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We modeled condensation phenomena within cylindrical nanopores as a possible replacement for the
Kelvin model that underestimates nanometer order pore sizes. The proposed model follows the simple
concept of a continuum assumption similar to that for the Kelvin model. The difference was in the introduction
of the contribution of the pore-wall potential and the curvature-dependent surface tension in our model.
A molecular dynamics (MD) technique developed by the authors for isotherm determination was employed
to test the concept and the model. Several isotherms for N2-like Lennard-Jones (LJ) particles in a silicate-
like cylindrical pore with various diameters from 2 to 4 nm were obtained through MD simulations, and
a relation between pore diameter and critical condensation pressure was determined. The present model
successfully described the relation to demonstrate its reliability. The validity of the proposed model was
examined also from the aspect of the shape of the meniscus and the pressure profile in the condensed phase,
and gave fairly good agreement.

1. Introduction

One of the most important applications of physical
adsorption would be the pore size estimation. The Kelvin
condensation model is widely used for the characterization
especially for mesoporous solids, while many articles have
reported its underestimation of pore size in the nanometer
region.1-3 The survival of the Kelvin model despite the
underestimation is a direct reflection of the lack of an
appropriate model that is accurate enough for nanopores
as well as handy enough for widespread use. A straight-
forward application of statistical thermodynamics,4-6 such
as the density functional theory and molecular simulation
technique could be a solution at the expense of simplicity.
The aim here is to give a simple concept and a model to
describe the condensation phenomena in nanopores.

We have studied the condensation in nanopores with
the above situation in mind. We had proposed a new
condensation model in slit-shaped nanopores,7 and now
are extending it to cylindrical pores. The concept is that
the meniscus of the condensed phase need not have
curvature to the extent expected by the Kelvin model
because the attractive potential from pore walls also
stabilizes the condensed phase. Thus the meniscus would
exhibit nonuniform curvature. Surface tension deviated
from that of a flat interface8,9 is also taken into account.

A molecular dynamics (MD) technique developed by the
authors2 for isotherm determination is employed to test

the concept and the model. The necessity of the molecular
simulations or computer experiments instead of real
experiments with existing materials came from the lack
of an ideal porous material with perfectly known surface
characteristics and with perfect uniformity in pore size:
Either of the unknowns could be adjusted to obtain an
apparent “good result” for the other, which could not stand
for a direct verification of the condensation model.
Employing a molecular simulation as an experimental
system, a great advantage also arises: One can obtain
detailed information of the condensed phase such as
density distribution and the shape of the gas-condensate
interface. The model can be tested not only for the critical
condensation pressure but also for the above factors. In
short, the model successfully described the relation to
prove its validity. Thus verified in an ideal system, the
model underwent another test in a real system with a
mesoporous silicate FSM-16, which possesses a quite
uniform pore size, and the results will be presented in the
near future.

2. Condensation Model
2.1. Basic Concept. The curvature of the condensed

phase is the primary reason that vapor condenses at a
lower than saturated equilibrium pressure. The Kelvin
equation describes the effect of a curved surface for
condensation in the following form for cylindrical pores
with zero contact angle:

where k is Boltzmann’s constant, p is pressure, and the
subscript g indicates gas phase and sat indicates satura-
tion. γ is the surface tension of the liquid, Vp the volume
per molecule of liquid, R the pore radius, and t is the
thickness of adsorption film on a pore wall. The work
needed to hold a material in the liquid state apart from
the bulk vapor phase with lower pressure than psat is
compensated solely by the pressure reduction within the
condensed phase given by the Young-Laplace effect. In
a nanoscale pore, however, the condensation phenomena
must be influenced by other effects such as the external

* To whom correspondence should be addressed.
† Present address: Department of Chemical Engineering, Hi-

roshima University, Higashi-Hiroshima 793-0046, Japan.
‡ Present address: Polytech College Kyoto, Maizuru City, Kyoto

Prefecture 624-0912, Japan.
(1) Evans, R.; Marconi, U. M. B.; Tarazona, P. J. Chem. Phys. 1986,

84, 2376.
(2) Miyahara, M.; Yoshioka, T.; Okazaki, M. J. Chem. Phys. 1997,

106, 8124.
(3) Saito, A.; Foley, H. C. AIChE J. 1991, 37, 429.
(4) Nicholson, D. J. Phys. D 1968, 1, 3416.
(5) Evans, R.; Marconi, U. M. B. Chem. Phys. Lett. 1985, 114, 415.
(6) Seaton, N. A.; Walton, J. P. R. B.; Quirke, N. Carbon 1989, 27,

853.
(7) Yoshioka, T.; Miyahara, M.; Okazaki, M. J. Chem. Eng. Jpn. 1997,

30, 274.
(8) Tolman, R. C. J. Chem. Phys. 1949, 17, 333.
(9) Melrose, J. C. Ind. and Eng. Chem. 1968, 60, 53.

kT ln(pg/psat) ) -
2γVp

R - t
(1)

4293Langmuir 2000, 16, 4293-4299

10.1021/la991227e CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/22/2000



force field from the pore wall, the dependency of the surface
tension on curvature, and the structural difference
between normal liquid and adsorption phase confined
within a narrow space.

We propose a new condensation model in which the
external force field from the pore wall and the dependency
of the surface tension on curvature are considered. In order
to maintain simplicity, the model treats the fluid in a pore
as a continuum throughout. Also for simplicity, the
derivation is based on an idealized interface of tension,
similar to the case for the Kelvin model. Including the
above-mentioned two factors, the basic equation to
describe the condensation is given as follows, referring to
Figure 1:

where

F1(r) and F2(r) are the local radius of curvature of interface
at a radial position r, and ∆ψ(r) is the contribution of the
attractive potential energy from pore wall, which must be
expressedasan“excess” amount comparedwith apotential
energy that a molecule would feel if the pore wall is liquid
consisting of the same molecules as adsorbate. The surface
tension is treated as a function of the curvature because
the radius of the curved interface in the nanopore is
comparable with the thickness of the gas-liquid boundary
layer and gives a considerable difference in surface tension
from compared to a flat interface. The relation given by
the Gibbs-Tolman-Koenig-Buff equation9 is adopted for
the curvature dependence, the details of which are given
in Appendix A. The reason we have two different principal
radii of curvature in eq 2, instead of the single radius of
(R-t) in the Kelvin model, comes from the existence of the
potential energy term, which is location-dependent. Since
the right-hand side of eq 2 must be constant regardless
of the location, the contribution of the surface tension
term varies with radial location and the two principal
curvatures cannot be the same. In other words the
meniscus is not hemispherical in the present model.

In principle, eq 2 determines the local curvature term
for a given relative pressure. Since a geometric relation
holds for the two principal curvatures, each of them can
be known. Thus a geometric integration with respect to
the shape of the interface can be made, which will give the
pore size if summed with the thickness of the adsorbed

film on the interior surface of the pore. Thus the relation
of critical pore size and equilibrium vapor pressure can
be obtained. This procedure is expressed quantitatively
below.

2.2. Critical Condensation Pressure. Taking the
origin of r at the center of the pore as in Figure 1, the first
curvature of the interface along a vertical sectional plane
is expressed as eq 3, with which the second curvature
that is orthogonal to the first has a relation expressed by
eq 4:

Rearranging eq 2 to give F1(r), and substituting eq 3, we
have

This equation, together with eq 4, will give the shape of
the meniscus. Boundary conditions for forming the gas-
liquid interface with the contact angle being zero are given
by:

Integrating eq 5 formally, and applying the above bound-
ary conditions, we obtain the constraint to be satisfied at
critical condensation condition as follows.

The position of the surface adsorbed film on the wall,
r0, is assumed to be given by the following equation since
1/F1 and 1/F2 are 0 and 1/r0, respectively.

The above expression of surface adsorption film is an
analogue of the Frenkel theory for a planar surface with
the additional second term, which comes from the surface
tension of the interior cylindrical surface of the adsorbed
film with radius r0. The necessity of this term was
examined with grand canonical Monte Carlo simulations,
which compared the cases of adsorption on planar and
cylindrical surfaces with the same potential energy. The
details are explained in Appendix B.

Summarizing, eqs 4, 6, and 7, together with the Gibbs-
Tolman-Koenig-Buff equation, should be solved simul-
taneously to find R, t() R - r0), F1(r), and F2(r) for a given
relative pressure. This numerical calculation, though it
needs an iterative procedure, can be done quite easily,
e.g., on a personal computer or even on a pocket computer.

2.3. Shape of the Interface.The Kelvin model implies
that the curvature of the interface is constant yielding a
hemispherical gas-condensate interface. On the other
hand, the curvature is a function of r as shown in eqs 3
and 4 in the proposed model. Referring again to Figure
1, the relation of dr/dy(r) ) tanφ should hold along the
meniscus. Denoting yc ) y(0) at the center of the pore,

Figure 1. Schematic of gas-condensate interface and surface
adsorption phase.
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integration of the above geometric relation gives the shape
of the interface as eq 8.

The relation between φ and r can be resolved when
obtaining the pore size, and the numerical integration of
eq 8 can be executed to obtain the shape of the meniscus.
Though the shape itself is not necessary for the pore size
determination, this information will be used for testing
the proposed model.

2.4. Pressure Profile. The Kelvin model assumes
uniform curvature to have hemispherical interface, and
hence only a constant pressure prevails within the
condensed phase. On the other hand the proposed model
implies a nonuniform pressure profile as a result of the
nonhemispherical interface. Since the surface tension term
in eq 2 comes from the pressure difference across the
interface, the pressure profile within the condensed phase
can be expressed as follows.

We understand that, in nanopores, the pressure exhibits
an anisotropic nature and a “pressure” cannot be treated
the same as in the bulk phase. A more strict interpretation
treating pressure as tensors, however, would bring much
complexity into the model, which would defeat our purpose.
Therefore the pressure within the condensed phase is
expressed as an isotropic property at a given location r in
a pore and the direction-dependence is not taken into
account in this model. Again, though the pressure profile
itself is not necessary for the pore size determination,
this information will be used for another test of the present
model.

3. MD Simulation
3.1. Simulation Scheme. The concept of the molecular

dynamics (MD) technique developed by the authors2 for
isotherm determination in the slit pore is applied here
with a slight modification for cylindrical pores. A possible
alternative molecular simulation would include a grand
canonical Monte Carlo (GCMC), as has often been
employed for determination of adsorption equilibria. For
capillary condensation, however, this method suffers from
the difficulty in determining the true equilibrium between
two metastable branches near the critical condensation
pressure. One should calculate a grand potential to
determine the true thermodynamic equilibrium, which
needs many simulations including far higher temperature
to obtain an isotherm without first-order transition, and
then a thermodynamic integral. Other than the GCMC,
one may employ a usual MD simulation followed by
Widom’s particle insertion method to determine the
chemical potential of an adsorption system, but the
procedure must be very complicated for this kind of highly
heterogeneous system. High density also brings a difficulty
in obtaining a sufficient number of successful insertions
to obtain reliable statistical averages.

The unique feature of the present simulation cell is an
imaginary gas phase with which the adsorbed phase can
interact. Because of this interaction the equilibrium vapor
pressure for a given number of molecules in pore space
can be determined. Also, the simulation cell allows a stable
interface to hold. Maybe because of the presence of the
interface in the cell, the simulation scheme was free from

hysteresis, and the relation between pore size and the
critical vapor pressure for condensation was able to be
obtained. Since the details of the simulation method are
given elsewhere,2 a brief description is made below.

Figure 2 shows the unit cell employed in this study.
The central portion of the cell between -ly and +ly is the
pore space with a full potential energy. At a location distant
lB from the edge of the full potential field, we set a border
plane with an imaginary gas phase with which molecules
in the pore can interact. Since the absolute value of
external potential energy in the gas phase must be zero,
there should exist a connecting space with the slope of
potential energy between the gas phase and the pore space.
This space is called potential buffering field (PBF).
Molecules trying to desorb from the pore space must climb
up the potential slope in PBF, and only those with
sufficient kinetic energy can reach the border plane. If we
set a perfect reflection condition at the border, the
frequency of particles coming up should be a direct
measure of the vapor pressure that is in equilibrium with
the given adsorbed/condensed phase. Thus counting the
molecules reaching the border, the equilibrium pressure
can be determined.

The pore length was at least 8 nm so that the
condensation phase had sufficient thickness and was free
from any influence of the gas-liquid interface in the main
body of the condensation phase. The length of PBF was
4 nm, with which a molecule reaching the border plane
was free from interaction force from adsorbed phase.

3.2. Simulation Details. As a system for testing the
proposed model, a LJ fluid in a structureless cylindrical
pore made of LJ solid was employed. The adsorbate was
nitrogen-like LJ fluid, having an interaction potential of

with εgg/k and σgg being 95 K and 0.37 nm, respectively.
The cutoff distance was 3.5σgg. For a cylindrical pore wall,
the potential function derived by Peterson et al.10 with
cylindrical coordinate integration, which is analogous to
the LJ(9-3) potential for a planar solid surface, was used.
The interaction and force between one adsorbate particle
at a location r and the wall is given by

(10) Peterson, B. K.; Walton, J. P. R. B.; Gubbins, K. E. J. Chem.
Soc., Faraday Trans. 2 1986, 82, 1789.
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r dr
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Figure2. Schematic of unit cell and conceptual potential profile
within the pore and potential buffering field.
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where

εgs and σgs are the energy and size parameter between the
LJ particle and the solid wall. Fs is the number density
of interaction sites in the solid wall. The pore wall was set
as a silica-like solid. Interactions with silicon atoms were
neglected, and only the oxygen atoms were considered as
the interaction sites as in many of the previous works for
this kind of material.11 The parameters εgs/k and σgs were
147.8 K and 0.32 nm, respectively.12,13 Other constants
were: the mass of the nitrogen m ) 4.653 × 10-26 kg, the
reduced temperature T* ) Tk/ε ) 0.814, and the number
density of oxygen in silica ) 5.982 × 1028 m-3. The above
parameters were determined so as to represent a real
nitrogen-silicate standard isotherm faithfully.12,13 Note
that, however, our intention was not to mimic an adsorp-
tion isotherm, but to obtain adsorption isotherms on which
the model would be tested. Thus the whole above setting
is an example, and it would not in any sense bring a
limitation to the applicability of the model: e.g., one may
bring any potential function into the model that may be
suitable to express the interaction between an adsorbate
and a pore wall for a given adsorption system.

A simulation run for a given number of adsorbate
particles started from an initial configuration arranged
as a face-centered cubic lattice within the cylindrical wall.
The initial velocity of each particle was given so as to
attain the Maxwell-Boltzmann distribution at the given
temperature. The temperature of the system was con-
trolled by velocity scaling in the usual manner once for
every 100 steps. The Verlet method was used to integrate
the equations of motion numerically. Each run consisted
of at least 5 × 105 up to 1 × 108 integration steps with a
time increment of 1.0 × 10-14 s, the duration of which was
decided so that the number of particles reaching the border
plane counted about 500 or more. With the frequency fB,
or the number of reaching particles per unit time and per
unit area at the border, the vapor-phase pressure pg can
be calculated with eq 13 assuming ideal behavior in the
imaginary gas phase.2

The saturated vapor pressure for the model LJ fluid was
determined by a simulation of the liquid state as described

below, with which the equilibrium pressure was normal-
ized to give relative pressure.

3.3. Physical Properties of the Model Fluid. For
testing the present model, some physical properties of the
model adsorbate employed in this ideal experiment must
be known: the saturated vapor pressure, the volume per
molecule and the gas-liquid surface tensionsall for bulk
liquid. Thus, we simulated a liquid film consisting of the
adsorbate particle in the rectangular cell by the MD
method. We took a system of 2500 particles in a box of
dimensions Lx×Ly×Lz ) 16.8σgg×16.8σgg×43.2σgg following
the literature.14-17 Similar to the simulations in a pore,
a border plane with an imaginary gas phase was placed
at each end of the cell in the vertical direction with
sufficient distance from the liquid film. The run consisted
of 1.2 × 106 integration steps of ∆t ) 1 × 10-14 s. Saturated
pressure was also determined by the particle counting
method.2,7 The surface tension was calculated with the
following statistical mechanical expression:

The reduced values psatσgg
3/εgg, Vp/σgg

3, and γσ2
gg/εgg were

determined by the running average from 2 × 105 to 1.2
× 106 steps to be 0.0085, 1.29, and 0.627, respectively.

4. Results and Discussion
4.1. Adsorption Isotherm. Several runs for each pore

size were conducted with various numbers of particles
ranging from 500-1200 to obtain the adsorption equi-
librium relation. Figure 3 shows cross sectional snapshots
of molecules in a slice of pore space between x ) 0.5 nm
and x ) -0.5 nm for a cylindrical pore with a diameter
of 3.2 nm: (a) N ) 500, pg/psat ) 0.092; (b) N ) 700, pg/psat
) 0.17; (c) N ) 900, pg/psat ) 0.17; (d) N ) 1200, pg/psat )
0.37. The surface adsorption phase is seen under low
relative pressures, and the condensation phase develops
under high relative pressures. The important point to be
noted here would be that the surface adsorption state (b)
and the condensed state (c) show almost the same

(11) Heuchel, M.; Snurr, R. Q.; Buss, E. Langmuir 1997, 13, 6795.
(12) Macelroy, J. M. D.; Raghavan, K. J. Chem. Phys. 1990, 93, 2068.
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73, 1133.
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1988, 89, 3789.
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437.
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Figure 3. Sectional snapshots in a pore cross section between
x ) 0.5 nm and x ) -0.5 nm obtained by MD simulation for
a cylindrical pore with a diameter of 3.2 nm. (a) N ) 500, pg/psat
) 0.092, (b) N ) 700, pg/psat ) 0.17, (c) N ) 900, pg/psat ) 0.17,
(d) N ) 1200, pg/psat ) 0.37.
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equilibrium vapor pressure despite the complete difference
in the adsorbed state. This equality means that the
isotherm is almost vertical at this vapor pressure, and
does not show hysteresis.

The averaged densities of the fluid in pores at the central
portion of the cell, where the density is not affected by the
interface, were evaluated from the data after 2000 ps,
and plotted against the relative pressures in Figure 4. An
almost vertical change in the density can be recognized
for each pore size. The critical condensation pressures
were determined from the rise of the isotherms.

4.2. Critical Condensation Pressure. The perfor-
mance of the present model in predicting the critical
condensation pressure for a given pore size is tested here
with the above results of MD simulations.

The potential function ∆ψ in the model is obtained by
subtraction of the potential energy of the adsorbate liquid
state from the potential of the pore wall. Further, only the
attractive term of the potential would be large enough to
be considered. The repulsive term can be neglected because
the effect of repulsive potential decreases rapidly with
the distance from a pore wall, and it hardly influences the
condensation phenomena in the inner portion of the pore.
According to the setting in the MD simulations, the
attractive potential from the pore wall φgs is

The potential that a molecule would feel if the pore wall
consisted of liquid of adsorbate φgg is expressed as follows,
considering the cutoff distance for adsorbate-adsorbate
interaction.

where Fg is the number density of adsorbate particles in
liquid state. Here, if r + 3.5σgg < R, eq 16 becomes φgg )
0.

Thus the function will be:

The rightmost term with the cutoff distance is used only
for the accord with the model fluid employed in the
simulation. When applying the model to a real experi-
mental system, one need not include the term.

Using eq 17 and the physical properties described in
Section 3.3., the critical condensation pressure for each
pore size is calculated by the present model and compared
with the simulation results in Figure 5 and Table 1,

together with the Kelvin model for which the “physical
properties” of the LJ particle were commonly used. Again,
significant underestimation in pore size by the Kelvin
model (dashed line) is recognized. On the other hand the
proposed model (solid line) predicts almost perfectly the
results of the MD simulations (open circles), to show its
reliability.

4.3. Shape of the Gas-Condensate Interface.
Figure 6 shows local density profiles in a pore of 4 nm,
under critical conditions, along the y-direction. The radial
intervals shown in the figure stand for each adsorption/
condensation layer over which the densities were aver-
aged. As for the pseudo-layer structure, further discussion
is made in the next section. yg denotes the position of the
center of gravity, and the densities are normalized with
that at yg for each radial section. The averaging calculation
was done over 1.0 × 106 MD steps.

Near the central portion of the pore, the density varies
over a thickness of ca. 5σgg from that at the condensed
part down to almost zero at the noncondensed part of the
cell. As we approach the wall, the density variation
becomes broader, and the lower plateau gains a finite
density because of the existence and influence of the
surface adsorption phase. For the section closest to the
wall, the density shows only a flat profile because it
corresponds to a position within the surface adsorption
phase. We determined the position of the interface from
the equimolar dividing surface for each density profile, to
yield the shape of the interface.

Figure 7 compares the results of the MD simulation
and the model prediction by eq 9 shown by a solid line,
together with the dashed line which indicates the hemi-

Figure4. Adsorption isotherms obtained with MD simulations.
The capillary coexistence conditions are indicated by the vertical
dotted lines.

φgs ) -πεgsFsσgs
6K3(r, R) (15)

φgg ) -πεggFgσgg
6K3(r, R) - (-πεggFgσgg

6K3(r,r +
3.5σgg)) (16)

∆ψ ) φgs - φgg ) -π(εgsFsσgs
6 - εggFgσgg

6)K3(r, R) -

πεggFgσgg
6K3(r,r + 3.5σgg) (17)

Figure 5. Capillary coexistence curves: solid line, calculated
by proposed model; dashed line, the Kelvin model; open circles,
MD simulation results.

Table 1. Comparison of Capillary Coexistence
Conditions

relative pressure 0.02-0.03 0.07 0.17-0.19 0.34
MD simulation (nm) 2.0 2.5 3.2 4.0
proposed model (nm) 2.2-2.3 2.6 3.2-3.3 4.2
Kelvin model (nm) 1.1 1.3 1.7-1.8 2.4

Figure 6. Density profile in longitudinal direction at various
r under the critical condensation pressure for D ) 4.0 nm.
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spherical interface given by the Kelvin model under the
same relative pressure. It clearly demonstrates that the
curvature in the proposed model is weaker than that
expected by the Kelvin model, which reflects the contri-
bution of the pore-wall potential energy on forming the
condensed phase in the proposed model. The positions of
interface observed in the MD simulation (open circles with
bars indicating averaging sections) show a somewhat
skewed shape that differs from a circular arc in a similar
way to our model. Though the detailed quantitative
agreement might not be sufficient, the shape of interface
in the simulation is thought to be in quite good accord
with the proposed model.

4.4. Pressure Profile. The proposed model is based on
the continuum assumption and isotropic pressure, while
in the molecular simulation the discrete nature of LJ
particles and the tensor feature of the pressure in the
condensed phase would prevail. As a compromise for
testing our model from the viewpoint of the pressure, a
layer-averaged density and corresponding bulk pressure
were considered as follows.

The density profile with respect to the r-direction FL*(r)
was calculated within the central portion of the cell
between y ) yg + 0.5σgg and y ) yg - 0.5σgg. An example
for pore of 4 nm under critical condensation conditions is
shown in Figure 8. A layering structure is observed over
the pores as expected. Next, a layer-averaged density for
individual layer Fi was calculated with boundaries on the
average being the positions at which the local densities
FL(r) exhibit minima. The average density of the individual
adsorbed layer is plotted also in Figure 8, which shows a
gradual decrease toward the center of the pore.

Separately, we obtained the relation between the
pressure and the density for bulk liquid by using MD
simulations of LJ particles in a cube with each length of
7σgg. The run consisted of 2000 integration steps of 1 ×
10-14 s. The pressure of the homogeneous liquid phase
was calculated according to the usual manner employing
the virial theorem.

The reduced pressure pσgg
3/εgg was determined against

liquid densities as in Figure 9.
From the averaged density of an individual layer a

corresponding bulk pressure for the MD simulation results
was determined as shown in Figure 10 (open circles), where
the estimates by the proposed model (solid line) and the
Kelvin model (dashed line: constant) are also illustrated.
The MD simulation results show that the condensation
phase has a negative pressure near the pore center and
the pressure becomes higher toward the pore wall, which
could never be explained by the conventional model with
uniform pressure within the condensed phase. The
prediction of the proposed model is in quite good accord
in this aspect. Also quantitatively, the agreement is
thought to be satisfactory considering uncertainties and
difficulties involved, e.g., in the above averaging process
and in pressure determination. The fair agreement in
pressure distribution in the condensate would be thought
to add another proof for the reliability of this nonuniform
model for the pore size determination.

Figure 7. Comparison of the shape of the gas-condensate
interface under critical condensation conditions: solid line,
calculated by proposed model; dashed line, the Kelvin model;
open circles, MD simulation results determined from the density
distribution in Figure 6.

Figure 8. Local density profiles over radial direction within
a pore of 4 nm under the critical condensation pressure.
Averaged density for each layer is also plotted by the open
circle with the bar indicating the range of averaging.

Figure 9. Density-pressure relation for liquid phase calcu-
lated by the virial theorem from MD simulation results in the
homogeneous phase.

Figure 10. Comparison of pressure profile over the radial
direction within the condensed phase under critical condensa-
tion conditions: solid line, calculated by proposed model; dashed
line, the Kelvin model; open circles, pressure corresponding to
the local density within the pore observed in the MD simulation.
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5. Conclusion
We proposed a new condensation model for cylindrical

pores that takes account of the effect of the attractive
potential energy from pore walls and the surface tension
deviated from that of a flat interface. For verification of
the condensation model, MD simulations were conducted
to determine the critical condensation pressures for
various sizes of pores. The model, with its simple concept
and handy calculation, successfully described the capillary
coexistence relation given by the MD simulations. The
model was tested also from the viewpoints of the shape
of the interface and the pressure distribution within the
condensed phase. Since the model treats fluid in a pore
as a continuum throughout, a lower limit in pore size must
exist where this assumption should break down. However,
the model was effective in a pore as small as 2 nm in
diameter. This limitation was thought to be smaller than
2 nm.

Appendix A: Note on Applying the
Gibbs-Tolman-Koenig-Buffs Equation in the

Present Model
The surface tension depends on the curvature of the

gas-liquid surface if the radius of interface approaches
the interface thickness.8 Thus, this effect should be taken
into account to describe the condensation phenomena in
nanopores. The relation between the radius and the
tension is known as the Gibbs-Tolman-Koenig-Buff
equation.9 The equations for a spherical surface and a
cylindrical one, respectively, can be expressed as

where γ(Fi) is surface tension for a curved surface of radius
Fi, and γN indicates that for a plane surface. δ is the distance
between the equimolar dividing surface and the surface
of tension within the interfacial region, which is positive
for a liquid drop and negative for a bubble. The magnitude
of δ was reported to be on the order of the molecular size
or liquid-phase intermolecular distance, i.e., 0.3 ( 0.1 nm
for simple molecules such as argon and nitrogen,9 and
this representative value was employed in the calculation.

In the present model the shape of the gas-condensate
interface changes from spherical at r ) 0 to cylindrical at
r ) r0, which means that we should use eq A1 at the center
and eq A2 near the wall. To establish a continuous
variation between the two equations, we assumed the
equation for an intermediate curved surface as

where 1/F is the sum of the two principal curvatures (1/F1
+ 1/F2) as given in eq 2. The above expression reduces to
eq A1 at the center of pores where F1 ) F2, while at the
surface of the adsorption film it becomes eq A2 where 1/F1
) 0.

Appendix B: The Necessity of the Surface
Tension Term for the Adsorbed Film

We examined the contribution of the surface tension
term in eq 7 by GCMC simulations, which compared
adsorption on (1) a cylindrical surface and (2) a planar

surface with the same potential energy. In a real adsorp-
tion system this kind of comparison could never be made
because the overlap of potential energy in a cylindrical
pore would naturally bring a stronger potential profile
than that for a planar surface with same material. The
simulation was made for adsorption on a planar solid
surface with a fictitious potential that had the same ∆ψ
as that for a cylindrical system with respect to the distance
from the pore wall, and was compared with that within
the normal cylindrical system under the same relative
pressure. In other words, eq 7 was tested with common
settings both in ∆ψ and p/psat, for the two kinds of
geometry, to find out if a contribution of the curved surface
of the adsorption phase would exist.

In the cylindrical pore system (normal system), we used
the periodic boundary condition for the longitudinal
direction, and set a lower pressure than the critical
condensation pressure. The length of the cell in the
longitudinal direction and the pore diameter were 10.1σgg

and 10.8σgg (4 nm), respectively. In the unit cell with the
flat surface (imaginary system), we employed the usual
manner of the periodic boundary condition for the
transverse directions with the unit cell size of 10.1σgg ×
11.7σgg. The cell height was 10.8σgg (2 nm), which was the
same as the pore radius of the cylinder in comparison.
The equilibrium pressure pσ3

gg/εgg was set to be 0.0018
and each run consisted of at least 5 × 104 GCMC steps,
each of which included N (number of particles) movement
trials and N insertion or deletion trials.

Figure 11 shows the local density distributions in the
two adsorption systems: The solid line is for the normal
cylindrical system, and the dotted line is for the imaginary
planar system. The curved adsorption phase gives greater
density especially in the second and third layers. We
calculated a statistical thickness of adsorption phase t
that corresponds to the amount adsorbed in each system,
using bulk liquid density usually employed for this
purpose. The results were t ) 1.6σgg for the cylindrically
curved adsorption phase, and t ) 1.1σgg for the flat case,
which implies the existence of an enhancing effect in the
former system as we expected. These values were com-
pared further quantitatively with the predictions by eq 7.
Using the physical properties of the LJ fluid the thickness
of the adsorption film in the pore with diameter 4.0 nm
was calculated to be 1.5σgg, which is in reasonably good
agreement with the simulation result, to support the
appropriateness of eq 7 employed in the proposed model.
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Figure 11. Local density distributions of surface adsorption
film under pσgg

3/εgg ) 0.0018. Solid line: MC simulation result
in the cylindrical pore. Dashed line: MC simulation result of
the imaginary system.
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