top panel corresponds to the filter used by Hummer

nanotube, with conditions chosen such that the tube is alwaysand co-workers, and the water flow as obtained from our model
completely filled. A water molecule is said to have crossed the indeed shows peaks of comparable width and magnitude as

tube at timet; if it leaves the tube at that time, provided that it

found in the atomistic simulation. Here, these “bursts” follow
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60 . — . — IV. Conclusion
30 U\MW/W A simple coarse-grained model of a nanotube immersed in
water exhibits two principal phenomena observed in the
40 + H 1 _— )
atomistic molecular dynamics study by Hummer and co-work-
ers’ With a properly chosen strength of the tuheater inter-
”-2 20 | action, the filled and the empty tube can be energetically de-
5 generate or nearly so, corresponding to two separate minima in
E , the free energy distribution function. This effect is understood
B ; in terms of the energetic cost of creating a liquidapor inter-
2 | face along the tube axis, and the corresponding increase in
= ! entropy.
% 20 F — Crossing Number \ | The appearance of a density fluctuation at the tube mouth is
= T e e umbe ' necessary to facilitate the emptying of a filled tube, and this
8 ' ' ' ' facilitation is associated with a large entropic barrier. The filling
g 40 of an empty tube, however, is associated with a large energetic
=2 barrier. Unlike the large length scale emptying and filling, the
20 transport of water through a full tube does not involve largely
activated events. Rather, its behavior can be understood in terms
0 ' ' ' ' ' of a simple diffusive motion of the whole water column inside
100 ' ' ' ' ' the tube.
75 1 | These results were obtained with the simplest possible
30 | ‘ | description of a cold liquid. Other than our choice of random
25 Il “ } JJ J | | ‘ ! ‘ \ walk steps that maintain a hydrogen-bonded chain inside a filled
¢ N T R -
0 10 20 30 40 50 60 tube, none of our results depend on specific small length scale

Time / ns details of liquid water.
Figure 6. Simulation result for water conduction through the tube.
Tr?e solid lines show the number of water molecules tha?have crossed Acknowledgment. We are gratefu_l to Gerhard Hummer_ for
the tube. The data were processed by a triangular filter with a half- commenting on an earlier draft of this paper and for sending us
maximum widthw: if water molecules crossed the tube at timhes,, the preprint of ref 10. Throughout this project, we have benefited
..., tn, the flowf is given byf(t) = Y7, w1 — |t — ti|/w) O (W — |t from discussions with Susanne Hahn and Thomas McCormick.
— ti|), where® is the Heaviside step function. In the top panel, afilter This work has been supported by a grant from the National
of width w = 1 ns was used, as in the work by Hummer and gcjence Foundation.
co-workers! Their result is shown in the inset for comparison. The
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