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We develop a unified and generally applicable theory of solvation of small and large apolar species in water.
In the former, hydrogen bonding of water is hindered yet persists near the solutes. In the latter, hydrogen
bonding is depleted, leading to drying of extended apolar surfaces, large forces of attraction, and hysteresis
on mesoscopic length scales. The crossover occurs on nanometer length scales, when the local concentration
of apolar units is sufficiently high, or when an apolar surface is sufficiently large. Our theory for the crossover
has implications concerning the stability of protein assemblies and protein folding.

Introduction

It has long been accepted that hydrophobic interactionssthe
effective attractions between apolar groups in watersplay a
central role in the stability of mesoscopic assembly and
biological structure in aqueous environments.1,2 Yet, a quantita-
tive understanding of this role has been elusive. One obstacle
to this understanding is the multifaceted nature of hydrophobic
interactions that we focus upon in this paper. In particular, we
show how hydrophobic interactions between small apolar groups
at low concentrations in water are very different from those
between large assemblies or relatively high concentrations of
hydrophobic groups in water. The former is pertinent when
considering, say, the aqueous solvation of a butane or butanol
molecule. The latter is relevant to the solvation of macro-
molecules such as proteins. In this paper, we present a
quantitative theory for these two regimes and show that the
crossover between them occurs on nanometer length scales.

Figure 1 juxtaposes hydrophobicity on small and large length
scales. Hydrophobic units do not hydrogen bond to water and
create excluded volume regions where the density of water
molecules vanishes. When these units are small enough, water
can reorganize near them without sacrificing hydrogen bonds.
The entropic cost of this structural change leads to low solubility
for small apolar species in water. The cost and corresponding
solubility are readily understood and computed in terms of
properties of homogeneous bulk water, such as its radial
distribution function.3-6 There is, however, no strong induce-
ment for small numbers of small hydrophobic groups to
associate in water. It is more likely that water will separate such
species rather than drive them together.4,6,7

On the other hand, close to a large hydrophobic object,
perhaps an assembly of several apolar units possibly interspersed
with a few hydrophilic units, the persistence of a hydrogen bond
network is geometrically impossible. The resulting energetic

effect can induce drying, as envisioned by Stillinger.3 Further,
this drying can lead to strong attractions between large
hydrophobic objects, as observed in surface force measure-
ments.8 For example, the loss of hydrogen bonds near the two
extended hydrophobic surfaces depicted in Figure 1b causes
water to move away from those surfaces, producing thin vapor
layers. Fluctuations in the interfaces formed in this way can
destabilize and expel the remaining liquid contained between
these surfaces. The resulting pressure imbalance will cause the
surfaces to attract. If the liquid is close to coexistence with the
vapor phase, as is the case for water at ambient conditions, this
phenomenon occurs with widely separated surfaces.

For the geometry pictured in Figure 1b, macroscopic con-
siderations provide an estimate of when the intersurface separa-
tion, D, is sufficiently small for this destabilization to occur.
The bounded liquid has an unfavorable surface energy propor-
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Figure 1. (a) Schematic view of local water structure near a small
hydrophobic sphere. Dashed lines indicate hydrogen bonds. (b)
Schematic view of water structure near large parallel hydrophobic plates.
Shaded area indicates regions where water density is essentially that
of the bulk liquid; vacant regions indicate where water density is
essentially that of the bulk vapor.
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tional to the net surface area, where the surface tension,γ, is
the constant of proportionality. This energy is counteracted by
the favorable bulk free energy proportional to the average
number of molecules in the bounded liquid, where the propor-
tionality constant is the difference between liquid and gas
chemical potential,µl - µg. For large enoughD, providedµl -
µg < 0, the bulk energy dominates over the surface energy,
and the bounded liquid is stable. On the other hand, whenD is
less than the critical separation

surface energy is dominant and the bounded liquid is destabilized
with respect to the vapor. Here,nl is the molecular density of
the bulk liquid (the average number of molecules per unit
volume). Accordingly, for water at room temperature and
atmospheric pressure,9 Dc ≈ 100 nm. At this large length scale,
the evaporation of water induced by drying surfaces would seem
to be a generic and well understood phenomenon,10-12 and its
pertinence to hydrophobicity at large length scales has not gone
without attention.13-16 However, since drying is a nonlinear
phenomenon, its manifestation at large length scales is affected
by small length scale structure. Self-consistency between small
and large length scale effects is missing in these earlier
treatments.

Depletion of water near extended hydrophobic surfaces was
not observed in early computer simulation studies because the
large density fluctuations that would produce it could not be
generated in these calculations.17-19 Recently, however, Wallqvist
and Berne20 succeeded in observing the phenomenon by
simulating nanometer sized hydrophobic units contained within
a significantly larger constant-pressure bath of water. Thus, it
is clear that experimental probes of hydrophobicity on small
length scales (such as measuring relative solubilities of alkanes
in water) determine something very different from those that
probe on large length scales (as done in surface force experi-
ments). Further, Wallqvist and Berne’s work20 suggests that the
crossover (or size of the critical nucleus where oil and water
might separate) is on the scale of nanometers. Thus, neither
extreme of a small length scale or a large length scale description
is by itself sufficient to apply to biological assembly. A
satisfactory treatment of hydrophobicity must describe both
regimes simultaneously.

In this paper, we provide such a treatment. We do so in a
way that applies rather generally, not just to water with
hydrophobic solutes. The theory first focuses on a component
of the fluid density that varies slowly in space. This component
sustains interfaces, liquid-vapor phase equilibria, and drying
and can be determined very generally in terms of only a few
macroscopic parameters like the surface tension. The molecular
scale detail that distinguishes the local structure of one liquid
from another enters the theory explicitly in a second step, where
the effects of small length scale fluctuations about the slowly
varying component are estimated. This step takes proper account
of excluded volume regions where the density vanishes.

This two-step treatment has been developed in detail from a
rigorous statistical mechanics perspective by Weeks, Katsov,
and Vollmayr21 for the special case of a simple fluid interacting
with a pair potential. Here, we describe a more heuristic but
qualitatively accurate method that can be applied more generally,
in particular to water. The result of this analysis is a theory
with mathematical similarities to dielectric continuum theory.
It reduces to Pratt-Chandler theory4,6 for small apolar units

but crosses over to something very different when hydrophobic
surfaces extend over a nanometer.

Theory

The fluctuating molecular density fieldF(r ) at positionr , with
average value〈F(r )〉 ≡ n(r ), provides a convenient measure of
the microscopic configurations. This field gives the local
concentration of centers of water molecules. (For the purposes
of specificity, the “center” can be, for example, the position of
the oxygen nucleus.) Since water is a fluid of polyatomic
molecules, a complete description of its instantaneous structure
requires more than just this scalar quantity. The primary effect
of hydrophobic units in water, however, is to expel water
molecules from the regions occupied by those units. Once the
consequences of this expulsion are understood, other effects,
such as those due to solute-solvent attractions, can be treated
either as first order perturbations4,22-24 or by mean field theory,21

as described below. Thus, in this paper our primary focus is on
estimating the free energy cost or reversible work to makeF(r )
) 0 for r in a hydrophobic volumeV. With this focus, other
details about local water structure play no explicit role.
Orientational structure appears only implicitly in the way it
influences the statistics ofF(r ). It is a remarkable fact that over
small length scales this statistics is essentially Gaussian,5,6 a
fact we make use of shortly.

For the homogeneous fluid,n(r ) is simply the constant bulk
density,nl. Excluded volume, however, creates gradients in the
average densityn(r ) and in many cases can induce rapidly
varying components analogous to the oscillations in the fluid
radial distribution function, manifesting molecular scale granu-
larity of the liquid.25 Since molecules in the liquid attract one
another with some finite range of interaction,λ, any such spatial
variation of n(r ) must be accompanied by a gradient in the
energy density field arising from the attractive intermolecular
interactions. This produces a net force from the unbalanced
attractive interactions directed towards the region of higher
density.26 The attractive energy density field can be written as
-2anj(r ), where the overbar indicates a normalized average or
coarse graining of the fluid densityn(r ) over the length scaleλ
and-n2a is the adhesive energy density of the homogeneous
fluid of densityn.27 We will see that, for water,λ ≈ 0.3 nm.
Averaging over the length scale of attractive interactions
smooths out quickly varying oscillatory components ofn(r ).
Thus, the resultingnj(r ) is relatively slowly varying, even when
n(r ) itself might be rapidly varying. We callnj(r ) the coarse
grained density and will exploit its relatively slow variation in
our calculation of the fulln(r ).

To that end, let us first recall the usual square gradient theory
for a slowly varying free liquid-vapor interface.10,28This theory
applies only when the density field varies little over the length
scaleλ. In that case, the statistical weight for a givenF(r )
in the grand canonical ensemble is proportional to
exp{-âF0[F(r )]}, whereF0[F(r )] is the effective Hamiltonian
or free energy functional

Here, â-l ) kBT is Boltzmann’s constant times temperature,
w(F(r )) ) w(F(r );µ) is a local free energy density parameterized
by the ambient chemical potentialµ, and m ) aλ2.29 [The
subscript “0” indicates the absence of any imposed excluded
volume that would induce rapid spatial variation inF(r ).]

In mean field theory, the equilibriumn(r ) ) 〈F(r )〉 is the
function that minimizes this free energy, i.e., 0) δF0/δn(r ).

Dc ≈ 2γ
nl|µl - µg|

(1)

F0[F(r )] ) ∫dr [w(F(r )) + 1
2
m|∇F(r )|2] (2)
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This condition yields the well known differential equation for
n(r )28

wherew′(n) ) ∂w/∂n. At phase equilibrium, where a liquid of
homogeneous densitynl coexists with a gas of homogeneous
densityng, the conditions of constant pressure and chemical
potential correspond tow(nl) ) w(ng) andw′(nl) ) w′(ng) ) 0,
respectively. Under these conditions, there exists a slowly
varying solution to eq 3 describing the liquid-vapor interface.
In the second line of eq 3, the Laplacian term has been rewritten
in terms of the coarse grained densitynj(r ); the expressions are
equivalent by second order Taylor expansion ofn(r ′) about
n(r )in the integration that defines the coarse grained density.
[See, for example, eq 14 below.]

In general, however, excluded volume regions or other
perturbations can induce rapidly varying components inn(r )
that cannot be described by eqs 2 and 3. Nevertheless, even in
such cases, the associated coarse grained density,nj(r ), remains
slowly varying. This observation allows us to determine a slowly
varying component of the full density.21 The rapidly varying
component will be treated in a second step as discussed below
and the self-consistent combination of both components will
give an accurate description of the fulln(r ).

We denote the slowly varying component byns(r ) and require
that it satisfy eq 3 when the coarse grained density arising from
the full n(r) is used:

The relation to the usual free interface theory becomes clearer
if we add and subtract the coarse grained density of the slowly
varying component,njs(r ), and expand as before. This yields
our final result,

Equation 5 is the general formula for a slowly varying density
field ns(r ) in the presence of the (self-consistent) potential,
-2a[nj(r ) - njs(r )]. This field takes account of the extra
unbalanced attractive energy density arising from the rapidly
varying component of the density,n(r ) - ns(r ). In general,
ns(r ) contains most of the long-wavelength variation of the full
density, and in the absence of rapid spatial variation of the
density,n(r ) ) ns(r ). In that case, eq 5 reduces to the standard
theory for slowly varying inhomogeneous density fields, eq 3.
The theory is altered, however, by the presence of rapidly
varying components inn(r ), such as those induced by excluded
volume. The last term in eq 5 is then not negligible. This term
permits interface-like solutions forns(r ) over a continuous range
of temperature and density. Without it, spatially varying
solutions exist only at liquid-gas coexistence, wherew(n) has
two equal minima located at the coexisting liquid and gas
densities.

The small length scale differences betweenns(r ) and the full
density fieldn(r ) are determined in a second step by averaging
δF(r ) ) F(r ) - ns(r ), taking proper account of excluded volume
regions. To the extent thatδF(r ) is a Gaussian random field,
the method for carrying out such an average is well known.5

Moreover, Hummer et al.6 have established that small length
scale density fluctuations in water are indeed Gaussian. With
such statistics, we find thatn(r ) is given by

where angled brackets labeled with the subscript “V” indicate
the presence of the solute excluding solvent from the volume
V. The function

is the variance for the Gaussian statistics with a specifiedns(r ),
but in the absence of the solute (or any other source of
inhomogeneities that vary quickly in space). The functionc(r )
is nonzero only forr contained in the excluded volumeV, and
in that region,c(r ) is determined by the requirement thatn(r )
) 0 for all r in V. 30 Equation 6 is a generalization of eq 2.8 of
ref 5. For the case of long length scale homogeneity, i.e., when
ns(r ) ) n, eq 6 is the Pratt-Chandler integral equation for the
distribution function of water surrounding an apolar solute.4 This
occurrence of homogeneity is obtained from eq 5 when the
hydrophobic solute (i.e., when the excluded volume) is relatively
small.

Equations 5 and 6 provide a self-consistent theory for water
density near hydrophobic solutes.31 In addition to this structural
property, free energies of solvation are also of interest. For ideal
hydrophobic units, i.e., species that simply exclude water from
specified volumes, solvation free energies are related to the
probability of finding these volumes empty in the unperturbed
fluid.6 Such a probability is a ratio of partition functions.
Specifically, the excess chemical potential for a hydrophobic
object excluding the volumeV is

whereZV(N) is the partition function whenN solvent molecules
occupy the volumeV. Using Gaussian statistics to estimate the
probability, we find that this partition function is given by32

where

In these relationships, the integrals labeled with a subscript “V”
are over the excluded volumeV, andns(r ;N) is computed from
eq 5, but eq 6 is replaced by

In the limit of small excluded volumes, eq 11 will predict a
small unbalanced force, and the resultingns(r ;N) will be close
to the bulk liquid density,nl. In that case, eqs 9 and 10 reduce
to the free energy of hydrophobic hydration developed and used
by Hummer et al. to successfully interpret the solvation of small
apolar species in water.6,24 In general, however, the main
physical effect of the unbalanced attractive forces taken into
account in the first step of our method is to reduce the density

w′(n(r )) ) m∇2n(r )

) 2a[nj(r ) - n(r )] (3)

w′(ns(r )) ) 2a[nj(r ) - ns(r )] (4)

w′(ns(r )) ) m∇2ns(r ) + 2a[nj(r ) - njs(r )] (5)

n(r ) ) 〈F(r )〉V

) ns(r ) - ∫ dr ′c(r ′) ø(r ′, r ) (6)

ø(r , r ′) ) 〈δF(r ) δF(r ′)〉0 (7)

∆µV ) -kBT ln[ ZV(0)

∑Ng0ZV(N)] (8)

ZV(N) ) exp{-F0[ns(r ;N)]/kBT

-[N - ∫V dr ns(r ;N)]2/2σV - (ln σV)/2} (9)

σV ) ∫V dr ∫V dr ′ ø(r ,r ′) (10)

n(r ;N) ) ns(r ; N)

- ∫V dr ′ ∫V dr ′′[ns(r ′;N) - N/V]σV
-1 ø(r ′′,r ) (11)
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near the excluded volume region, thus permitting a lower
solvation free energy.

Applications

The theory presented above is a relatively general treatment
of solvation excluded volume effects. To characterize the long-
wavelength properties of the water solvent determined in the
first step of our theory, we must give a prescription for carrying
out the coarse graining implied by the overbars in eq 5 and
values forw(n) andm.Since this step is essentially independent
of the local structure, any reasonable form of these quantities
is sufficient provided it is fit to the macroscopic properties of
water over the thermodynamic range of interest. Therefore, we
adopt the simplest possible van der Waals forms28

When the chemical potentialµ is such that liquid and gas
coexist,

where ng and nl are the bulk gas and liquid densities,
respectively, at the liquid-gas coexistence implied byw(n). We
fit the molecular volume parameter,b, and the energy density
parameter,a, so that (i)nl has the value of the liquid water’s
density at phase coexistence whenT ) 298 K and (ii) the
compressibility implied byw(n) has the same value as that for
water at normal conditions. These conditions yielda ≈ 230 kJ
cm3/mol2 andb ≈ 15 cm3/mol. Then, with surface tension given
by that for liquid water at normal conditions, i.e.,γ ≈ 72 mJ/
m2 ≈ 18 kBT/nm2, the second van der Waals relation givesλ2

≡ m/a ≈ (0.38 nm)2. Finally, for the coarse graining prescrip-
tion, we use a simple Gaussian weight

The unique local structure of water enters explicitly in the
second step of our theory through the specification ofø(r ,r ′) in
eq 6. Here too we use experimental data, setting

whereh(|r - r ′|) + 1 is the radial distribution function of liquid
water at the bulk densitynl.33 Approximation 15 becomes exact
in the limit of homogeneity,ns(r ) ) nl, and in the limit of low
density. It is well-defined at intermediate densities and serves
as a computationally practical interpolation formula.

Our choices for these quantities are rather arbitrary but still
consistent with the most important physical aspects of hydro-
phobicity. For instance, to correctly predict the onset of drying,
it is important that the proximity of liquid-gas coexistence is
accurately represented. To correctly estimateø(r ,r ′) in the drying
regime where density is low, it is also important that this
function is consistent with the exact low-density form,
ns(r ) δ(r - r ′). When drying does not occur and short length
scale effects dominate, it is important thatø(r ,r ′) is consistent
with the exact form for the homogeneous liquid,nlδ(r - r ′) +
nl

2 h(|r - r ′|). All these features are captured by our choices,
and other details have relatively small effects on numerical
results derived from the theory. For example, in the applications
reported below, no qualitative changes are found on altering
the value ofγ by 20%, or on altering the coarse graining
prescription, eq 14, to some other reasonable choices. An

equation of state more accurate than (12) might help in making
predictions over a wide range of temperatures, but for the use
we make of it here, eq 12 seems satisfactory.

With these ingredients in hand, we have carried out a series
of calculations to illustrate the predictions of the self-consistent
structural eqs 5 and 6 and the corresponding free energy relations
(9) and (11).

Hydration of Hard Spheres. Our first application concerns
the hydration of a hard sphere excluding water from a volume
of radiusR centered at the origin. Figure 2 shows the excess
chemical potential,∆µV, as a function ofR computed from the
theory. In the field of structural biology, it is often assumed
that hydrophobic solvation energies are proportional to exposed
hydrophobic surface area.34-36 As such, one might expect that
∆µV would be proportional toR2. For R J 2 nm, the theory
shows that the ratio∆µV/4πR2 does reach an approximate plateau
with a value similar to that of the surface tension,γ. For smaller
R, however,∆µV/4πR2 is a rapidly varying function ofR. This
variability explains why there is no consensus over the ap-
propriate hydrophobic energy per unit area governing nanometer
assemblies, such as protein structures. On a nanometer length
scale, there is no unique value.

For small spheres(R < 0.4 nm),∆µV has been estimated by
computer simulation.37 Figure 2 shows that theory is in good
accord with the simulation results. In this small-sphere regime,
the full theory also differs little from the predictions of simple
Gaussian statistics, namely eq 9 withns(r ;N) ) nl. Gaussian
statistics is the basis for the Pratt-Chandler theory of hydro-
phobicity,5 both in its traditional form4 and its recent extension.6

The agreement between theory and simulation in this regime is
consistent with the successes of that theory in predicting, for
example, free energies of transfer and solubilities of small
hydrophobic molecules. ForRJ 1 nm, however, the predictions
of the Gaussian model diverge from those of the full theory.
The divergence is due to drying. This phenomenon is predicted
by the full theory, but it is outside the scope of the Gaussian
model. In view of the disparity, it may be inappropriate to use
the Gaussian model to interpret temperature and pressure effects
on the stability of protein structures.24

w(n) ) nkBT ln( bn
1 - bn) - an2 - µn (12)

γ ) ∫ng

nl dnx2m[w(n) - w(ng)] (13)

nj(r ) ) ∫ dr ′n(r ′) (2λ2π)-3/2 exp(-|r - r ′|2/2λ2) (14)

ø(r ,r ′) = ns(r ) δ(r - r ′) + ns(r ) ns(r ′) h(|r - r ′|) (15)

Figure 2. Excess chemical potential for a hard sphere of radiusR in
water. The solid lines indicate the results of eqs 5, 9, and 11. The circles
are the results of computer simulations.6 The dashed line is the result
of the Gaussian model, namely eq 9 withns(r) ) nl.6 The dotted line
is a continuum theory estimate (see text for description). The arrow
indicates the value for the surface tension of water.
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For large R, one might consider employing a simplified
continuum theory based upon eq 5, but replacing the self-
consistent field term with boundary conditionsns(r ;N) ) N/V
for r e R andns(r ;N) ) nl for R f ∞. In general, thens(r ;N)
constructed in this way will vary rapidly near the surface of
the volumeV. This continuum theory is therefore not self-
consistent. Moreover, eq 5 shows that the self-consistent field
is nonzero outside the surface and cannot be represented by a
single boundary condition. Indeed, the predictions of the
continuum model are unsatisfactory in the physically interesting
cross-over regime, as shown in Figure 2.

The solute-water radial distribution function,g(r + R) )
n(r + R)/nl, as a function of the distancer + R from the center
of an excluded volume region of radiusR, directly illustrates
the nature of the drying phenomenon. This function is shown
in Figure 3. For small spheres,g(r + R) exhibits oscillations
manifesting the microscopic granularity of liquid water. ForR
J 1 nm, density depletion is evident and the magnitude of the
oscillations decreases. For largeR, g(r + R) rises smoothly with
increasingr. Evidently, a ball of oily groups with radius larger
than 1 nm, e.g., a spherical cluster of about 20 methyl groups,
is large enough to induce drying. Significantly smaller as-
semblies will not induce this effect.

The behavior ofn(r ) for water near a large hard sphere is
thus much like that for the liquid near a free liquid-gas
interface, as Stillinger envisioned long ago.3 Stillinger also
theorized that the contact value, i.e.,g(R), is a nonmonotonic
function of R. For smallR, the removal of water within the
excluded volume is accommodated by an increase in density
adjacent to the volume. For smallR, g(R) is therefore an

increasing function ofR. For large enoughR, however, drying
sets in, makingg(R) a decreasing function ofR.Stillinger made
numerical predictions of this behavior, based upon an algebraic
interpolation formula connecting two regimes of small and large
hydrophobic spheres. His predictions agree qualitatively with
the results of our theory shown in Figure 3. These theoretical
results also agree reasonably well with computer simulation
results, over the limited regime where these simulation results
are available. Better agreement would probably require better
estimates ofw(n) andø(r ,r ′) than those we have used as input
for the calculations.

Hydration of Two Parallel Hard Plates. As discussed in
the Introduction, drying of extended hydrophobic surfaces can
lead to strong attractions between pairs of such surfaces. As a
second application, we therefore consider the solvent-induced
interactions between a pair of two infinite hard plates. The plates
lie parallel to thex - y axis of a Cartesian coordinate system,
and they exclude water from the regionsz < 0 andz > D.
With this arrangement, our calculations provide an interpretation
of surface force measurements. These experiments reveal long
ranged forces between hydrophobic surfaces in water. While
disagreeing over quantitative details,8 they show that an attrac-
tive force becomes measurable at large intersurface separation,
in most cases up to tens of nanometers. Further, when brought
to separations of about 10 nm, two hydrated parallel hydrophobic
plates will jump into contact. Hysteresis is observed in the
inward- and the outward-going measurements, indicative of a
kinetically frustrated first order phase transition.

Hysteresis is predicted by our analysis in that over a range
of D values, there are two solutions to eq 5 and thus two
different free energies. The resulting free energy branches as a
functions ofD are shown in Figure 4. In agreement with the
elementary estimate, eq 1, the figure shows that even for
relatively large interplate separations, the confined liquid water
is less thermodynamically stable than its vapor. The liquid
remains metastable over a wide range ofD. In this regime, the
kinetic pathway to evaporation involves fluctuations of the water
interfaces sufficient to create a vapor bridge between the two
plates.16,38Such large fluctuations occur only rarely. To a good
approximation, water will remain between the plates untilD is
made so small that the confined liquid becomes mechanically
unstable. Figure 4 shows that this limit of metastability (i.e.,
the spinodal) of confined water is reached whenD ≈ 5 nm.

Figure 3. (upper part) Slowly varying componentns(R + r) of the
average water density as a function of the distanceR + r from the
center of excluded volume regions with varying radiiR. (lower part)
Radial distribution functiong(R + r) ≡ n(R + r)/nl giving the net
average water density around the same excluded volume regions. The
inset graph focuses on the contact value of that function. Solid lines
are the results of eqs 5 and 6. Circles are the results of computer
simulations.37 The dashed line is from the Gaussian model, namely eq
6 with ns(r) ) nl.4

Figure 4. Free energy per unit surface area for water confined between
two parallel hard surfaces separated a distanceD. The zero of free
energy is taken as theD f ∞ limiting value. The curves are computed
from eqs 5, 9, and 11, withN ) 0. Solid lines refer to stable branches,
dashed lines refer to metastable branches, and the dotted line shows
the smallD limit of stability for the liquid density phase.
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This length is comparable to the distance where hydrated
hydrophobic surfaces jump into contact in surface force experi-
ments. According to our theory, this jump distance will decrease
as the bulk liquid moves away from phase coexistence, for
example, by decreasing temperature or adding salt to the liquid.
Further, the jump distance will increase with the addition of
kinetic pathways to evaporation, such as the presence of gas
bubbles in the solvent.

Since mean field theory is used to describe large length scale
structure, capillary waves are not included in our treatment.
These small-amplitude interfacial fluctuations adjacent to each
plate surface give rise to weak long-range interplate attractions.
A complete theory for large-distance attractions between
extended hydrophobic surfaces must account for this capillary
wave effect. Such long ranged forces, however, are relatively
small in comparison with the those produced by drying and
evaporation.

Hydration of Parallel Cylinders. An array of four parallel
cylinders provides another instructive application, evocative of
helix bundle motifs common in protein structures.39 Specifically,
we have carried out calculations of water densities and free
energies in the presence of four infinite cylinders, each of radius
R, where the axis of each cylinder is parallel to thez axis of a
Cartesian coordinate system. These axes form a square in the
x-y plane with side lengthD + 2R. Thus, water is expelled
from the regions [x ( (R + D/2)]2 + [y ( (R + D/2)]2 < R2.

For this geometry of hydrophobic units, the computed excess
chemical potentials per unit length are shown in Figure 5 as a
function of surface-to-surface separation,D. For cylinders with
R J 0.6 nm, there is a range ofD values where metastable
high-density states are found. For smaller cylinders, there is no
such metastability. For all cases illustrated, the low-density phase
is stable forD j 1 nm, and the stability or metastability of this
phase creates a powerful force favoring the assembly of the
four cylinders. ForR J 0.7 nm, the free energy barrier to
association disappears, even in the metastable branch. For this
regime, one therefore expects both powerful and relatively rapid
association of the hydrophobic units. Conversion to net free

energies requires multiplication of∆µV, per unit length by the
actual length for the cylinders. Thus, features illustrated in Figure
5 reveal net free energetic effects that can be very large
compared tokBT.

Figure 5 projects onto only one coordinate,D. The absence
of a free energy barrier to association in that direction does not
necessarily imply the actual pathway to association is barrier
free. The actual pathway can have dynamical bottlenecks
involving water density fluctuations such as described above
for the case of two parallel plates.

For all cylinders considered in Figure 5, mean field theory
predicts the low-density phase remains metastable forD J 10
nm. In this phase, the four cylinders are encapsulated by a vapor
bubble of similar shape. Density fluctuations, i.e., thermal
excursions of the liquid-vapor interface, will break the bubble
at values ofD smaller that those of the mean field stability limits.

Surfaces of helices assembling in actual protein structures
are not entirely hydrophobic. The trends illustrated in Figure 5,
however, depend mostly on the fact that the interior surfaces
of the assembled bundle are hydrophobic. To show this fact,
we have considered modified parallel cylinders, where the outer
halves of the cylinders are hydrophilic, as illustrated in the upper
part of Figure 6. In particular, we have carried out calculations
with eq 5 modified by subtracting an attractive interactionφ(r )
from its right-hand side, where

andR(r ) is unity for r ∈V′ and zero otherwise. Here,V′ refers
to a hydrophilic shell that coats the outer half surface of each
cylinder and extends 0.3 nm within. Other choices for the
strength and functional form of this potential field are possible.
The basic idea is to create a water-like region within the solute.

Figure 5. Free energies per unit length for water interacting with four
parallel hard cylinders (pictured at top). The distance of closest approach
between cylinders is taken asD ) -0.27 nm. The zero of free energy
is taken as theD f ∞ limiting value. Curves are computed from eqs
5, 9, and 11. Solid lines refer to stable branches, dashed lines refer to
metastable branches, dotted lines refer to small-D limits of stability
for the high-density solutions. The limits of stability of the low-density
solution are off the scale of this figure.

Figure 6. Free energies per unit length for water interacting with four
parallel hard cylinders with hydrophilic outer sides. The parallel
cylinders are depicted at the top of the figure; the shaded area denotes
the hydrophilic regions. The distance of closest approach between
cylinders is taken asD ) -0.27 nm. The zero of free energy is taken
as theD f ∞ limiting value. Curves are computed from eqs 9 and 11
and eq 5 modified by subtracting the fieldφ(r ) from its right-hand
side. Solid lines refer to stable branches, the dashed line refers to the
metastable branch, and the dotted line refers to the small-D limit of
stability for the high-density solutions. The limits of stability of the
low-density solution are off the scale of this figure.

φ(r ) ) -2anl ∫ dr ′R(r ′) (2λ2π)-3/2 exp(-|r - r ′|2/2λ2)

(16)
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With eq 16, it is as if a layer of water molecules of densitynl

lies inside the outer-half surface of each cylinder.
Results obtained with this modification of eq 5 are plotted

in Figure 6. While details differ, the trends obtained for fully
hydrophobic cylinders are indeed similar to those obtained with
partially hydrophobic cylinders. For example, the size of free
energy barriers are larger in the latter than in the former, and
the radius required for high-density metastable branches to
appear is larger in the latter than in the former.

Implications

Mesoscopic structures are stabilized by a variety of forces.
To the extent that hydrophobic forces are significant, this paper
illuminates a number of important facts. First and foremost,
hydrophobic effects of the type that separate oily groups from
aqueous solution appear only when local concentrations of
hydrophobic units are large enough or extended enough to
induce drying. Excess chemical potentials and transfer free
energies of single small apolar species, like alkane chains of
moderate length, reveal nothing of the powerful interactions
created by drying. Similarly, the structure of water near small
apolar species provides little or no hint of the phenomenon that
inevitably dominates for larger hydrophobic assemblies.

Even in the presence of hydrophilic surfaces, powerful
hyrophobic forces of assembly can arise from drying transitions.
To the extent that these forces are relevant to biological
assembly, one can anticipate general trends affecting the stability
of such structures. Specifically, changes in solvent that move
the bulk liquid away from liquid-gas phase coexistence (e.g.,
adding salt, increasing pressure, lowering temperature) will
shorten the range and weaken these forces of assembly.

Since powerful hydrophobic interactions require the onset of
a phase transition, the dynamics of assemblies stabilized by this
interaction will depend, at least in part, on the dynamics of the
phase transition. Thus, for example, aspects of water structure
and drying may play a significant role in the kinetic pathways
to protein folding for transitions between configurations of
differing hydrophobic stabilization. This possibility would
explain directions of trends observed in the binding-unbinding
kinetics of helix pairs in Rop.40 Indeed, the evaporation kinetics
of water confined by hydrophobic surfaces is significantly
slowed by adding a low concentration of hydrophilic spots to
the surfaces41 since water interfaces are pinned at these spots.
Most standard models of protein folding include water only
implicitly, through its effect on free energy surfaces, and assume
that water is continually at equilibrium with the assembling
solutes. We believe that water plays a more explicit role in the
dynamics than can be captured with such implicit equilibrium
models.

Drying is a collective phenomenon. As such, pair potentials
of mean force between small apolar units are insufficient for
characterizing its onset. The onset or crossover to drying is found
at the nanometer regime, the length scale of pertinence to protein
assembly. In this regime, the phenomenon is too complex to
be characterized by a single microscopic parameter, such as
exposed surface area. It seems likely, therefore, that most models
used thus far in theoretical studies of protein structure over-
simplify the true nature of the hydrophobic interactions con-
ceived of long ago by Kauzmann. In contrast, the equations
written in this paper could be used to provide a computationally
convenient yet accurate means to describe this nature.
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